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1. Elliptic Orbit

Since we are told mp >> ms, we can effectively take the planet to be stationary at the focus,
call it O and consider the motion of the satellite alone. Since gravitational force is central, we know
that the orbit(in this elliptical) is planar and angular momentum of the satellite is conserved about
O. Now, at both periapsis(closest point in orbit from O) and apoapsis(furthest point in orbit from
O), the velocity is perpendicular to the radial vector and the conservation of angular momentum
simply gives us,

L = msrpvp = msrava . (1)

We can also solve for vp in terms of the constants G,mp, ra and rp as follows. Choose zero for the
gravitational potential energy, U(r →∞) = 0 . When the satellite is at the maximum distance from
the planet, the mechanical energy is,

Ea =
1

2
msv

2
a −

Gmpms

ra
. (2)

When the satellite is at closest approach the energy is,

Ep =
1

2
msv

2
p −

Gmpms

rp
. (3)

Since mechanical energy is conserved in central force motion, Ea = Ep and using va = (rpvp) /ra
from angular momentum conservation, we can solve for vp,

vp =

√
2Gmpra

(ra + rp)rp
, (4)

and va is,

va =

√
2Gmprp

(ra + rp)ra
. (5)

2. Transfer Orbit

a. We know that the energy of a circular orbit is given by:

E = K + U =
1

2
msv

2 −GmsMe

r
(6)

and moreover, for a circular orbit, by force considerations:

GMems

r2
=
msv

2

r
(7)

i.e. v2 = GMe

r . So:

E = −GMems

2r
=

1

2
U(r) (8)

This result that energy is actually an example of the ”Virial Theorem”, if you are curious.

Thus:

∆E = −GMems

2

(
1

4Re
− 1

2Re

)
=
GMems

8Re
(9)
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b. Denote vA,i as the speed of the object at A before it accelerates to vA,f . Morover, vB,i is
the speed of the object at B right before it decelerates to vB,f . We are basically interested in finding
vA,f − vA,i and similarly with point B. We already know from part a that:

vA,i =

√
GMe

2Re
(10)

and

vB,f =

√
GMe

4Re
(11)

So we must determine vA,f and vB,i. First of all, since L = msvr at the perihelion and aphelion
(since ~v ⊥ ~r at these points), we have by conservation of momentum:

msvA,f2Re = msvB,i4Re (12)

i.e. vA,f = 2vB,i. We can also use conservation of energy:

1

2
msv

2
A,f −

GMems

2Re
=

1

2
msv

2
B,i −

GMems

4Re
(13)

and thus:

v2
A,f =

2GMe

3Re
(14)

and

v2
B,i =

GMe

6Re
(15)

and thus we have:

∆vA =

√
GMe

Re

(√
2

3
−
√

1

2

)
(16)

and

∆vB =

√
GMe

Re

(√
1

4
−
√

1

6

)
(17)

3. Central Force Proportional to Distance Cubed

a. We know that the potential energy associated with a conservative force is given by (assuming our
zero-energy reference point is at r = 0):

U(r) = −
∫ r

0

~F (~r′) · d~r′ = −
∫ r

0

(−br′3)dr′ = br4/4 (18)

b. Energy is given by:

E =
br4

4
+

1

2
m(θ̇2r2 + ṙ2) =

br4

4
+

1

2
m(θ̇2r2 + ṙ2) =

br4

4
+

L2

2mr2
+

1

2
mṙ2 (19)

c. Our effective potential is now:

Ueff(r) =
br4

4
+

L2

2mr2
(20)

A sketch can be obtained qualitatively by considering the small r and large r asymptotics. At small
r, the r−2 term dominates, and at large r, the r4 term dominates
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d. For a circular orbit, the energy must only accommodate exactly one value of the radius. Thus a
circular orbit occurs at the minimum U(r).

e. Note that our kinetic energy is simply 1
2mṙ

2. This implies that at the perihelion and aphe-
lion, the kinetic energy is zero, i.e. at these points we have entirely potential energy. Then if our
orbit interpolates between r0 and 2r0, we know that Ueff(r0) = Ueff(2r0). Then:

L2

2mr2
0

+
br4

0

4
=

L2

8mr2
0

+ 4br4
0 (21)

and it is easy to solve from here that:

r6
0 =

L2

10mb
(22)
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