PH1a: oscillations

dx k|

dt? m
1 kx? + 1mv2 = constant = — kA?
2 2 2

If the forces or torques of your system end up being written with a similar equation
as the ones above, the system will undergo Simple Harmonic Oscillations, SHO.

Sergi Hildebrandt (srh@caltech.edu)
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Rotational dynamics,
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Rotational dynamics, oscillations and friction

1. QP4: THE SPRING AND THE WEIGHT

a) We define x > 0 downwards, as in the picture. Notice that when x > 0 there is a loss of gravitational
potential energy. The solution is:

(1) U= %k.zv2 — gz,

b) The kinetic energy is the sum of the two moving objects (massless spring):
1 9 l 2 l o
(2) K = Ernw‘ 4 Elw‘, I = 5:71?12', w=v/R,

1 .
(3) K = E(?m;*mg)v".




Rotational dynamics, oscillations and friction

c) It is said that the resulting motion is a SHO. The maximum speed happens at the equilibrium position.
The equilibrium position happens when the weight equals the stress foree in the spring, which is not x = (:

(4) kxyp = myg, xo=mg/k.

Using conservation of energy (initially at z = 0, the total energy is 0):

2
k(2m, +mz)

1 1
(3) 0=K~+U(x) = 1 (2my + ma) via + ,zk.-.rg — MGLo, = Umax = My g\/

Dimensions are correct (check it, using that k& has dimensions of force/length).




Rotational dynamics, oscillations and friction

d) For the mass m,, we have (a > 0, when = > 0):

(6) F =ma = ma=mg—T.

For the pulley:

(T) r=la=1Iaf/R, 7v=(T)-T)R,= la= (1), -T,)R.
1

Notice the signs of T} and 75, that have been set in accordance with @ > 0 if 2 > 0, and therefore & > 0
(use the right hand rule).
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e) In order to find the period of the oscillation, we need to arrive to some equation of the type:

dr
(8) F -—w Z.

We need the previous equations, but still we need an expression for 75.
T is in fact the force felt by the spring, so:

(9) T, = my(g—a), T;=kz, = la=(mg—mua-—kz)R,
(10) - m,g—l;‘x _ mlgl B k .
m) + m -~ ™M+

One can realize that we have arrived at an equation of the type

(11) a = —w’z + cnt.
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The constant term does not affect the period of the cscillations. The constant term appears simply
because the initial position 2 = 0 is not the equilibrium position. You can find in any text book (including
ours) that the solution is the same as a SHO. The w is

V m) + 73 V 2my + my

from where the period can be found as T' = 2= Jw.

NB: Notice how the relationship v,.. = Aw is satisfied. We have that the maximum amplitude is
A = zy = mg/k and we had obtained v, before. If you check it, you will see it works. In other words,
w could have been found so easily. The only reason to have deduced the equations is (besides being asked)
that we can prove it is a SHO motion.
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For question (f), we need to introduce damped oscillations. That is, oscillations
with friction. We will also introduce forced oscillations, where an external force
is applied to the oscillatory system (long term or asymptotic solution)



Damped oscillations

d*x dx
— = —kx — y—.
" Y
After rearranging terms and dividing throug|
d*x dx

'd?+ﬁz+w(z,x=0,

where B = vy/m and, as before, w} = k/m.

x = Ce ¥ cos(w,z + 6,).
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f) If there is friction, we have to add it to the equation of the torque (w = v/R).

(13) (T, — T3)R — Cv/R = Ia/R.
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We can now write the following equation (substituting 77, T3)
(14) (miR* + Ia+ Cv + kzR* = migR”.

This expression resembles the differential equation of a damped oscillator, but for a constant term on its
right hand side, instead of being equal to (. Re-arranging terms to make it clearer, we get:

. m

(15) a + fv + wjr = constant = = =
mi + "

where § = C/(m;R* + I) and w} = k/(m, + I/R?). Notice that the units are correct (C has units of
ML*/T).
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The general solution to Eq. 15 is found in 2 steps. The first one consists in solving the differential
equation, making it equal to 0. This is called the homogeneous solution, sometimes also called the transitory
solution. The second step consists in finding a particular solution to the differential equation. This is called
the inhomogeneous solution, sometimes also called the sfeady state solution. The general solution is the
sum of both solutions because the differential equation is linear. Let’s find each solution for our problem.
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First, the homogenous solution is the one corresponding to an underdamped oscillatory motion, because
the problem mentions that there is a period (otherwise, it might also be critically damped or overdamped).

The expression is:

o 42
(16) :E(t) = .'l'.'{)(“'.,_'ﬂ”‘z Ccos (wlt + d)u) ., W = \#w[‘; — T

Where the period is T = 27 /w,. Notice that it is w,, and not w, the variable that defines the period. The
final expression for w; can be written in terms of the parameters of the exercise recalling that I = 1/2m,R?,
as well as the expressions for 5 and w, found before. It is not a simple expression. It is enough to make

clear we have solved it.
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Finally, the inhomogeneous solution is found by setting £ = z; with z; some unknown constant. The
reason is that the inhomogeneous solution to a linear differential equation can be found by ‘guessing’ (aka
Ansatz from the German word). The Ansatz is always a function of the same type as the inhomogeneous
term. In this case, it is a constant, but it could be a sinusoidal function or a polynomial of degree 4, say.
In our case, we try £ = x; =constant, but for a sinusoidal function we would try a combination of sin/cos
functions with arbitrary coefficients. For a polynomial of 4*" degree, we would try = = a+bz+cz’+dz®+ex’.
That is, a generic polynomial of 4** degree. We substitute our Ansatz in the equations and we solve for the

unknown coefficients. In our current case, it is simpler since z = z,,dz/dt = 0, and d*z/dt* = 0. Thus,
Eq. 15 becomes:

. m
(17) Wézl _ —Ig] = I, = ’m.lg/k,

T, T 172
where we have used the expression for wy. That is, z; is the contraction of the spring due to the weight of
my. The final solution is the sum of both, the homogeneous and inhomogeneous solutions. That is,
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The final solution is the sum of both, the homogeneous and inhomogeneous solutions. That is,
(18) z(t) = mig/k + zoe " cos (w1t + @p) .

The 2 constants of integration (zg, and ¢y ) correspond to 2 initial conditions. We could set them by setting
some initial conditions such as: for ¢ = 0, the mass m; is at the equilibrium position and the speed is vy,
or another set of 2 conditions. The problem does not set any particular conditions, so we do not need to
set them either, but we know what we would do in case we had some.




