PH1a: Forces
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p=> mv

Newton’s second law:

These notes cover 11 exercises of dynamics in
great detalil

Sergi Hildebrandt (srh@caltech.edu. Cahill 364)
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PH1a: Forces

6. A fan 1s mounted on a cart as shown below, If the fan is turned on, does the cart
move? If so, in which direction?

Suppose a sail were added to the cart. What would be the motion of the cart if the
fan were now tumned on?

Watch also:
Video 1

Video 2



https://www.youtube.com/watch?v=KKLmAYiyd3M
https://www.youtube.com/watch?v=Zy7JQ0lwj1w

Problem 1: Action and Reaction in Full Detail

Newton’s Third Law: Draw all the forces on this diagram. There’s friction on all surfaces.
Assume block A is falling down.




Problem 1: Action and Reaction in Full Detail

These would be the forces without drawing the reactions

If (Na)x>(falx Wg



Problem 1: Action and Reaction in Full Detail

Action
- = = Reaction

Ng has to support W,
part of W,, and part of f,!

= o e e i |
If (Na), >(fa)s fg Wg | If you apply Newton’s law F=ma
: to each block, remember all
I these forces.
4 | Na
:WB : If the incline is not fixed to the
: : ground, it could certainly move!
| v
I



PH1a: Forces of friction

Static friction;
= pN

Static friction is not
always equal to uN

Kinetic friction: Kinetic/sliding friction
_ is always equal to uN
S = mN




Problem 2: Let’s practice

F - <Ms#o

Hs =0

For M,, Mg and p,, find the maximum force, F, that can
be applied so that Mzremains on M,



Problem 2: Solution

The most interesting thing to learn from this problem is the action/reaction pair
due to friction between body A and B and their direction: to the right in B (in the
sense of motion) and to the left in A

f 7 %—%
F Ms 7= 0

ﬁ MA J

f ps =0

f=Mgag and F-f=M,a,

We want to impose a,=ag=a. Summing up get: F = (M,+M;)a. On the other hand,
the static friction is at most f=uNg=u,M_zg. Therefore, the maximum acceleration is
a=f/Mg= p.g and:

Fmax=(MA+MB)amax= (MA+MB)usg



Problem 3: Drawing all forces

24. The weight of the 400-1b boom in the derrick pictured below is uniformly distrib-
uted along its length. By considering the equilibrium conditions for the boom, find
the tension in the cable running from A to B (which need not be the same as the
tension in the cable below B) and the horizontal and vertical forces exerted on the
boom at point C by the hinge of the derrick. By considering the equilibrium con-
ditions for point B, calculate the force exerted by the boom on the cable at point B.

A
BN These two cables are different

60° (B

c . boom

2000 Ib




Problem 3: Drawing all forces

24. The weight of the 400-1b boom in the derrick pictured below is uniformly distrib-
uted along its length. By considering the equilibrium conditions for the boom, find
the tension in the cable running from A to B (which need not be the same as the
tension in the cable below B) and the horizontal and vertical forces exerted on the
boom at point C by the hinge of the derrick. By considering the equilibrium con-
ditions for point B, calculate the force exerted by the boom on the cable at point B.

60.
60° (3B

2000 Ib

Q From the triangle, n:B+B+n/2_a, or
¢ F o=2p—n/2

PS: you should get with torques about C: T=(2W+W,) cos #=2,200 Ib



Problem 4: Drawing all forces

Chapter 8

18. Two blocks are connected over a massless, frictionless pulley as shown. The mass
of A is 8.0 kg and the coefficient of kinetic friction is 0.20. If block A slides
down the plane with constant speed, what is the mass of B?

30°




Problem 4: Drawing all forces

We will consider the incline fixed to the ground!
Chapter 8

18. Two blocks are connected over a massless, frictionless pulley as shown. The mass
of A is 8.0 kg and the coefficient of kinetic friction is 0.20. If block A slides
down the plane with constant speed, what is the mass of B?

X T /C) T
A A F=0.2N, T ‘
B
30° Recall: massless string
W, and pulley 1 B
W

PS: you should arrive to this equation, W,sin30 - 0.2 W,cos30 = W,
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Problem 5: Drawing all forces
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Problem 5: Drawing all forces

3 forces upon body #1
3 forces upon body #2
6 forces upon body #3
3 forces upon body #4

}l
h

3 I Nz

g T— T
M, fdomrmrrmereope. 5
* S 11‘
P,
: i 713 PR
( ~Z .| Wo T [ 0
| M, | '\2 *NZ N; !n-F

PS: magnitude of F3; is the same as the magnitude of F;3. On the pulley, there are 2
equally opposed tensions with same magnitude as T;. The reaction of the weights all go in
the Earth. N3 and N, also go in the Earth.
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Problem 6: Drawing all forces




Problem 6: Drawing all forces

We will consider the incline fixed to the ground! Thus, I’'m not
drawing the action/reaction forces on the incline.

3 forces upon body #1
6 forces upon body #2

Notice N; acts
upon body #2

PS: the reaction of f, would be in the incline. Likewise for the reaction of N,.
And the reactions of W; and W, are in the Earth.



: Problem 7: Pulleys

FP9 from the
Course webpage

Two masses are connected by a string as shown. m; slides without friction
on a fixed incline at an angle of 30° with respect to the horizontal. Neglect the
mass and friction of the pulleys, and the mass of the string.

(a) (2 points) Find the ratic of the masses ma/m; such that the masses will
remain stationary, if they are initially at rest.

(b) (1 points) If the mass m; moves a small distance AD; along the incline,
find the distance AD; that the mass m; moves.

 (c) (8 points) If my = 2m,, and the masses are initially at rest as shown, find
the acceleration of mj..

(d) (3 points) If m; slides a distance D down the incline before encountering

the stop at the bottom, what are thé speeds of m, and m; just before
encountering the stop.

(e) (1 point) When the moments of inertia of the pulleys are taken into ac-
count, do the speeds of the masses in part (d) increase, decrease, or remain
the same?



3. FP9

T, — Wysinf = 0
2T, = W,
ms 1
m, 2sinf

Notice that the limit @ — =/2, gives my/m,; = 1/2 as expected, and the limit § — 0 gives my/m; — oo,
also as expected, since a horizontal chute cannot hold (without friction) the weight hanging on the pulley.




3. FP9

a)
’1‘1 - l"’g sin 9 = 0
21 = W,
mz 1
m 2siné

Notice that the limit @ — =/2, gives my/m,; = 1/2 as expected, and the limit § — 0 gives my/m; — oo,
also as expected, since a horizontal chute cannot hold (without friction) the weight hanging on the pulley.

b) The -tip is to consider the total length of the ropc:, which is constant. Portion by ;')-ori—ion:

Listw =l + 7R+ b+ 7R+ lc,
Al =d = Al, = Al, = —d/2.




b) The -tip is to consider the total length of the ropc.:, which is constant. Portion by ;;br;ion:

Lot =l + 7R+ b+ 7R+ lc,
Al. =d= Al, = Al, = —d/2.

¢} Taking second derivatives:

£, Pl L Pl Pl

— , . — = 0.

e a2 de e Tae Y
= lea o dzlb - _ldzlc
Tar T ode T e

That is, a; = az/2. Now, the equations of the forces are:

27‘1 - "V[ = Tmya,, ‘Vz sinf — T1 = My,
1




¢} Taking second derivatives:

d’l, i, dl. &, d*,

- . =0.
dt? det’  de? N dt? N di? |
N &l dl _1@
dt- dt* 2 dt?

That is, a1 = az/2. Now, the eguations of the forces are:

2’1'1 — ‘4"1 = rmya,, ‘1"'2 sinf — ’1.1 = Meas,
1

That is, 77 = Wasin — 2maay, 2Wsysin @ — dmaa; — Wi = myay, 2Wysinf — Wy = (my + 4ms)a,, and,
finally,

a;

2Wysing — W, (2m2 sinf — ml)

my + 4ms mi + 4ms

a; = 2(11, a2=2(

2mosin@ — my
mi + 4m2 9-




That is, 77 = Wasinf — 2mgay, 2Wssinf — dmaa; — Wy = myay, 2Wssinf — Wi = (my + 4my)a,, and,
finally,

0 — 2Wysin — W, (2mysinf —m,
o my+4my my + 4my
2ms sin § — ml)

my + 4dms,

a2 = 2(11, a2=2(

For 0 = 30°, my = 2m,, ay = 2g/9 ~ 2.2m/s?.




d) Recall distance in terms of acceleration for the case of constant acceleration:

1 [2D
D= Zaxt’*=>t=4]—,
2 15

ve = v/ 202D = V2%22% D ~ 2.1\/5, v = v /2.

Also, v, = ast, so that




d) Recall distance in terms of acceleration for the case of constant acceleration:

1 [2D
D= Zaxt’*=>t=4]—,
2 15

ve = v/ 202D = V2%x22%x D ~ 2.1\/5, v1 = va/2.

Also, v9 = ast, so that

e) Not yet. Later on in the course, when we deal with angular momentum




Problem 8: Sliding chain

Consider a flexible chain of length L and linear density A
(M=AL) lying on an incline as shown in the figure. There’s
friction all along the incline. The chain is initially at x=x,and at
rest and is given a slight nudge that sets the chain in motion to

the right.

1) Find the acceleration of the chain in terms of x and
any other relevant variable of the problem
2) Find the speed when x=0
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PH1a: Forces

Second Law: The change of motion of an object is proportional 1o the force
impressed; and is made in the direction of the straight line in
which the force is impressed.

Write it down!



PH1a: Forces

Second Law: The change of motion of an object is proportional 1o the force
impressed; and is made in the direction of the straight line in
which the force is impressed.

Write it down!

F=ma?



PH1a: Forces

Second Law: The change of motion of an object is proportional 1o the force
impressed; and is made in the direction of the straight line in
which the force is impressed.

Write it down!

F=ma?

NOPE!



PH1a: Forces

Second Law: The change of motion of an object is proportional 1o the force
impressed; and is made in the direction of the straight line in
which the force is impressed.

Write it down!

F=d(mv)/dt!



PH1a: Forces

Second Law: The change of motion of an object is proportional 1o the force
impressed; and is made in the direction of the straight line in
which the force is impressed.

F =d(mv)/dt

F=vdm/dt+ma



PH1a: Forces

Second Law: The change of motion of an object is proportional 1o the force
impressed; and is made in the direction of the straight line in
which the force is impressed.

If m = constant, then F=ma



PH1a: Forces
F = ma

Who wrote this equation?
Probably the most used equation in physics!



PH1a: Forces




PH1a: Forces

N¥“ i1} Leonhard Euler

1707, Basel, Switzerland
1783, Saint Petersburg, Russia

65 years after Newton published it!


https://www.google.com/search?biw=1440&bih=752&q=basel+switzerland&stick=H4sIAAAAAAAAAGOovnz8BQMDgx4HnxCHfq6-gUlWVZYSmGWYbZKmJZadbKVfkJpfkJMKpIqK8_OskvKL8hLa8wxTdS545Kxa-brlsMcFS9075gBtORrSSwAAAA&sa=X&ei=R3svVP7fNcPxoAT68YGYBQ&sqi=2&ved=0CKMBEJsTKAIwFQ
https://www.google.com/search?biw=1440&bih=752&q=st+petersburg+russia&stick=H4sIAAAAAAAAAGOovnz8BQMDgzkHnxCHfq6-gUlWVZYSmGVWUGSmJZ-dbKVfkJpfkJOqn5KanJpYnJoSX5BaVJyfZ5WSmZoieZFnQePJdcu2_Lj64hNfRuUEhi0bANozCbFUAAAA&sa=X&ei=R3svVP7fNcPxoAT68YGYBQ&sqi=2&ved=0CKgBEJsTKAIwFg

Problems 9 & 10: F is not just “ma”

Two different examples
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Lifting up a chain Chain falling through a hole




PH1a: Problem 9

2. CHAIN LIFTED VERTICALLY

The end of a chain, of mass per unit length 7, is at rest on a table top at ¢ = 0. is lifted vertically at a
constant speed v. Evaluate the upward lifting force as a function of time,

- \/C\Ol‘:\rj ay
N
chamn ]
y Fotal wass M

and holud Leugth L.
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PH1a: Problem 9

2. CHAIN LIFTED VERTICALLY

The end of a chain, of mass per unit length 7, is at rest on a table top at ¢ = 0, is lifted vertically at a
constant speed v. Evaluate the upward lifting force as a function of time.

The solution of this problem reminds us that the sum of external forces is not simply the product of the
mass of the system by its acceleration, but it is equal to the change of the linear momentum of the system.




PH1a: Problem 9

2. CHAIN LIFTED VERTICALLY

The end of a chain, of mass per unit length 7, is at rest on a table top at ¢ = 0, is lifted vertically at a
constant speed v. Evaluate the upward lifting force as a function of time.

The solution of this problem reminds us that the sum of external forees is not simply the product of the
mass of the system by its acceleration, but it is equal to the change of the linear momentum of the system.

It is clear that as the chain is lifted, more mass is on the air, and we have to pull with a greater force.




PH1a: Problem 9

2. CHAIN LIFTED VERTICALLY

The end of a chain, of mass per unit length », is at rest on a table top at ¢ = 0, is lifted vertically at a
constant speed v. Evaluate the upward lifting force as a function of time.

The solution of this problem reminds us that the sum of external forees is not simply the product of the
mass of the system by its acceleration, but it is equal to the change of the linear momentum of the system.

It is clear that as the chain is lifted, more mass is on the air, and we have to pull with a greater force.

There are two forces acting on the piece of chain off the table, the gravitational force and the force that
lifts the chain, say F. The basic equation reads then:

(10) Fom(t)g=2 =y 20,

where we have taken into account that the speed is constant (dv/dt = 0) and that the mass being pulled
is increasing in time.




PH1a: Problem 9

There are two forces acting on the piece of chain off the table, the gravitational force and the force that
lifts the chain, say F. The basic equation reads then:

(10) F-mit)g= 2 = v 200,

where we have taken into account that the speed is constant (dv/dt = 0) and that the mass being pulled
is increasing in time.

We can still work out the solution further, because the mass off the table is proportional to the height
of the chain. That is m(t) = ny, where y is the height from the table. Moreover, since the chain is lifted
with constant speed we also have that the height is a linear function of time, y = vf. Therefore:

dm/(t
(11} F=m(t)g~v ) = nutg +~ vnu = nu (v + gt).

dt




PH1a: Problem 9

There are two forces acting on the piece of chain off the table, the gravitational force and the force that
lifts the chain, say F. The basic equation reads then:

(10) F-m(t)g="2 =y 20,

where we have taken into account that the speed is constant (dv/dt = 0) and that the mass being pulled
is increasing in time.

We can still work out the solution further, because the mass off the table is proportional to the height
of the chain. That is m(t) = ny, where y is the height from the table. Moreover, since the chain is lifted
with constant speed we also have that the height is a linear function of time, y = vf. Therefore:

dm(t
(11) F=m(t)g~v mdt( ) = nutg + vnu = nu (v + gt).

At some point, all the chain is on the air. Then, dm/dt = 0, and the total linear momentum does not
change anymore. The pulling force is equal to the weight of the chain.




PH1a: Problem 10

A chain of length L, and mass per unit length 7. is at rest on a table. The table has a hole in the middle.
One end of the chain is pulled a little way through the hole and then released. Friction is negligible and,
as a result, the chain runs smoothly through the hole with increasing speed. How long does it take for
both ends of the chain to reach the floor?




PH1a: Problem 10

A chain of length L, and mass per unit length #, is at rest on a table. The table has a hole in the middle.
One end of the chain is pulled a little way through the hole and then released. Friction is negligible and,
as a result, the chain runs smoothly through the hole with increasing speed. How long does it take for
both ends of the chain to reach the floor?

This problem reminds us again that the change of linear momentum is equal to the sum of the external
forces. Contrary to the case of the lifted chain, there is no condition on the speed of the chain, so it may
have an acceleration. In fact, if we imagine the chain falling, we know it speeds up as more of the chain
has run through the hole.




PH1a: Problem 10

A chain of length L, and mass per unit length #, is at rest on a table. The table has a hole in the middle.
One end of the chain is pulled a little way through the hole and then released. Friction is negligible and,
as a result, the chain runs smoothly through the hole with increasing speed. How long does it take for
both ends of the chain to reach the floor?

This problem reminds us again that the change of linear momentum is equal to the sum of the external
forces. Contrary to the case of the lifted chain, there is no condition on the speed of the chain, so it may

have an acceleration. In fact, if we imagine the chain falling, we know it speeds up as more of the chain
has run through the hole.

Forces?




PH1a: Problem 10

Forces?

The only external force on the hole chain is the gravitational force of the part that has run through the
hole (the remainder on the table is in equilibrium with some normal force from the table surface).
The basic equation is:

dp dm
(12) mg = - =ma+v—_r.




PH1a: Problem 10

The ’basic equation is:
dp dm

(12) mg = —- =ma+v—r.

The change of the mass in time is related to the height of the chain pulled down by the gravitational
force. We can write: m(t) = ny(t). We know there will be some acceleration, so we do not impose any
equation on y(t) yet. But, obviously, dy(t)/dt = v(t). The basic equation becomes then:

v’

(13) ngy(t) = ny(t)a + m*(t), =a=g- 7"




PH1a: Problem 10

The curious fact of this problem is that a(t) = constant works. To see this, let’s write a(t) = a, v(t) = at
and y(t) = jat* and substitute back in the previous equation:

(14) a=g—2a,=>a=g/3.

Quite a nice result.




PH1a: Problem 10

The curious fact of this problem is that a(t} = constant works. To see this, let’s write a(t) = a, v(t) = at
and y(t) = %at2 and substitute back in the previous eguation:

(14) a=g9—2a,=ra=g/3.

Quite a nice result.

To find out the time it takes the chain to touch the ground we should know that while there is some
chain on the table, a = ¢/3, but when all of it has gone through the hole, the acceleration is g. Knowing
the height of the table, H, one can work it out for different situations H > L or H < L. The time for the
whole chain to be out of the table is simply ¢t = /2L/a = \/6l/g. Then, one could add any more time if
H>L ast,=/2(H - L})/qg.




PH1a: Problem 11

DR. NO’S ANTIGRAVITY MACHINE

SERGI R HILDEBRANDT

FIGURE 1

Dr. No wants to get big money from some CEO and Army Generals by selling the idea that he has
discovered the secret for antigrativity. He plans to launch his Dr.No-Box1 and once it has attained a
certain speeed, vy, he’ll turn off the engines as he pushes the button of what he claims is the antigravity
engine. He will show to his audience that the spacecraft will continue to move upwards with constant
velocity, despite the gravitational attraction of the Earth. After some demonstration time, he’ll turn off
the antigravity engine and come back to the ground, landing with some parachutes. Please, answer the
following questions:

e a) How is it possible?

e b) The picture on the right hand side, shows what his fooling plan looks like: he will eject mass
from the original spacecraft, after he pushes the antigravity button and during the demonstration
time. The mass and speed with which the mass is ejected on both sides of the spacecraft is the

same, so there is no horizontal force or motion. Find the relationship between vy, g (the Earth’s
1



SERGI R HILDEBRANDT

gravitational acceleration), the initial mass of the whole system, M and the time of the antigravity
demonstration, At.

e ¢) How much mass should be ejected if vy = 10 m/s, At = 1 min? Does it make sense in practice?
(Hint: assume that the minimum mass at the end has to be the mass of the enclosure of the
spacecraft, plus engines, people, etc ... say about 10,000 kg).

e d) Dr. No’s engines cannot speed up Dr.No-Box1 faster than the speed of sound (he also wants
to keep his tests ‘silent’). What would be the minimum initial weight of the spacecraft be if the
antigravity demonstration is a minute long?



DR. NO’S ANTIGRAVITY MACHINE 3
1. SOLUTIONS

e a) Yes. Force is equal to d(m)/dt, so that velocity may be constant if the mass varies. The
spacecraft can only lose mass. Therefore, dm/dt < 0 and that implies that the direction of the
velocity has to be the contrary of that of the force. The trick may work when moving upwards, but
not when descending,.



4 SERGI R HILDEBRANDT
2. SOLUTIONS

e a) Yes. Force is equal to d(mv)/dt, so that velocity may be constant if the mass varies. The
spacecraft can only lose mass. Therefore, dm/dt < 0 and that implies that the direction of the
velocity has to be the contrary of that of the force. The trick may work when moving upwards, but
not when descending,.

oh) F= vodm /dt, with ¢y the velocity when Dr. No stops the engines of his spacecraft. On the other
hand, W = mg (g is pointing downwards). Consequently, i) ¥ and ¢ must be parallel. One can
leave the sign of the direction free and check that + would imply increase of mass, and — decrease.
Let’s choose, as explained in a) the negative sign and re-arrange W = Godm /dt: —g/vodt = dm/m,
which is a simple differential equation.

Integrating, with the initial condition of m(t = tq) = my:

(1) m(t) = moe 9N Gy = —(vy/9)7 = vok,

where At is the time of the demonstration (A = ¢ —1, if one wishes). It makes sense dimensionally,
and W = d(muj)/dt is satisfied.
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3. SOLUTIONS

a) Yes. Force is equal to d(mv)/dt, so that velocity may be constant if the mass varies. The
spacecraft can only lose mass. Therefore, dm/dt < 0 and that implies that the direction of the
velocity has to be the contrary of that of the force. The trick may work when moving upwards, but
not when descending.

b) F= vodm /dt, with ¥y the velocity when Dr. No stops the engines of his spacecraft. On the other
hand, W = mg (g is pointing downwards). Consequently, i) ¢ and ¢ must be parallel. One can
leave the sign of the direction free and check that + would imply increase of mass, and — decrease.
Let’s choose, as explained in a) the negative sign and re-arrange W = dydm /dt: —g/vodt = dm/m,
which is a simple differential equation.

Integrating, with the initial condition of m(t = tg) = my:

m(t) = moe_g/voAt, o= —(vo/9)g = UO%,

where At is the time of the demonstration (A = t§—1, if one wishes). It makes sense dimensionally,

and W = d(mih)/dt is satisfied.

¢) The final mass will be: mp = mge™
mp = 10,000 kg. However:

d) The speed of sound is approximately 342 m/s at sea level and at 20 °C. Now, mp = mge™
0.18my. This sets the minimum mass of the spacecraft. Less will not provide enough mass to be
ejected. If the final mass is 10,000 kg, then the minimum initial mass of Dr.No-Box1 has to be:
mo = 10,000/0.18 = 55,806 kg. Seems okay! Let’s do it.

88 — 31072%my!!l No way in practice of having my. Recall

1.72
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