
Ph1a - Flipped Section

Problem Set 10 - Solutions

November 7, 2019

1. Moment of inertia of a square

a. So it is easiest to set up the integral for the middle box. We consider an infinitesimal square with
sides dx and dy, located at position (x, y):

The density of the sheet is M/l2, so the mass of the infinitesimal square is dm = Mdxdy/l2. The

distance to an infinitesimal square is
√
x2 + y2. Thus we can set up the integral for moment of

inertia:

I =

∫ ∫
r2dm =

∫ l

0

∫ l

0

(x2 + y2)
M

l2
dxdy =

2

3
Ml2 (1)

We can also find the moment of inertia of the leftmost square (square rotating about center), by
using the parallel axis theorem:

ICOM = I ′ −M l√
2

=
2Ml2

3
− Ml2

2
=
Ml2

6
(2)

b. We can determine the relationship from the parallel axis theorem:

c. Turning the large box around its center is equivalent to turn 4 small ones around their corners:

1



d. We can use a scaling relationship. Mass scales by a factor of 4, length doubles, so Ml2 scales by
a factor of 16.

e. Just solve the system of equations, treating the figures as symbols representing the corresponding
moments of inertia. We find Ml2/6

2. Sliding to a roll

a. Let the ball travel to the right. Define all linear quantities to be positive to the right, and
all angular quantities to be positive clockwise, as shown in the figure. (Then, for example, the
friction force Ff is negative.) The friction force slows down the translational motion and speeds up
the rotational motion, according to (looking at torque around the COM):

Ff = ma

−FfR = Iα

Eliminating Ff and using I = ηmR2 gives a = −ηRα. Integrating this over time, up to the time
when the ball stops slipping, gives

∆V = −ηR∆ω (3)

(This is the same statement as the impulse equation). Using ∆V = Vf −V0 and ∆ω = ωf −ω0 = ωf ,
and also ωf = Vf/R (the non-slipping condition), we find:

Vf =
V0

1 + η
(4)

independent of how Ff depends on position. (For that matter Ff could even depend on time or
speed. The relation a = −ηRα would still be true at all times)

The loss in kinetic energy is given by (using the relation ωf = Vf/R).

∆KE =
1

2
mV 2

0 − (
1

2
mV 2

f +
1

2
Iω2

f )

=
1

2
mV 2

0

(
1− 1

(1 + η)2
− η

(1 + η)2

)
=

1

2
mV 2

0

η

1 + η
(5)
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For η → 0, no energy is lost, which makes sense. And for η → ∞, all energy is lost, which also
makes sense (this case is essentially like a sliding block which can’t rotate).

b. Lets find t. The friction force is Ff = −µmg. So F = ma gives −µg = a (so a is con-
stant). Therefore, ∆V = at = −µgt. But our equation for Vf says that ∆V = Vf − V0 = −V0 η

1+η .
So we find:

t =
η

µ(1 + η)

V0
g

(6)

For η → 0, we have t → 0, which makes sense. And for η → ∞, we have t → V0/(µg) which is
exactly the time a sliding block would take to stop. Now let’s find d. We have d = V0t + (1/2)at2.
Using a = −µg, and plugging in t from above gives:

d =
V 2
0

g

η(2 + η)

2µ(1 + η)2
(7)

The two extreme cases for η check here. To calculate the work done by friction, one might be
tempted to take the product Ffd. But the result doesn’t look much like the loss in kinetic energy
calculated before. What’s wrong with this? The error is that the friction force does not act over a
distance d. To find the distance over which Ff acts, we must find how far the surface of the ball
moves relative to the ground.

The relative speed of the point of contact and the ground is Vrel = V (t)−Rω(t) = (V0 + at)−Rαt.
Using a = −ηRα and a = −µg, this becomes

Vrel = V0 −
1 + η

η
µgt (8)

Integrating over time, this yields:

drel =

∫
Vreldt =

V 2
0 η

2µg(1 + η)
(9)

The work done by friction is Ffdrel = µmgdrel, which does indeed give the expected ∆KE.

3. Rolling uphill and downhill

a. Let’s say the wheel is initially rolling to the right. We have initial energy 1
2mv

2
0 + 1

2Iω
2
0 and

final energy mgh + 1
2Iω

2
0 since it is still spinning when it reaches the maximum height since the

incline is frictionless. Hence

h =
1

2
v20/g.

As it comes down, it is still spinning clockwise, and v = ωR does not hold.

b. As it comes down and reaches the surface, it has speed v0 to the left and also the contact
point is moving with speed ωR toward the left relative to the center of mass. The contact point
moves with speed v0+ωR with respect to the ground, leftward. Hence, friction f = µmg acts toward
the right, and this exerts a counterclockwise (ccw) torque

τ = Rf = Iα = ηmR2α

leading to
α = Rf/(ηmR2) = f/(ηmR).

Angular velocity (measured ccw) is then

ω(t) = −ω0 + αt = −ω0 + ft/(ηmR)

Velocity (measured toward the right) is given by:
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v(t) = v0 − at = v0 − (f/m)t

since we have ma = f from friction.

The final state is reached when v(T ) = ω(T )R.

We know that, initially ω0 = v0/R.

v0 − (f/m)T = −ω0R+ fT/(ηm) = −v0 + fT/(ηm)

2v0 = (f/m)T (1 +
1

η
)

so (f/m)T = 2v0
η

1+η .

Then,

v(T ) = v0 − (f/m)T = v0 − 2v0
η

1 + η
= v0

1− η
1 + η

.

The time it takes, T , is:

T = 2
v0m

f

η

1 + η
.
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