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1. Mid-air explosions

a. p = mv = 5000 kg m/s, towards the right.

b. By conservation of momentum,

5000 = 20 (−30) + 15 (20) + 15 (v3)

Therefore, v3 = 353.33 m/s.

c. Applying conservation of momentum in the vertical and horizontal directions,

0 = 25 (10) + 25 (v2y),

5000 = 25 (v2x).

Therefore, v2x = 200 m/s and v2y = −10 m/s. The speed of the second fragment is 200.24 m/s at
an angle of −2.86◦ from the horizontal direction.

2. Spring railway gun

a. Let the velocity of the wagon be vM and the velocity of the marble be vm with the positive
direction being along the velocity of the marble. Since the total momentum of the system is con-
served,

0 = MvM +mvm.

By conservation of energy,
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mv2m.

Substituting for the speed of the marble,
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and
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The velocity of the marble is

vm = −M
m
vM =

√
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m(m+M)
x.

b. The kinetic energies of the wagon and marble are mkx2

2(m+M) and Mkx2

2(m+M) respectively.

c. Since the marble bounces elastically, energy is conserved. Therefore, the new velocity of the

marble is vb = −
√

k M
m(m+M)x. The spring has maximum compression when the marble and train are

moving at the same speed, v. At this point, conservation of energy gives
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where d is the maximum compression of the spring. We know that
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and by momentum conservation
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Therefore,
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3. Maximizing transverse velocity

The answer is rather surprising, but is easily obtained by considering the center of mass frame.

The center of mass moves with a velocity ~vcm = ~v0m1/(m1 +m2) relative to the laboratory. In
the center of mass frame, the incoming particles have velocities ~v0 − ~vcm and −~vcm, respectively.
They emerge back-to-back with speeds unchanged. Because the target particle has speed vcm in this
frame no matter what angle it is scattered into, its transverse velocity reaches a maximum value
vcm when θcm = 90◦.

To transfer the velocity back to the laboratory frame one adds ~vcm which, being along the ini-
tial direction, leaves the transverse velocity v2y = vcm unchanged but makes the angle of maximal
v2y in the laboratory θ2 = 45◦. Note that the corresponding θ1 is

θ1 = tan−1 ((v0 − vcm)/vcm) = tan−1(m2/m1) . (1)

which equals 45◦ only if the masses are equal. This is an example of the general statement that the
particles emerge at right angles to one another only in the equal mass case.

4. Rockets

a. We shall start by considering a body with velocity ~v and external forces ~F , gaining mass at
a rate ṁ = dm/dt. Let us look at the process of gaining a small amount of mass dm. Let ~v′ be

the velocity of dm before it is captured by m, and let ~f represent the average value of the impulsive
forces that dm exerts on m during the short interval dt, in which the capturing takes place. By
Newton’s third law, dm will experience a force −~f , exerted by m, over the same dt.

We can now examine the capture process from the point of view of dm and equate −~fdt, to the
change in linear momentum of dm,

−~fdt = dm(~v + d~v − ~v′) . (2)
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Here, ~v + d~v is the velocity of m (and dm) after impact. Analogously, from the point of view of m,
we write,

~Fdt+ ~fdt = m(~v + d~v)−m~v = md~v . (3)

The term dm d~v in equation (2) is a higher order term and will disappear when we take limits. The
impulse due to the contact force can be eliminated by combining equations (2) and (3),

~Fdt− dm(~v − ~v′) = md~v ,

or, dividing through by dt,

m
d~v

dt
= ~F − (~v − ~v′)

dm

dt
= ~F + (~v′ − ~v)

dm

dt
,

where ~u = ~v′ − ~v is the velocity of dm relative to m. This equation is known as the variable-mass
force law.

b. This is simply a matter of plugging in the correct variables in the variable-mass force law we just
derived in part (a). We take the vertically upward direction to be conventionally positive, and hence
both the gravitational force and the relative speed of the ejecta are in the “negative” direction. The
force law looks like,

m
dv

dt
= −mg − udm

dt
.

Do not substitute dm/dt = −k at this stage since m is a dynamical variable too which depends on
time. The assumption uk > m0g makes sure that the rocket starts accelerating right from t = 0.
Now, solving this differential equation with the initial condition of v(t = 0) = 0 and m(t = 0) = m0,
we obtain,

v(t) = u log

(
m0

m(t)

)
− gt ,

and m(t) can be very easily obtained from dm/dt = −k as,

m(t) = m0 − kt .

5. Bouncing Balls

As the basketball hits the ground, both are moving downward at a speed v =
√

2gh (since they
fell a height h, 1

2mv
2 = mgh). Since m2 >> m1, the basketball bounces back with the same speed

v. Immediately after the basketball bounces back, in the frame of the basketball, tennis ball hits
it with speed 2v so bounces back with speed 2v; from the point of view of the outside observer,
the tennis ball bounces back with speed 3v, from a height d above the ground. It has energy
mgd+ 1

2m(3v)2 = mgd+ 9mgh So it rises to a height H = d+ 9h.
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