Ph1a - Flipped Section

Problem Set 13

November 18, 2019

1. Acceleration in polar coordinates

(Based on Frautschi 17.3 and 17.4)

- a. What is the formula for velocity in polar coordinates?
- b. By differentiating the formula for velocity in polar coordinates find the formula for the acceleration vector $\mathbf{a} = d\mathbf{v}/dt$. The factors multiplying $\hat{\mathbf{r}}$ and $\hat{\theta}$ are called, respectively, the radial and transverse components of acceleration.
- c. Show that the transverse component of the acceleration is equal to

$$\frac{1}{r}\frac{d}{dt}\left(r^2\frac{d\theta}{dt}\right).$$

Deduce that the acceleration is radial (parallel to \mathbf{r}) if and only if the position vector \mathbf{r} sweeps out area at a constant rate.

2. Bead on a spoke

A bead moves along the spoke of a wheel at constant speed u. The wheel rotates with uniform angular velocity $\dot{\theta} = \omega$ about an axis fixed in space. At t = 0 the spoke is along the x axis, and the bead is at the origin.

- a. Find the velocity at time t in polar coordinates and in cartesian coordinates.
- b. Find the acceleration in polar coordinates.

3. Radial motion without radial acceleration

A particle moves with $\dot{\theta} = \omega = \text{constant}$ and $r = r_0 e^{\beta t}$, where r_0 and β are constants.

- a. At what value of β does the radial component of the acceleration vanish?
- b. Explain how zero radial acceleration still allows for $r = r_0 e^{\beta t}$.