PH1a: ORBITS AND KEPLER
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An elliptical orbit of a planet
(greatly exaggerated)

Source: https://oneminuteastronomer.com/8626/keplers-laws/

PS: we usually speak about semi-major axis, a, and semi-minor axis, b.



All orbital problems can be solved with these formulas

1. RELEVANT FORMULAS

Planetary motion:
1) Kepler’s first law from the focus (barycenter):

a(l — ¢?
) r=fmt)
1+ ecosé
where a is the semi-major axis, ¢ is the ellipticity of the orbit and @ is measured from the focus with the

origin 6 = 0 when the object is closer to the focus. Notice that r has a minimum and a maximum value
called perigee and apogee, respectively.

(2) Tp = Tmin = 0(1 - (3), -— !
(3) Fo = Foax = Q(l + C’-)- — !

2) Kepler’'s second law (“equal areas in equal times”)
dA L L
(4)

— = — = constant = A = —T',

dt ~ 2M ; oM
This result is not linked to the particular 1/r* dependence of Newton’s gravitational force but it is a general
property of any radial force (a force directed from a fixed origin).

PS: orange arrows mark the most relevant ones

Sergi Hildebrandt (srh@caltech.edu)
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All orbital problems can be solved with these formulas

An important relationship for an orbiting body derived from the conservation of angular momentum is:
(5) rusina = ret, = rpvy, «—

where « is the angle between the position vector and the velocity vector. For the apogee and perigee,
a = m/2 (and only for these two positions), so that v,r, = v,v,. This relationship will offen be used in

the problems.

3) Kepler's third law for elliptical orbits:

4xa’
6 T? = .
where M is the reduced mass of the system. Although, in practice, we will consider the mass of the most
massive body (for instance, the Sun).

G

This result only holds for a central force with an inverse of square distance behavior. A fact that Newton
used to derive his universal gravitational force.




All orbital problems can be solved with these formulas

4) Energy:

(7) E = K + U = constant
- ).‘\' :
(8) K = %mv‘, U=-— & :m
Moreover, for an elliptical orbit:
i GMm
(9) —_— Eelliptical = — %0

This result will be used in the resolution of problems.

The total energy, since it is conserved, will be calculated at the perigee and apogee, together with
I'a¥s = Tyt often resulting in a second order polynomial for r,, r,.

The total energy is E = 0 for a parabolic orbit. And for an hyperbolic orbit, E > 0, that is, unconstrained.



First exercise: prove this identity

E

elliptical =

-GMm/2a
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Journey to Mars




Journey to Mars

a) This problem is solved using conservation of energy and angular momentum. Notice that the apogee is at
the orbit of Mars and the perigee is at the orbit of Earth.

ravn—rp'vp,
12 _GM _1. GM
2% 1, 2P oy’
1,5 o 1 1
2(vp—va _GM(rp_ra)’
2 2
’ﬁ[(f_a) _llsz(i_L),
2 |\rp Tp Ta
1
v:=20M ® = U, = G M
TaTa+Tp ra(ra + 7p)

re I have used v2 — v = (vp + va)(vp — va).



Journey to Mars

Now, the Earth is orbiting with a speed given by (circular orbit approximation) ve = /GM/r.. There-
fore the relative velocity is:

(34) Avg = 5, —vg = \/ 2GMr,  [GM _ \/GM ( r, 1).
rq(ra"‘rp) Ya ra rn+rp

Notice that v, > (r; = r,)/2 (the semi-major axis), so the previous expression tells us Avg > 0.

Substituting the values for r, = rg and r, = ry, we have Avg = veg % 0.098 = 2.93 kin/s, where

ve = 29.8km/s (ve = \f(”” or also you can divide 2xrg by a year. The speed for the probe, 2.93 km/s,
is about 8.6 times the speed of sound. still a respectable speed to provide to the probe.




Journey to Mars

b) Using conservation of angular momentum, as before, v, = v,r, /1. or

. 26 M ra
(35} ‘U‘, - \/

rp(fe + 1p)

And
(36) Avay = b, — o3y — \/ ZGMra GM M( 2r. 1).

r p(ra \ Tp \ Ty T

Now Auvy, is negative, since r, < (r, — r;)/2.

The velocity of Mars can be obtained as vy = \/ (,:' ividing 2xrys by a Martian year. The
Martian year can be found by direct use of Kepler’s third law comparing Mars and Earth. The result is

vy fUE = Vv E/ ar-

Its value is: Avyy = vy = (—0.109) = —2.64 kin/s, where vy, = 24.2 km/s,

The fact that Avys is negative means that the probe will arrive with less velocity than Mars, so it will
be necessary to speed it up. Such speed is not negligible, about 7.76 times the speed of sound.



Journey to Mars

c) It takes half a period. Remember that for elliptical orbits, Kepler's third law can be applied:

. 4x'a?
37 T% = .
(37) =M
ais (rg —ry) /2. Taking ratios with respect to Earth (1 year):
Topacocrate _ (T + g\
(38) —tpuceersd ('”"L “‘) = 1.4143 ~ /2,
Tarh 2rg

The last fact is just a curiosity. Anyway, it is half the orbital period, or 7', = 0.T071 years.




Journey to Mars

d) We can know the angular speed of Mars: wy = /GM/r3, or from its speed found before and its
orbital radius. On the other hand we have the semi-period of the orbital probe found before. Therefore,
Mars will have swept an angle:

Ts acccra; T ar GM
(39) s = wy R — th\/ ; (TEJFTM 2\[\/ TEJFTM e 07547 — 135.85°.

2 T\ 27"E

Where I have used Tga = 274/ 75, /GM. The best opportunity is then when Mars is ahead of Earth by
180° — 135.85° = 44.14°.

E-mail address: srh@caltech.edu

Sergi Hildebrandt (srh@caltech.edu)
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Determining an orbit

Both exercises: 29 and 30. Source: The Mechanical Universe. Chapter 17.
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True ‘parabolic’ shot (*)

(*) It’s actually ... elliptical!



True ‘parabolic’ shot

2. ROCKET FROM CAPE CANAVERAL

The maximum distance is the apogee. As mentioned in the summary of main formulas, we will use
conservation of angular momentum and conservation of energy to find the solution.

Let’s now use conservation of energy:

5 MYy R = 3™ - = 2m(z,0 v;) =GMm (R f‘a)

Substituting v, = wRcosf/r,, and multiplying all by r?, we get a second order polynomial:

r (ZG—M - vg) — 2GMr, + viR? cos® § = 0,

o R
. 2GM vi R? cos® 6
2 N . _ Y
Ta— brat+e=0, b= 2GM 'vg’ €= "M - vg
R R

Notice that \/2GM /R is the escape velocity from the planet (Earth). v must be less than the escape
velocity or it would escape to infinity. That’s why I have written it as ﬁ#u — vf because it is a positive
gquantity. The solution is:

b 4c
=—l1x4/1-=
fa=3 ( =




True ‘parabolic’ shot

Notice that /2GM/R is the escape velocity from the planet (Earth). v must be less than the escape
velocity or it would escape to infinity. That’s why I have written it as Kﬁu — v3 because it is a positive
guantity. The solution is:

where vp = /2GM /R is the escape velocity and I have done some algebra (check it!).

Also notice that for an ellipse we need to have an apogee and a perigee, so that there is another condition
(prove it!):
4c
? >0= v <vg,
This condition is what we expected before. Otherwise, the rocket would go to infinity after all. In summary

the farthest point is:
GM [ 4e
o = = s 1+4/1——
vy — vy ( bz)




True ‘parabolic’ shot

Now, using vi = 2GM/R, one can simplify a bit the previous expression and finally get:

¢ 2

R 1 1 2. 2
ra=w | — ( 1+ =/ v} + 4uj cos? § — 4ujvi. cos? 8)
211~ = Vi

Units are okay as can easily be checked. If § = x/2, a vertical launch, r, = R/(1 — v?/v}) and for a
tangential launch: r, = R. Obviously, these extreme cases could have been solved directly from the very
first equations above. | suggest you verify that one obtains indeed these solutions.
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Sudden change in an
orbit: collisions,
explosions, ...




Sudden change in an orbit: collisions, explosions, ...

3. ORBIT PROBLEM WITH EXPLOSION

a) This question could be solved immediately because for an elliptical orbit (circular in this case), the
total energy is given by £ = ~GMm/2r.

However, we need to give the solution in terms m and v, as well. Let’s recall the whole process.

First, from Newtonian dynamics, the equilibrium equation gives us:
GMm/[ri = muj [ro, or  mup =GMm/r.
Therefore,
E = -GMm/[2ry = —mu} /2 = —-K

As a side note, notice that in the case of a circular orbit £ = K ~U = - K, or K = —U /2, which is an
expression of the virial theorem for a potential that is proportional to r %,



Sudden change in an orbit: collisions, explosions, ...

b) We use conservation of energy. The reason to prefer conservation of energy to conservation of angular
momentum is because the magnitude of the velocity does not change and we do not need to know the
angle (this will be considered in the next question). Using conservation of the total energy, we can write:

GMm

o
GMm

- 21y

OGMm
2r, 0

1L 2
5 muv, —

vp

1 ., GMm

2 re

lmvg - SGMm

2P ro

1 5

2rm, H

IGM

3 \'l‘ - = 31:1_;.

4]

c¢) Here we can use conservation of angular momentum:

Wil COS & = (rr,;‘S} (31,'1)),

where | have obviated m and | have used the fact that a is the complementary angle to the one between
the position vector and the velocity. Therefore, cos @ = 3/5, or & = 51.13°.




Sudden change in an orbit: collisions, explosions, ...

d) Again conservation of angular momentum gives us the answer: r,v, = gvoro(: Upty).

e) The casiest way is noticing that A is the apogee. We have
ra=a(l+e), and  rp=a(l—e),
so that
rp =1ro/d =ro(l —¢€),

because a = ry due to the fact that the magnitude of the velocity did not change in the explosion. Therefore,
the total energy before and after the explosion is the same.

Since the total energy is ~GMm/(2a) for an elliptical orbit and it was ~GMm/(2rg) in the circular
orbit, one must have a = ry.

In summary, e = 4/5 and r4/rp =1+ ¢ = 9/5.

For v, /vy we can use conservation of angular momentum again: vary = vprp or va{l+¢) = vp(l —¢).
We know vp = 3up so that vy /vy = 3(1 —¢)/(1 +¢) = 1/3.



Sudden change in an orbit: collisions, explosions, ...

f) For the last question, the kinetic energy of the mass m does not change, only the potential energy
due to the disappearance of part of the mass of the central body. For a parabolic orbit, the total energy is
0, so we can write:

1 , GMm GMm GMm - M

28 0= -mv: — = M=—
( } 2 v o 21"{; 7o 2




Additional material beyond the course:
Escape velocity from a planet and Black Holes?



Black Holes: escape velocity from a planet greater than c?

)
) escape

=112 km/s

| . GMm

—my- =

2 r
2GM

’c’M‘u[lc'- r

PLeap=11,340 kg/m?3:

Can we think of an object where light cannot escape?
1. Assume the mass of the sun, find the radius of the object?
2. Assume the radius of the sun, find the mass of the object?

3. Assume density of lead, find the radius and mass of the object?

Use Sl: ¢ ~ 3.00x108 m/s, G ~ 6.67 x10'11 Nm?/kg2, M., ~ 2.00x103%kg, rs,,~ 4.38x10° m,




Black Holes: escape velocity from a planet greater than c?

=112 km/s

ve‘xu ape

| s GMm

—my- =

r

_ [26m
“c’ seape = r

Can we think of an object where light cannot escape?

1. Assume the mass of the sun, find the radius of the object?
e r=2.96 km! All the sun should be shrunk to that radius.

2. Assume the radius of the sun, find the mass, “M”?
e M =2.96x103%6 kg (~1,000,000 Sun mass)! All this mass should be put into the size of
the sun.
3. Assume density of lead, find the radius and mass of the object? (Use M = 4/37r3)
 r=27Rgyn!, M =40 million Mg,y. That’s the option first thought in ... See next
slide.




How old is the idea of a Black Hole?

English John Michell and French Pierre-Simon Laplace in 1784 and 1796

They assumed large objects where the density was not higher than the one
found in the known elements, ~ 10 g/cm3. Not small objects with incredible

densities. In reality, we have only detected BH that correspond to ultra high
densities —singularity, and ‘small’ sizes.

Keeping mass and modifying the radius (what really happens in a Black Hole), we would
get:

e Mass of 1 Earth: Black Hole radius is 9 mm
* At Andromeda, M31, super massive Black Hole: 4.7x101! m. About 26 light-

minutes in radius. Much less ‘dense’. Less dangerous than an Earth-like Black Hole.
That is, much weaker ‘spaghetti’ effect.
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Real image
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HST WFPC2 image:
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Artist’s Concept:
A. Feild (STScl)

Andromeda Galaxy Nucleus = M31
Hubble Space Telescope = WFPC2
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