FP19

A mass m_{1} sits on a frictionless surface and is attached to one end of a spring with spring constant k. The other end of the spring is attached to the wall. The mass and the spring are initially at rest.

A second mass m_{2} comes sliding in which velocity $-v \hat{x}$, hits the first mass m_{1} at time $t=0$, and sticks to it. This includes oscillations in the spring, which can then be measured. This in turn can be used to determine the mass m_{2} of the impinging object.
a) (3 points) What is the velocity \vec{v}^{\prime} of the two masses immediately after the collision? Express your answer in terms of v, m_{1}, and m_{2}.
b) (3 points) Find an expression from m_{2} in terms of m_{1}, k and the angular frequency ω_{0} of the observed oscillations.

A function which describes the position for the two masses for all time following the collision is $x=$ $A \sin \left(\omega_{0} t\right)+B \cos \left(\omega_{0} t\right)$ where A and B are unknown constants, $t=0$ is the time of the collision, and $x=0$ is the equilibrium position of the spring.
c) (4 points) What are the values of A and B ? Express your answer in terms of ω_{0}, m_{1}, m_{2} and v.

