
Ph1a - Flipped Section Problem Set 3

Solutions

October 14, 2019

1. Leaning Ladder

a. See solutions for problem sheet 2.

b. The situation is mostly the same except that we have a friction f2 ≤ µ2N2, acting at the
point of contact between the ladder and the wall, upwards.

The ground has friction f1 ≤ µ1N1.

We want to find the minimal θ that makes the configuration stable, and at that point the fric-
tions would be maximized, so we use f1 = µ1N1 and f2 = µ2N2.

Balancing the forces, we get:

(for x)

µ1N1 = N2

(for y)

µ2N2 +N1 = mg.

Balancing torques around the contact point between the ladder and the ground, we get

N2d sin θ + µ2N2d cos θ = mg
d

2
cos θ

From which we get

N2d tan θ = mg
d

2
− µ2N2d.

From the force equations, (µ1µ2 + 1)N1 = mg and N2 = mgµ1/(1 + µ1µ2),so

tan θ =
1

2
(1 + µ1µ2)/µ1 − µ2 =

1

2µ1
− 1

2
µ2.

So we need

θ ≥ arctan

(
1

2µ1
− 1

2
µ2

)
.

2. Three Clowns

See solutions for problem sheet 2.

3. Inclined Trough

The normal force exerted on the block should be mg cos θ in the component perpendicular to the
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direction of motion. This is a sum of the normal forces from the two sides. Call each of them N .
2N/
√

2 = mg cos θ, so N = 1√
2
mg cos θ. This cause a friction 1√

2
µmg cos θ; but we have two walls,

so the total friction is
f =
√

2 µ m g cos θ,

and a = mg sin θ − f .

4. Inclined plane with finite mass

First, note that when M → ∞, this is just an inclined plane problem: the large block doesn’t
move, A = 0. When M → 0, the large block doesn’t oppose the motion of the small block in any
way, and the small block just falls freely.

(Convention: ax and A are positive toward the right; ay is positive toward up.)

Consider the small block: it has normal force N from the large block, and also gravity acting
on it. The equations of motion are: x: N sin θ = max and y: N cos θ −mg = may.

For the large block, which has a normal force, equal and opposite to the N above, acting on it,
the equation of motion in the x-direction gives

−N sin θ = mA.

We require that the small block remains on the slope of the large block (before it falls off, at least).
With respect to the outside observer, the the position of the small block after time t is given by

(
1

2
axt

2,
1

2
ayt

2)

if the position at t = 0 is (0, 0).

The position of the large block after time t is given by

(
1

2
At2, 0)

since it only moves in the x-direction.

This means that, in the frame of the large block, the position of the small block would be given by

(
1

2
(ax −A)t2,

1

2
ayt

2).

(Note that ax −A > ax since A should be negative.)

From the point of view of someone on the large block, all we see is that the small block slides down
on the inclined plane, and it slides down with the x and y acceleration given above. From this point
of view it is clear that the above vector, which describes the position of the small block with respect
to the large inclined plane, should always satisfy the condition that tan θ = −( 1

2ayt
2)/( 1

2 (ax−A)t2)
(Note that ayt

2 is negative.)

This gives:

−1

2
ayt

2 = tan θ(ax −A)
1

2
t2.

So we get tan θ(ax −A) = −ay = −mg−N cos θ
m ,

− tan θA = −mg −N cos θ

m
−N sin θ/m
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and N = −mA/ sin θ so we can solve for A.

5. Springs

a. The block can move in the horizontal direction. Since, the spring force is the only horizon-
tal force acting on the block, the equation of motion is

Ma = M
d2x

dt2
= −kx,

or
d2x

dt2
+

k

M
x = 0,

where x is the displacement from the equilibrium position. It is convenient to define

ω =

√
k

M
,

and rewrite the equation of motion as

d2x

dt2
+ ω2x = 0.

The general solution to this differential equation (the simple harmonic oscillator equation) is

x = A cosωt+B sinωt.

Equivalently,
x = C cos (ωt+ φ).

The constants A and B or C and φ are determined by any initial conditions that may be specified
in an oscillator problem as we will see in part b.

(If this is new to you, that is OK. We will learn more about harmonic oscillators at a later point
in this course. To see why this solution works, note that taking the derivative of sinωt or cosωt
twice with respect to t returns −ω2 sinωt or −ω2 cosωt respectively. Therefore these functions are

solutions to d2x
dt2 = −ω2x.)

b. Let x be the axis along the direction of motion with the origin at the unstretched position.
The position of the piston is given by

x(t) = A sinωt+B cosωt,

where ω =
√

k
m+M . This equation is true up to the time the marble and piston lose contact. The

velocity is

v(t) =
dx(t)

dt
= ωA cosωt− ωB sinωt.

The solution has two arbitrary constants, A and B, and to evaluate them we need two pieces of
information. We know that at t = 0, when the spring is released, the position and velocity are given
by

x(0) = −L,

v(0) = 0.

Using these values, we find
−L = A sin 0 +B cos 0 = B,

and
0 = ωA cos 0− ωB sin 0 = ωA.

Hence
B = −L, A = 0.
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Then, from the time of release until the time when the marble leaves the piston, the motion is
described by the eqautions

x(t) = −L cosωt, v(t) = ωL sinωt.

The piston can only push, not pull, on the marble and when the piston begins to slow down, the
marble and piston lose contact. At the point the marble will continue to move at a constant velocity.
The time tm at which the velocity reaches a maximum is given by

ωt =
π

2
.

Therefore
x(tm) = −L cos

π

2
= 0,

and the final speed of the marble is

vmax = v(tm) = ωL sin
π

2
=

√
k

m+M
L.
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