Ph1a - Flipped Section

Problem Set 6

October 24, 2019

1. Shot Put

Alice and Bob are competing in shot put. They apply different forces to the 4 kg shot put over the length of their arms, which is l=1 m. Alice applies a constant force $F_A=20$ N. Bob applies a force that increases linearly from 0 to 30 Newtons for the first 0.5 m, and then decreases linearly from 30 to 0 Newtons in the next 0.5 m.

What velocity does each person's shot put have after the forces are applied? Neglect gravity and air resistance.

2. "Power" as you slide!

A box of mass m slides down a rough slope from a height h to the ground at a constant velocity v. The angle that the slope makes with the ground is θ .

- a. Calculate the work done on the block by the friction force using $W = \int_A^B \mathbf{F} \cdot d\mathbf{r}$.
- b. What is the change in energy of the block?
- c. Can you write down a potential energy function (U(x)) such that $F(x) = -\frac{dU}{dx}$ corresponding to the friction force? Why or why not?
- d. How much power is being dissipated by the friction force as heat?

3. Sledge Sliders

A sled of mass m is given a kick on a frozen pond, imparting to it an initial speed $v_i = 2.0$ m/s. The coefficient of kinetic friction between the ice and the sled is $\mu_k = 0.10$. Use energy considerations to find the distance the sled moves before stopping.

4. Oscillatory Motion

A particle of mass m moves along a trajectory given by $x(t) = x_0 \cos \omega_1 t$, $y(t) = y_0 \sin \omega_2 t$.

- a. Find the x and y components of the force.
- b. Calculate the work done on the block from t=0 to t=t' using $W=\int_A^B {\bf F} \cdot d{\bf r}.$
- c. Find the potential energy of the particle as a function of x and y. What is the difference in potential energy between t=0 and t=t'? Compare the answer to the expression for work done on the block from part (b).
- d. Determine the kinetic energy of the particle. Show that the total energy of the particle is conserved.

Some useful formulae:

$$E = \frac{1}{2}mv^2 + U$$

$$F = -dU/dx$$

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = 1 - 2\sin^2\theta = 2\cos^2\theta - 1$$