### **Summary of Main Equations**

$$W = \int_{A}^{B} \mathbf{F} \cdot d\mathbf{r}.$$

$$K = \frac{1}{2} mv^2.$$

$$U_{\rm spr} = \frac{1}{2} kx^2.$$

$$U_{grav} = mgz.$$

$$U(r) = \frac{-GmM_e}{r}$$

#### **Strategy**

$$U_{A} + K_{A} = U_{B} + K_{B}.$$

- Define your system.
- (ii) Pick one reference position for U = 0 and use it consistently.
- (iii) Write down the total energy of the system at the point, say A, where you want to determine some unknown quantity (like speed or height);  $E_A = U_A + K_A$ .
- (iv) Find another point, say point B, where you know everything about the object's motion and write down the total energy at that point;  $E_{\rm B} = U_{\rm B} + K_{\rm B}$ .
- the total energy at that point;  $E_{\rm B} = U_{\rm B} + K_{\rm B}$ . (v) Conservation of energy implies that  $E_{\rm A} = E_{\rm B}$ ; equate the two energies and solve for the unknown quantity.

(vi) If there's any friction, add energy loss (notice  $W_{\text{friction}} < 0$ ):

$$E_A = E_B - W_{\text{friction}}$$
 from A to B

#### Let's practice

Example 7

Estimate the escape velocity from the earth.

Reminder: The escape velocity is the instantaneous speed at the Earth's surface that would allow a rocket to get to spatial infinity with zero speed.

## Let's practice

#### Example 7

Estimate the escape velocity from the earth.

We know from Chapter 7 that

$$g = GM_e/R_e^2,$$

so we can write the escape velocity from the earth in the convenient form

$$v = \sqrt{2gR_e}$$
.

Knowing that g is about 10 m/s<sup>2</sup> and the radius of the earth is approximately  $6.4 \times 10^3$  km, we easily find that the escape velocity is about 11 km/s, or 7 mi/s (= 25,000 mph), a large but not impossible speed to attain.

#### A real case from 2018

Falcon Heavy / Max speed

# 11 kilometers per second



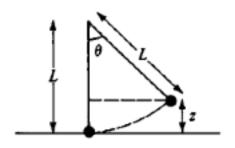
The Falcon Heavy will dispatch the Roadster — weighing around 2,760 pounds (1,250 kilograms) on the street — with enough velocity to escape Earth's gravitational bonds, reaching a maximum speed of around **7 miles per second** (**11 kilometers per second**; **24,600 mph**). Feb 5, 2018

### **Energy and dynamics**

Consider an arbitrary initial  $\theta$  and L.

#### Example 3

A pendulum bob is pulled aside from the vertical through an angle  $\theta$  and released. Find the speed of the bob and the tension in the string at the lowest point of the swing, assuming L = 0.3 m,  $\theta = 30^{\circ}$ , and m = 0.5 kg.



### **Energy and dynamics**

$$E_A = mgz$$

where z is the vertical height above B. Using geometry, we see that  $z = L - L \cos \theta = L(1 - \cos \theta)$ , so the initial energy is

$$E_A = mgL(1 - \cos \theta).$$

The total energy at B is purely kinetic energy because we have chosen z = 0 there, so  $E_{\rm B} = \frac{1}{2} \, m v_{\rm B}^2$ . Therefore the law of conservation of energy,  $E_{\rm A} = E_{\rm B}$ , implies

$$mgL(1 - \cos \theta) = \frac{1}{2} mv_B^2.$$

Solving for the speed  $v_B$  we find

$$v_{\rm B} = \sqrt{2gL(1-\cos\theta)} \ .$$

Substituting numbers, this turns out to be 0.9 m/s in our case.

### **Energy and dynamics**

$$T_B - mg = mv_B^2/L$$
, which implies

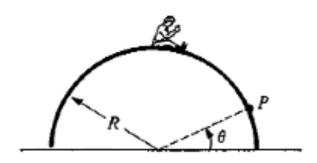
$$T_{\rm B} = mg + mv_{\rm B}^2/L.$$

Substituting for  $v_B$  from our law of conservation of energy we get for the tension in the string when the bob is at point B

$$T_{\rm B} = mg + 2mg(1 - \cos \theta) = mg(3 - 2\cos \theta).$$

### Energy, dynamics and circular motion

21. A child sits on a hemispherical mound of ice. Assuming the mound to be frictionless, if the child is given a slight nudge and slides off, find the angle from the horizontal at which the child leaves the mound.



#### Energy, dynamics and circular motion

**Main idea**: When N = 0, the boy and the mound are not in contact anymore.

From the non-inertial view of the boy, the forces at that moment are:

- 1) The portion of the weight pointing toward the center of the mound, and
- 2) The centrifugal force felt by the boy.

When N = 0, we can write:

$$m v^2_{\text{off}}/R = m g \sin\theta$$
, or  $v^2_{\text{off}} = g R \sin\theta$ .

Now, let's use conservation of energy between the top of the mound and the instant when the boy will lose contact with the mound:

$$mgR + 0 = mgR \sin\theta + \frac{1}{2} mv_{off}^2$$
, or  $mgR = 3mgR \sin\theta/2$ .

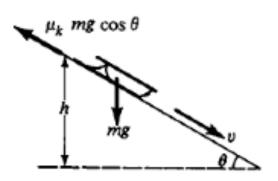
Finally,  $sin\theta = 2/3$  and  $\theta = 41.81$  degrees.

#### **Energy and friction**

#### Do it without numerical values

#### Example 10

Starting at a height of 25 m, a sled of mass 20 kg slides down a hill with a 30° slope. If the sled starts from rest and has a speed of 15 m/s at the bottom of the hill, calculate the energy dissipated by friction along its path and calculate the coefficient of friction.



#### **Energy and friction**

In sliding down the hill, the sled converts mgh of potential energy into  $\frac{1}{2} mv^2$  of kinetic energy and an amount of work W done against friction. Therefore W is

$$W = mgh - \frac{1}{2} mv^2 = (20 \text{ kg}) (10 \text{ m/s}^2) (25 \text{ m}) - \frac{1}{2} (20 \text{ kg}) (15 \text{ m/s})^2$$
$$= 5000 \text{ J} - 2250 \text{ J}$$
$$= 2750 \text{ J}.$$

The sled slides a distance  $h/\sin\theta$  down the hill, with friction exerting a backward force  $\mu_k N = \mu_k mg \cos\theta$  during this time. So the work done against friction is

$$W = (\mu_k mg \cos \theta) (h/\sin \theta)$$
. Distance along the force (scalar product in the W formula!)

Combining the two equations for W we find

$$\mu_k mgh \cot \theta = mgh - \frac{1}{2} mv^2$$

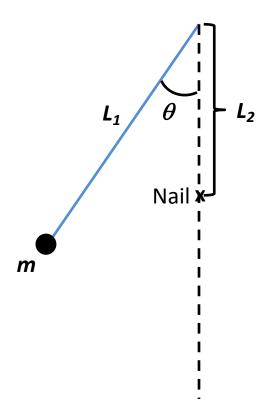
or

$$\mu_k = (\tan \theta) (1 - v^2/2gh).$$

Using the given values for  $\theta$ , v, and h, we find  $\mu_k = 0.32$ . As a check, note that for a frictionless incline ( $\mu_k = 0$ , tan  $\theta \neq 0$ ), our equation yields  $\frac{1}{2} mv^2 = mgh$ , the well-known result for conservative motion in a uniform gravitational field.

#### **Energy and rotation**

Consider a pendulum made out of a rope and a bead. The bead is raised to some height with the rope taut and then set free from rest. Where should we hammer a nail along the mid vertical line so that the bead makes a full turn? The rope is massless and cannot be stretched. Its length is  $L_1$ . The bead has mass m. Consider the acceleration of gravity to be constant and neglect any friction with air.



We'll work out the solution in the next session: Monday 10/28/19