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PH1a: rotational dynamics. First example

A homogeneous, thin bar is hanging from the ceiling and can freely rotate
about the point O.

a) Find the angular acceleration of the bar as a function of 0
b) Find the period of the oscillations for small values of 0















Second example

14.12 ROLLING DOWN AN INCLINED PLANE

The rolling of a cylinder, sphere, or other symmetric object down a rough inclined plane
(Fig. 14.14) is conveniently analyzed as an acceleration of the center of mass C along
the plane and a simultaneous rotation of the object about C.

What’s the CM acceleration and the force of friction?

Figure 14.14 Rolling down an inclined plane.



Second example

14.12 ROLLING DOWN AN INCLINED PLANE

The rolling of a cylinder, sphere, or other symmetric object down a rough inclined plane
(Fig. 14.14) is conveniently analyzed as an acceleration of the center of mass C along
the plane and a simultaneous rotation of the object about C.

Ma- = Mg sin § — f.
/R = la.

We impose a=ac/R (no slipping):

v lac
— _R2
Figure 14.14 Rolling down an inclined plane. Sothat: Ma~ = Mg sin § — lﬂ:
: C g R2 2
Mg sin 0

And:

e = . lerati
M I lle Constant acceleration



Second example

14.12 ROLLING DOWN AN INCLINED PLANE

The rolling of a cylinder, sphere, or other symmetric object down a rough inclined plane
(Fig. 14.14) is conveniently analyzed as an acceleration of the center of mass C along
the plane and a simultaneous rotation of the object about C.

What about the coefficient of friction?

lac Mg sin
. e = y G
R? M + I/R

< uN=
Figure 14.14 Rolling down an inclined plane. < MN ,LlMg cos @
Therefore, if u< .=/ a./R?)/N =tan6/(1 + MR?/I), the cylinder will roll and slip! And we
can’t set a=a./R. Both a and a. are ‘disconnected’ if the object slips. We'll deal with all
these situations when solving the problem of two billiard balls hitting each other later on.



Second example: with energy

14.12 ROLLING DOWN AN INCLINED PLANE

The rolling of a cylinder, sphere, or other symmetric object down a rough inclined plane
(Fig. 14.14) is conveniently analyzed as an acceleration of the center of mass C along
the plane and a simultaneous rotation of the object about C.

Let’s assume no work from friction. And set I=bMR?

Gravitational potential energy: Mgh = Mgs Sin 6

Kinetic energy: %l(&)é + %MU(Z: %bMRz(.t)(z_' + %Mvé

Conservation of energy: Mgs sin 6 ;-l,(l + b)MU%.

Figure 14.14 Rolling down an inclined plane.
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From kinematics with constant acceleration The same result as before!




Second example

14.12 ROLLING DOWN AN INCLINED PLANE

The rolling of a cylinder, sphere, or other symmetric object down a rough inclined plane
(Fig. 14.14) is conveniently analyzed as an acceleration of the center of mass C along
the plane and a simultaneous rotation of the object about C.

Therefore, the friction does not do any work and energy is
conserved in our simplified model of rolling without slipping.

In fact, there are deformations of the body and contact forces
Mgsiné do create a rolling friction and there’s some energy loss.

Figure 14.14 Rolling down an inclined plane.



Third example: A heavy pulley

A pulley, with the shape of a disk, has mass M,
moment of inertia I and radius R. Two blocks
hang from each of its sides. The friction on the
surface of the pulley allows the string to turn
about the pulley without slipping. The string is
massless. Initially, the system is at rest.

Heavy pulley

String

1) Find the speed of the blocks when the 3m
body reaches the ground.

2) Find the maximum height the mass m rises
after the 3m body reaches the ground (assume
that somehow the string remains taut and in
contact with the rotating pulley as it keeps

moving upwards).



This problem can be solved with just energy conservation.

We have the gravitational energy and the kinetic energy of the masses and also the kinetic energy of the pulley.
If the string does not slip, v = whR at all times. Then,

1 o, 1 s 1
(5) mgHy + 3mgh = mg(Hy+ h) + §mv2+ §(3m)02+ 51;.;" >

1, v? mgh 2mgh
6 2mgh = 2mv?4 =J—=— = v=2 =2/ .
(6) mg mv* + Sl ’ im+ 4 VEm+ M

where I have used that for a disc I = MR?/2.
Notice that the initial height of the block mass M is irrelevant: only changes of height will matter (this is
because the change in height is small compared to the radius of the Earth).




Again, using energy conservation we can solve the second question.
Notice, however, that the block with 3M stays on the ground. Therefore, one only
needs to consider the motion of mass M and the disc.

PS: recall the assumption that the string remains in contact with the pulley as it rotates
after the block of mass 3m has reached the ground. In this situation, the rotational kinetic
energy is also transferred to the block of mass m that keeps moving upwards.

Let's call k; the height that the mass M will be able to raise. At that point, the disc is not rotating (the string
is not slipping and if the mass M is stopped, so will the disc be).

.'2 e y .“-"
(7) mgh, = '7 (m 4 I/R®) = hy = 2h (2"‘ * ’).

Sm4+ M

And the total height with respect where 1t was initially s hpor = h + hy = h(12m 4 3M ) /(8m + M).










PS: If the string slips, the force of friction (kinematic friction) will do some work and
some mechanical energy will be lost.




An interesting
problem: can rigid
bodies exist?




2. THE ROTATING THIN ROD

a) It is solved using the parallel axis theorem that relates the moment of inertia about the center of the
mass with another (parallel) axis at some distance:

2
(17) [= LMDy M (9) ~Lyp2
12 2 3

b) Newton’s second law for the rotation provides us the solution (v = [a):

r MgD 3
(18) CTTT T T2r T Tap

Notice that we have ignored a term cos 8, where 8 is the angle rotated by the rod, because the problem
says immediately after it is released. But it would be very simple to include cos8. Finally, also noticethat
units make sense.




c¢) It is simple to find it, because a = az, so

Jgzx 3r
( — e e — —
(19) “T7%p T Tap?

Again units make sense.

d) Clearly that happens for z = 2D /3.

e) For x = D, a = 3g/2 > g. The ‘surprising’ fact is that it is higher than g.

f) There is no contradiction. Galileo principle applies to free fall otion. This is a rigid rod, where every
piece is rigidly connected to the rest. Therefore, differential internal forces play a role in the motion.

NB: Even though it is not asked, one could use energy conservation to find the velocity of the center of
mass in terms of §, which would imply an w(t) and knowing the rod is rigid, it would be possible to find
the speed at any point on the rod.




An interesting problem: can rigid bodies exist?

For some length (D), the tip of the bar could end up moving with a linear speed (v=w D) greater
than ¢, the speed of light. We know from observations that no object can travel faster than the
speed of light. In order to be consistent with this fact, as the bar spins faster and some of its
elements move with a speed close to ¢, the bar itself will bend (!). In other words, the moment of
inertia / will no longer be 1/3 MD?, which is clearly independent of the speed, but it would be
different at different times, so that no element of the bar moves faster than c. In summary, rigid
bodies do not really exist. They are an approximation, which is valid as far as speeds are much
lower than c.

An alternative way of viewing it is by considering the molecular forces that inside the bar. The
interaction force between the elements of the bar can’t be transmitted faster than the speed of
light and, thus, a rigid body cannot exist: once the tip starts to move, the extreme of the bar in
contact with the pivot will not know react to that motion until a time, at least, D/c. Similar with any
other intermediate element. The bar will bend.



FPs
A thin uniform plate (mass M), in the shape of an equilateral tnangle (side L), 1s suspended from one

o (-]
g . A =
A (d lffl C u It) p ro b I e m ::cmh;tfz) flc?rming a physical pendulum. The trniangle swings about an axis perpendicular to the plate

through point A. Take x-y coordinates as shown, so that wiy) = \/-L y is the width of the triangle a vertical
3

from HW that was in sy woma

Our goal 15 to calculate the period for small oscillations about A.

a final exam \

(3 points) (a) Find the coordinates of the center of mass ( Xem . Yem ). Hinr: One method involves
breaking the triangle into hornizontal rectangular strips of mass dm and then integrating.
There 15 also a symmetry argument.

(4 points) (b) Calculate the moment of inertia /, about the axis through A. Hinr: Apply the parallel axis
theorem to cach horizontal strip and then integrate.

(2 points) (c) What is the peniod for small oscillations about A? Leave your answer in terms of J4
if you were unable to solve part (b).

(2 points) (d) ( Extra Credit ) We now move the suspension to a second point 8 on the y axis such that,
when the system is inverted, small oscillations have the same period as about A. Find the
coordinates yj; of this point relative to the coordinate system centered on point A.



3. THE TRIANGULAR PENDULUM

This problem is more elaborated than usual. Espeadally in the queston about the calculation of the
moment of inertia. The last question is indicated but the explicit final solution is left as an exercise.

a) Any vertex is equivalent. Therefore the center of the mass is located at the intersection of the three
bisections of the vertices. With respect to the point A, taken as (0,0), the center of mass has coordinates:
Feat = (0, =yen), where yeay = Lsin60® — Ltan30°/2 = (/3/3)L.

Think about it ...

b) The moment of inertia is composed of two parts. For each section of the triangle, we can consider a
rod. That is an infinitessimally thin rod. Each of these rods is then rotating with respect A, so we will
also use the parallel axis theorem (y is the vertical distance measured from A).

In summary:
(22) dly = dlg + dmy?,
1 1
(23) dlc = Edm(2d]’ = gdm d,

(24) dly = (%d’ + y’) dm.



Now, dm can be found multiplying its mass density by the infinitessimal area:
— —ﬂﬂ=dm— e d
YRy T3 12 ET A

Substituting back into df 4, we get df 4, = nuy“dy Amd, we can now integrate it:
£

(25) dm =a(2d)dy, d=ytan30° = V3y/3, o= M/Area =

(26) In= / Y dla= =ML
o 12
¢) To solve this part, we need to recall how Newton's second law is written for a pendulum:

_ 5 0 Mgl
(27) T lo=>12\lLd ——‘/ismﬂ—
And

Vg

(28) w=2 L
Units are okay.

d) This part is easy if one recalls from the previous question or, from the theory of the physical pendulum,
that
(29) w: = .‘IgDA' w; = J"gDa.

I I
where D, is the distance from A to the center of mass, and Dy is the distance from B to the center of
mass. The problem asks about the pasition of B with respect to A, but knowing D4 from the first question
and Dy, one can find the distance between A and B.

Another question is to know 4 and Ig. [I4 has been derived in a previous question (b). /g can be
related to the moment of inertia about the center of mass as: Iy = I + MD3,. I, can also be related,
so that I, = I + M D?. This allows us to write Iz = I, + M(D§, — D%). As a consequence, we need to

solve the following equation:

(30)  Daly=Dglg = I+ M(D}y - D) = (:; ) Dg = D}, - ( "';) ) Dg 4 (IA/M - D%) =0
Units make sense (distance square). This is a second order polynomial where [, and D, hawe been
derived before. The distance between A and B is D5, = D4 4+ Dy when B is close to the bottom, as in
the figure. But there's also the possibility of being above the center of mass Dygs = Dy — Dy | left as
an exercise to find the two roots and check that only two positions of the possible four correspond to B
lyving inside the triangle and not being A.
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