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Abstract We present implementation details, testing, and results from a new in-
version-based methodology, known colloquially as the “grand inversion,” developed
for the Uniform California Earthquake Rupture Forecast (UCERF3). We employ a
parallel simulated annealing algorithm to solve for the long-term rate of all ruptures
that extend through the seismogenic thickness on major mapped faults in California
while simultaneously satisfying available slip-rate, paleoseismic event-rate, and
magnitude-distribution constraints. The inversion methodology enables the relaxation
of fault segmentation and allows for the incorporation of multifault ruptures, which are
needed to remove magnitude-distribution misfits that were present in the previous
model, UCERF2. The grand inversion is more objective than past methodologies, as
it eliminates the need to prescriptively assign rupture rates. It also provides a means to
easily update the model as new data become available. In addition to UCERF3 model
results, we present verification of the grand inversion, including sensitivity tests, tun-
ing of equation set weights, convergence metrics, and a synthetic test. These tests
demonstrate that while individual rupture rates are poorly resolved by the data, in-
tegrated quantities such as magnitude–frequency distributions and, most importantly,
hazard metrics, are much more robust.

Introduction

The development of earthquake rupture forecasts in
California dates back to the original Working Group on
California Earthquake Probabilities (WGCEP, 1988), which
considered the probabilities of future earthquakes on different
segments of the San Andreas fault (SAF). The most recent
California model, Uniform California Earthquake Rupture
Forecast (UCERF2) by the 2007 WGCEP (Field et al.,
2009), used expert opinion to determine the rates of ruptures
onmany of the major faults. This expert opinion framework is
not compatible with the incorporation of significant numbers
of multifault ruptures on a large, complex fault system.
Furthermore, theUCERF2methodology had noway to simul-
taneously constrain the model to fit both observed paleoseis-
mic event rates and fault slip rates. These limitations were
recognized by the leaders of the UCERF2 effort, but there
was no methodology to address them at that time.

UCERF3, by the 2014 WGCEP (Field et al., 2013, re-
ferred to hereafter as the UCERF3 main report), uses a sys-
tem-level, algorithmic approach to consider a wider range of
possible earthquake ruptures. Some of the primary goals for
UCERF3 have been to relax segmentation assumptions, in-
clude multifault ruptures, and better match the observed
regional magnitude–frequency distribution (MFD). These
goals motivated the development of an inversion approach
in UCERF3. This inversion, which has become colloquially

known as the “grand inversion,” is described in detail in this
paper. In particular, we present details necessary to imple-
ment the inversion (e.g., the parallelized simulated annealing
methodology and equation set weights), various tests dem-
onstrating reliability, and results that supplement those in the
main report.

The purpose of the grand inversion is to solve for the
long-term rate of all possible supra-seismogenic ruptures in
the fault-system model, in which supra-seismogenic means
the rupture length is greater than or equal to the average
down-dip width. The grand inversion builds on the method-
ology first proposed by Andrews and Schwerer (2000) and
developed further by Field and Page (2011). The rates of
earthquakes are constrained by fault slip rates, paleoseismic
event rates and average slips, MFDs observed in seismicity,
and other a priori and smoothing constraints. Because of the
size of the numerical problem, we use a simulated annealing
algorithm (Kirkpatrick et al., 1983) to invert for rupture rates.
The simulated annealing method also has the advantage that it
can givemultiple solutions that satisfy the data. This allows us
to more fully explore epistemic uncertainties. In this paper we
describe (1) the constraints used in the inversion, (2) the si-
mulated annealing algorithm that solves the inverse problem,
(3) testing of the inversion methodology, and (4) final
UCERF3 modeling results.
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Setting up the Inversion: Data and Constraints

As described in the main report, UCERF3 uses the logic
tree shown in Figure 1 to represent epistemic uncertainties
(alternative models). A UCERF3 reference branch is shown
in bold, which is not intended to represent the preferred
branch, but rather to provide a reference with which to con-
duct tests and to compare against other models.

The fault models listed in the logic tree define the geom-
etries of fault sections (Dawson, 2013). Fault sections include
single faults such as the Cucamonga; larger faults are divided
into several sections (e.g., the northern SanAndreas is divided
into four sections: Offshore, North Coast, Peninsula, and
Santa Cruz). These fault sections are further divided into sub-
sections with width approximately 7 km long for vertically
dipping faults (see the UCERF3main report for more details).
These subsections are for numerical tractability and do not
have geologic meaning.

The inversion methodology solves for rates of ruptures
that are consistent with the data and constraints. Some of
these constraints differ depending on the inversion model
branch; here we describe and present the characteristic
branch solution, which is constrained to have fault MFDs that
are as close to UCERF2 MFDs as possible. The UCERF2
model assumed a characteristic magnitude distribution on
faults (Wesnousky et al., 1983; Schwartz and Coppersmith,
1984). The inversion can also be used to solve for rates con-
sistent with Gutenberg–Richter (GR) MFDs (Gutenberg and
Richter, 1944), or the on-fault MFDs can be unconstrained
and allowed to be whatever best satisfies the other constraints.
Here we describe only the characteristic branch solution and
setup, as it more easily satisfies historical seismicity rates than
the GR branch (see the UCERF3main report for more details).
The characteristic branch is designed to be as similar as pos-
sible to the UCERF2 ruptures rates, while simultaneously sat-
isfying slip rates and paleoseismic data, allowing multifault
ruptures, and eliminating the magnitude distribution “bulge”
(overprediction relative to seismicity rates) that existed in the
UCERF2 model.

Inversion Constraints

Slip Rates. The inversion is constrained to match long-term
slip rates for each fault subsection, as given by the deforma-
tion model (Dawson andWeldon, 2013; Parsons et al., 2013).
This requires computing the average slip on each subsection
in each rupture, where the average is over multiple occur-
rences of the event. The average slip over the entire rupture
is computed using a magnitude–length or magnitude–area
relationship (Shaw, 2013), and this slip is then partitioned
onto individual subsections either uniformly or with a tapered
distribution (see the UCERF3 main report). The average slip
on a subsection in each rupture, multiplied by the rate of that
rupture, must sum over all ruptures to the long-term slip rate
for that subsection. The slip rates used in this constraint have
been reduced from the slip rates specified in the deformation
models to account for subseismogenic-thickness ruptures and

aseismicity (see the UCERF3 main report). This constraint is
applied to each fault subsection in both normalized and
unnormalized form. For the normalized constraint, each
slip-rate constraint is normalized by the target slip rate (so that
misfit is proportional to the fractional difference, rather than
the absolute difference, between the model slip rates and the
target slip rates), with the exception of slip rates below
0:1 mm=yr. This prevents some extremely low slip rates from
dominating the misfit. Including both normalized and unnor-
malized forms of this constraint means we are minimizing
both the ratio and the difference between the target and model
slip rates; this approach represents a balance between better
fitting slip rates on fast faults such as the San Andreas versus
smaller slip rates on slower, secondary faults. These con-
straints can be written as

XR

r�1

Dsrfr � vs and
XR

r�1

Dsr

v′s
fr �

vs
v′s

; �1�

in which v′s � max�vs; 0:1 mm=yr�, vs is the sth subsection
slip rate, fr is the long-term rate of the rth rupture, andDsr is the
average slip on the sth subsection in the rth rupture. Depending
on the logic-tree branch, Dsr is either a uniform distribution
along strike or a tapered distribution (Biasi et al., 2013).

Paleoseismic Data. There are two types of paleoseismic
data used to constrain the inversion: event rates and mean
slips at locations on faults. Both of these data are treated in

Figure 1. The UCERF3 logic tree and branch weights. The
reference branch is shown in bold.
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a similar fashion; first, the mean slip data are divided by the
slip rate at its location to turn it into an effective event rate.
The total rate of all ruptures that include a given fault
subsection, multiplied by the probability each rupture is
paleoseismically visible (Madden et al., 2013; Weldon and
Biasi, 2013), must sum to the mean paleoseismic event rate
for that subsection. The function that determines the proba-
bility an event would be seen in a trench differs for the event-
rate data (from sites with timing) and the mean slip data
(from sites with offset features). This constraint is applied to
a total of 31 event-rate sites and 23 mean slip sites in the
paleoseismic database (Weldon et al., 2013). The data are
weighted by the errors; however, the mean slip data errors
do not contain sampling error, which dominates the total er-
ror, so these errors are an underestimate. This is accounted
for by down weighting this data (see Table 1). These con-
straints can be expressed as

XR

r�1

GsrP
paleo
sr

σs
fr �

fpaleos

σs
; �2�

in whichGsr � 1 if the rth rupture includes the sth subsection
and 0 otherwise, Ppaleo

sr gives the probability that the rth rupture
will be observed at the sth subsection, fpaleos is the paleoseismi-
cally observed mean event rate for the sth subsection, and σs is
the standard deviation of the mean observed event rate.

Fault-Section Smoothness Constraint. We constrain the nu-
cleation MFD (which gives the rate at which ruptures of a
given magnitude nucleate on a given subsection) along fault

sections that contain paleoseismic data to smoothly vary along
the fault.We use a Laplacian smoothing formula that constrains
the rate of events nucleating in a given magnitude bin to
smoothly vary along strike. This constraint prevents unphysical
event-rate spikes or troughs near paleoseismic constraint loca-
tions. For each subsection s on a fault with paleoseismic data
and its adjacent subsections s − 1 and s� 1, we apply

�Rm
s − Rm

s−1� � �Rm
s − Rm

s�1� � 0; �3�
in which Rm

s is the nucleation rate of events in the mth mag-
nitude bin on the sth subsection. At fault edges (in which a
subsection s has one adjacent subsection s − 1), this constraint
becomes

Rm
s − Rm

s−1 � 0: �4�

Parkfield Rupture-Rate Constraint. We constrain the total
rate of Parkfield M ∼ 6 ruptures, which have been observed
to be quasi periodic (Bakun and Lindh, 1985), to match the
observed mean recurrence interval of 25 yrs. There are six
so-called Parkfield earthquakes included in the constraint,
one rupture that includes all eight Parkfield subsections, the
two 7-subsection long ruptures, and the three 6-subsection
long ruptures in the Parkfield section of the SAF. We choose
a range of ruptures, rather than the single-Parkfield-section-
long rupture, due to evidence that pastM ∼ 6 earthquakes in
Parkfield have ruptured slightly different areas of the fault
(Custódio and Archuleta, 2007). The Parkfield earthquakes
are not included in the MFD constraints discussed below,
because the target on-fault magnitude distribution for some

Table 1
Inversion Parameter Settings*

Parameter Name Characteristic Branch Setting Details

Slip-rate constraint weight 1/100 Weight of slip-rate constraints normalized by slip rate/
unnormalized (units: m=yr)

Paleoseismic constraint weight 1.2/0.12 Weight of paleoseismic event-rate constraints/mean slip
constraints (which are converted to event rates). Both are
normalized by event-rate standard deviation

Regional MFD† equality constraint weight 10 Normalized by target rate for each magnitude bin
Regional MFD inequality constraint weight 1000 Normalized by target rate for each magnitude bin
Fault-section smoothness weight 1000 Applied to faults with paleoseismic data. Units of earthquakes/

magnitude bin=yr
Parkfield event-rate constraint weight 1000 Units of earthquakes/yr
Fault section MFD constraint weight 0.01 Keeps MFDs on-fault subsections close to UCERF2/proto-

UCERF2 MFDs. Normalized by target rate for each
magnitude bin for all nonzero bins; rupture rates (1=yr) in zero
bins minimized with a weight of 0.1

Minimum rupture rate fraction 0.01 Fraction of on-fault moment that is applied as a minimum rupture
rate (water level)

Initial rupture model Zero-rate starting solution Starting set of rupture rates for simulated annealing algorithm
Regional MFD form Trilinear distribution Target MFD for on-fault ruptures: total region MFD target less

off-fault seismicity
Regional MFD transition magnitude 7.85 Magnitude to switch from MFD equality constraint to MFD

inequality constraint

*Some of the inversion constraint weights are dependent on the units of the particular constraints to which they apply (and to the extent that units
differ, weights are not directly comparable). Units of data vector components are given for unnormalized constraints.

†MFD, magnitude–frequency distribution.
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branches does not have a high enough rate at M 6 to accom-
modate the Parkfield constraint.

The Parkfield constraint is the only a priori event-rate
constraint we apply in UCERF3. These types of constraints
are simply written as fr � fapriorir , in which fapriorir is the a
priori rate of the rth rupture.

Nonnegativity Constraint and Water Level. Rupture rate,
the rate per year that each rupture occurs, cannot be negative.
This is a hard constraint that is not included in the system of
equations but is strictly enforced in the simulated annealing
algorithm, which does not search any solution space containing
negative rates. To avoid zero-rate ruptures, we go further and
apply a minimum rate (“water level”) for each rupture. The
inverse problem with inequality constraints can be transformed
into an equivalent problem with a simple nonnegativity con-
straint. The original inverse problem Ax � d with x ≥ xmin,
with observation matrix A, solution vector x, data vector d,
and minimum rupture rates xmin, is mapped to a new inverse
problem with a simple nonnegativity constraint, Ax′ � d′,
x′ ≥ 0. The new data vector is given by d′ � d − Axmin and
the rupture-rate mapping is given by x′ � xmin � x. The non-
negativity constraint for this transformed inversion problem is
strictly enforced in the simulated annealing algorithm, which
does not search any solution space that contains negative rates.

The minimum rupture rates are magnitude dependent
and account for 1% of the on-fault moment in the model.
These rates sum to a GR distribution (with a b-value of 1.0).
Water-level rates within each 0.1 magnitude-unit bin are
proportional to the lowest slip rate among the subsections
utilized by the rupture.

Fault Section MFD Constraint. This constraint is applied
to characteristic branch solutions and constrains the MFDs
on fault subsections to be close to the characteristic MFDs
used in UCERF2. For the faults that were treated as type
A in UCERF2, for which rupture rates were derived from
paleoseismic data using expert opinion, we use the final
UCERF2 MFDs as the constraint here. For the remaining
faults (both type B faults in UCERF2 and newly added faults
that were not in UCERF2), we construct an MFD consistent
with UCERF2 MFD-methodology, in which 1=3 of the mo-
ment is in a GR distribution and 2=3 of the moment is in a
characteristic distribution (see the UCERF3 main report for
more details). This constraint can be written as

XR

r�1

Mm
sr

Rm
s
fr � 1; for all Rm

s > 0; �5�

in which Mm
sr is the fraction of the rth rupture in the mth

magnitude bin on the sth subsection. Rupture rates for mag-
nitude bins in which Rm

s � 0 are also minimized.

Regional MFD Constraint. The on-fault target magnitude
distribution for the characteristic branch is a trilinear model
as shown in Figure 2. Above the maximum magnitude for

off-fault seismicity, the on-fault MFD equals the total
regional MFD (total seismicity rates are extrapolated from
historical seismicity, see Felzer, 2013). Below the maximum
off-fault magnitude, the on-fault MFD transitions to a lower
b-value, and then transitions again back to a b-value of 1.0
(matching historical seismicity) at about M 6.25 (this is the
average minimum magnitude for the supra-seismogenic-
thickness ruptures, the exact value of which is branch depen-
dent). The rate of M ≥5 events for the on-fault MFD is set
from historical seismicity that is inside our fault polygons
(these are zones around each fault and are described in the
UCERF3 main report). Thus the entire on-fault MFD is
uniquely determined by the maximum magnitude off-fault,
the average minimum magnitude for the on-fault (supra-seis-
mogenic) ruptures, historical seismicity rates, and the frac-
tion of seismicity that is considered on-fault (within our
fault polygons).

The inversion solves only for rates of earthquakes that
have lengths greater than the (local) seismogenic thickness,
so the on-fault MFD is reduced at low magnitudes by the rate
of subseismogenic ruptures on each fault section. This gives
the supra-seismogenic on-fault target, shown in Figure 2,
which is the MFD used for the inversion magnitude-
distribution constraint.

For each branch, the regional magnitude-distribution
constraint is applied as an equality constraint up to and
including magnitude 7.85 and is applied as an inequality con-
straint (with the target on-fault MFD serving as an upper
bound) above M 7.85. Thus the inversion is not constrained
to exactly equal the target MFD at magnitudes for which the
true MFD may taper below a strict GR distribution. As it is
not known what the MFD looks like at high magnitudes, we
allow the inversion to choose whatever roll-off at high
magnitudes is consistent with the other constraints.

Figure 2. Schematic of magnitude–frequency distributions
(MFDs) for the UCERF3 reference branch. The total target MFD
(found from seismicity; see Felzer, 2013) is shown in black. It is
reduced to account for off-fault earthquakes to give the total on-fault
target (orange) and further reduced by removing ruptures with
lengths less than the subseismogenic thickness to give the supra-
seismogenic on-fault target (blue), which is used to constrain the
regional MFD given by the inversion solution. (GR, Gutenberg–
Richter values.)
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For each branch, this constraint is applied for two re-
gions: northern California and southern California. Further-
more, theM ∼ 6 Parkfield earthquakes are excluded from the
constraint, as their rate is quite high and would otherwise be
underpredicted by the model. This constraint is implemented
in the form

XR

r�1

Mm
gr

Rm
g
fr � 1 for M ≤ 7:85; and

XR

r�1

Mm
gr

Rm
g
fr ≤ 1 for M > 7:85; �6�

in which Mm
gr is the fraction of the rth rupture in the mth

magnitude bin and the gth region and Rm
g is the rate in

the mth magnitude bin and the gth region given by the
supra-seismogenic on-fault target MFD.

Tuning of Constraint Weights

Weights for the different constraints used in the inver-
sion are shown in Table 1. Some of the constraint weights
have units, so a relatively low weight does not necessarily
mean a constraint is not significantly affecting the inversion
result. Naturally, there are trade-offs between how well dif-
ferent datasets can be fit and also between data fit and how
smooth or close the model is to UCERF2. We select weights
for the dataset so that neither slip rates nor paleoseismic data
are badly underfit and so that the regional MFD data and the
average rate of Parkfield earthquakes are matched nearly
exactly. The MFD smoothing constraint and MFD nucleation
(UCERF2 MFDs) constraint are set to the highest value pos-
sible—increasing the weights beyond these current settings
causes a sharp, significant degrade to the other data con-
straints. Our goal with the constraint weights is to find a
model that is as smooth and as close to UCERF2 as possible
while fitting all datasets within their uncertainties. Still, small
changes in these weights are possible; the question is, do

somewhat arbitrary choices in constraint weighting signifi-
cantly affect the inversion result?

To test the effect of the constraint weights, we perturb the
weights for each of the constraints, individually, by factors of
10 from the default values. The data misfits for these trial runs
are shown in Figure 3. The default constraint weights have no
poor data fits, and the only other runs in this set that have no
poor data fits are either less smooth (smaller along-fault MFD
smoothing) or further fromUCERF2 (smallerMFDnucleation
constraint weight), with the exception of a higher paleoseis-
mic weight, which degrades the regional MFD and makes the
model less smooth. The models that are either smoother or
further from UCERF2 fit the data somewhat better than the
default weights, but not significantly so given the loss of regu-
larization. We can also see that fits to the slip rates and paleo-
seismic data strongly trade-off against each other; this is in
part due to the regional MFD constraint, which limits the ex-
tent that the inversion can alter the size distribution along
faults to fit both slip-rate and paleoseismic data.

Most importantly, Figure 4 shows that changes in the
constraint weights matter little for hazard, even when changes
are large enough to cause some data to be poorly fit. The range
of hazard implications for the test inversion runswith different
constraint weights is far less than the range of hazard spanned
by differentUCERF3 logic-tree branches. These results imply
that it is acceptable to use one set of weights for all inversion
runs because changes in these weights (which would have to
be smaller than the factors of 10 investigated here in order to
not lead to poor data fits or a significantly less-regularized
model) are not important for hazard.

The regional MFD constraint has a high weight in the
inversion and is fit very well by UCERF3 models; this is to
prevent the MFD overprediction (the bulge) that occurred in
UCERF2 (Field et al., 2009). This constraint is surprisingly
powerful; when removed, the inversion has enormous free-
dom to fit the slip rates, for example, nearly perfectly. It is
informative to relax this constraint to see how it changes the

Figure 3. Data misfits for alternative equation set weights. Misfits are shaded by the quality of the data fit. Thresholds for the misfit
shadings were determined by visually examining a different set of runs; these are subjective, because most data do not have formal error bars.
The default constraint weights are highlighted with bold in the center row.
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model. MFD fits for the reference branch with the regional
MFD constraint weight relaxed by a factor of 10 are shown
in Figure 5. We can see that the inversion prefers more
moment, interestingly, at all magnitudes. This model, corre-
sponding to the “Relax MFD” branch (which is currently
given zero weight in the UCERF3 logic tree), is very well
captured by the logic-tree branches that increase the MFD
target uniformly.

Defining the Set of Possible Fault-Based Ruptures

A final a priori step that must be done before running
the inversion is defining the set of possible ruptures. The
faults are first discretized into subsections, as described in the

UCERF3 main report. These subsections are specified for
numerical tractability and do not represent geologic seg-
ments. Subsections are linked together to form ruptures, the
rates of which are solved for by the inversion. It is worth
noting that here a “rupture” is defined as an ordered list
of fault subsections it includes; no hypocenter is specified.

Viable ruptures are generated from the digitized fault
subsections via the plausibility filter rules described in detail
by Milner et al. (2013). The plausibility filter allows ruptures
to jump a maximum distance of 5 km between faults,
imposes simple rules based on azimuth change along the
rupture, and checks for kinematic consistency, based on
Coulomb stress modeling, at fault junctions. The plausibility
filter defines a total of 253,706 ruptures for fault model 3.1
and 305,709 ruptures for fault model 3.2. By comparison,
our UCERF2 mapping has (for a smaller set of faults)
7029 on-fault ruptures.

The plausibility filter either allows ruptures in the rup-
ture set or not—it is a binary filter. One important remaining
question is to what extent ruptures allowed by the plausibility
rules may require further penalty. Because the inversion fits
fault-slip rates and the regional MFD, the frequency of multi-
fault ruptures is already constrained. However, one could
impose an additional improbability constraint to further
penalize any ruptures that are deemed possible but improb-
able; these constraints are numerically equivalent to an a pri-
ori rupture-rate constraint with a rupture rate of zero. These
constraints could be weighted individually, so some rupture
rates could be penalized more harshly (i.e., contribute more
to the misfit if they are nonzero) than others. This improb-
ability constraint is not implemented for the UCERF3 rup-
ture set because we do not have a viable model (i.e., a model
ready for implementation and agreed to be useful by Work-
ing Group members) for such a constraint. Below we present
evidence that this constraint is not needed, given empirical
data and existing rupture-rate penalties.
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It is not even clear what constitutes a multifault rupture in
the case of a complex, possibly fractal, connected fault net-
work. One way to quantify the rate of multifault ruptures is
to simply define “multifault” in the context of the names as-
signed to faults in theUCERF3 database. For this definition of
multifault, we count all sections of a fault such as the SAF as a
single named fault, even though the individual sections have
different names (e.g., Carrizo, Mojave North, etc.). Using the
inverted rupture rates for the UCERF3 reference branch
model, 40% ofM ≥7 ruptures and only 16% of paleoseismi-
cally visible ruptures are on multiple faults. We can compare
this number to the ruptures in theWesnousky database of sur-
face ruptures (Wesnousky, 2008); of these, 50%, or 14 out of
28, are on multiple faults. So by this albeit simple metric, the
solutions given by the inversion algorithm are not producing
more multifault ruptures than are seen in nature.

Another multifault metric from our model that we can
compare with empirical data from the Wesnousky database
is the rate of ruptures that have no jumps between faults versus
1, 2, or 3 jumps greater than 1 km. This comparison is shown
in Figure 6. This figure shows that the inversion constraints
greatly reduce the rate of multifault ruptures in the solution
relative to their frequency in the rupture set. Also, by this met-
ric, the inversion is, again, underpredicting the rate of multi-
fault ruptures relative to the empirical data. We would even
further underpredict the rates of ruptures with jumps if an
improbability constraint were added to the inversion.

It is important to note that many of the truly multifault
ruptures seen in nature may in fact not be part of our model at
all because they could “link up” known, mapped faults with
unknown faults (or faults that are known but not sufficiently
studied as to be included in our fault model). Our model
completely separates on-fault ruptures from background
earthquakes; there are no ruptures that are partly on-fault
and partly off-fault.

Without the improbability constraint, the inversion is not
likely to give a lower rate to a rupture that is only moderately
kinematically compatible (but allowed by our filters) relative
to a more kinematically favored rupture, unless kinematically
less-favored jumps are also disfavored by slip-rate changes.
However, the most egregious fault-to-fault jumps are already
excluded by the Coulomb criteria described by Milner et al.
(2013). It appears that the slip-rate constraints and rupture
filtering leave only a modest amount of multifault ruptures
in the inversion solution; further penalties to multifault rup-
tures will result in larger deviations from the empirical data.

The Simulated Annealing Algorithm

We use a simulated annealing (SA) algorithm to solve
the nonnegative least-squares problemAx � dwith the addi-
tional constraint Aineqx ≤ dineq (this last constraint is due to
the regional MFD inequality constraint). The SA algorithm
simulates the slow cooling of a physical material to form
a crystal. In the same way that annealing a metal reduces
defects and allows the material to reach a lower thermody-

namic energy, the simulated annealing algorithm attempts to
minimize energy (in simulated annealing parlance this is the
summed squared misfit between the data and synthetics) by
slowly decreasing the probability of jumps to worse solu-
tions. The algorithm we employ has the following steps:

1. Set x equal to initial solution x0. We have tested different
initial solutions; the final UCERF3 model uses an initial
solution of all zero rupture rates.

2. Lower the parameter T, known as the “temperature,” from
1 to 0 over a specified number of iterations. The temper-
ature is given by the inverse of the iteration number,
although different approaches to annealing that specify
different cooling functions were also tested. Over each
simulated annealing iteration:

• One element of x (one rupture rate) is chosen at ran-
dom. This element is then perturbed randomly. It is
here that the nonnegativity constraint is applied, be-
cause the perturbation function is a function of the cur-
rent rupture rate and will not perturb the rate to a
negative value. Unlike some simulated annealing algo-
rithms, our algorithm does not use smaller perturba-
tions as the temperature is lowered (this was tested
but did not result in faster convergence times).

• The misfit for the perturbed vector x, xnew, is calcu-
lated; from this, the energy of that solution is
Enew � �Axnew − d�2 � Eineq, in which Eineq is addi-
tional energy from the MFD inequality constraint:
Eineq � �min�Aineqxnew − dineq; 0��2. The weight on
the inequality constraint is set quite high so that a sol-
ution that violates it faces a significant penalty; thus, in
practice, this is a strict inequality constraint.
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inversion model does not have as many multifault ruptures as the
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• The transition probability P is calculated based on the
change in energy (between the previous state and the
perturbed state) and the current temperature T. If the
new model is better, P � 1. Therefore, a new model
is always kept if it is better. If the new model is worse,
it is kept with probability P. It is more likely that the
solutionwill be kept early in the annealing process when
the temperature is high. If E < Enew, then P � e

E−Enew
T .

3. Once the annealing schedule is completed, the best sol-
ution x found during the search (the solution with the
lowest energy) is returned. (This is a common departure
from pure simulated annealing, which returns the last
state found. In some cases the final state will not be the
best solution found, because occasionally solutions are
discarded for worse solutions.)

The UCERF3 SA algorithm is shown graphically in the
flowchart in Figure 7.

Simulated annealing works similarly to other nonlinear
algorithms such as the genetic algorithm (Holland, 1975).
One advantage of simulated annealing is that there is a strong
theoretical backing: besides the analogy to annealing a
physical material, the simulated annealing algorithm will
find the global minimum given infinite cooling time, pro-
vided the annealing schedule lowers the temperature suffi-
ciently slowly (Granville et al., 1994).

There are several advantages of this algorithm in
contrast to other approaches such as the nonnegative least-
squares algorithm. First, the simulated annealing algorithm
scales well as the problem size increases. (In fact, it would
not be computationally feasible for us to use the nonnegative
least-squares algorithm to solve a problem as large as the

UCERF3 grand inversion.) Simulated annealing is designed
to efficiently search a large parameter space without getting
stuck in local minima. Next, quite importantly, for an under-
determined problem the simulated annealing algorithm gives
multiple solutions (at varying levels of misfit depending on
the annealing schedule). Thus both the resolution error (the
range ofmodels that satisfy one realization of the data) and the
data error (the impact of parameter uncertainty on the model)
can be sampled. Finally, simulated annealing allows us to
include other nonlinear constraints in the inversion apart from
nonnegativity; in our case we incorporate the MFD inequality
constraint, which is a nonlinear constraint that cannot be
easily incorporated into the perturbation function.

Parallelization of the Simulated Annealing Algorithm

To tackle the computational demands of the UCERF3
inversion for each node of the logic tree, we have implemented
a parallel version of the simulated annealing algorithm. This
algorithm runs the serial simulated annealing algorithm we
have just described over a number of processors for a given
number of subiterations or subcompletion time. Then the best
solution among these is kept and redistributed over the process-
ors; this process repeats until convergence criteria (a target mis-
fit, a given number of total iterations, or an allotted annealing
time) are satisfied. Final production runs for UCERF3 used a
convergence criteria of 5 hrs of total (wall-clock) annealing
time utilizing five processors on a single node running the par-
allel SA algorithm with a subcompletion time of 1 s; longer
runs for testing purposes are discussed in the next section.

The parallel SA algorithm scales well up to 20–50 pro-
cessors, but adding processors beyond this does not improve
performance. Using the parallelized algorithm on a cluster

Figure 7. The UCERF3 simulated annealing algorithm. (Visualization courtesy of Tom Jordan, University of Southern California [USC].)

1188 M. T. Page, E. H. Field, K. R. Milner, and P. M. Powers



results in average speedups of 6–20 relative to the serial al-
gorithm. As the parallelized SA algorithm represents a
departure from pure simulated annealing, we tested both
the serial and parallelization algorithms to ensure the algo-
rithm difference does not change the solution qualitatively;
as discussed in the next section, the only difference we found
was convergence speed.

Although a single inversion run can be done on a typical
desktop computer, our final UCERF3 results include 10 runs
on each branch of a 1440-branch logic tree and therefore re-
quire 3000 node-days of computation time. We used the
Stampede cluster at the University of Texas and the HPCC
cluster at the University of Southern California to run all the
inversions required for the UCERF3 branches in under a day.

Testing of Inversion Methodology

Convergence Properties

The simulated annealing algorithm used in UCERF3 is
stochastic; due to random perturbations of the model
parameters during the annealing process, the final model will
be different each time it is run, even if the starting model and
data do not change. This can be an advantage because it allows
us to explore the range of models that fit the data on a single
branch; however, finding a stable solution can present a chal-
lenge. We have extensively tested the convergence properties
of the inversion and found that over individual runs, unsurpris-
ingly, individual rupture rates are very poorly constrained and
are highly variable. However, averaged parameters such as
fault section MFDs are far more robust.

In a single run of the inversion only about 10,000 ruptures
(∼4%) have rates above the water-level rates. This demon-
strates that the data can be fit with a relatively small subset
of ruptures. By averaging the rupture rates from multiple runs
of the inversion, however, we can obtain many more greater-
than-water-level rates because different runs use a different
subset of ruptures to match the data. For a single branch, aver-
aging 10 runs increases the number of ruptures above thewater
level to approximately 38,000 and averaging 200 runs in-

creases this number to approximately 115,000. Different runs
of the same branch therefore match the data similarly well by
using different sets of ruptures and are sampling the epistemic
uncertainty of the problem in this way. Averaging across
branches achieves smoother, less compact results; the average
of 10 branches for all 720 logic-tree branches in fault model
3.1 produces 93% of ruptures above the water-level rates.

Formany faults, stable parameters of the rate a given fault
section participates in a rupture of a given magnitude can be
determined from averaging only a few inversion runs; the
median number of inversion runs needed to resolve the mean
rate ofM ≥6:7 events on a fault within 10% is 9.A small num-
ber of slow-moving faults require on the order of 100 runs to
obtain well-resolved magnitude distributions; as discussed in
the UCERF3 main report, the worst case is the Richfield fault
(a two-subsection-long fault near the Whittier fault), which
requires 1294 runs. Because the branch-averaged UCERF3
model, known as Mean UCERF3, averages the results from
14,400 individual SA runs (each logic-tree branch run 10
times), all faults have MFDs that are well resolved.

Hazard results, as shown in Figure 8, are even more stable
across inversion runs. Of the 2% in 50 yrs and 1% in 100 yrs
annual frequencies of exceedance for peak ground acceleration
(PGA) and spectral accelerations at 5 Hz, 1 Hz, and 4 s, theworst
uncertainty we found over 10 runs of the UCERF3 reference
branch was within 3% of the mean, as described in the UCERF3
main report. Thus individual branches of the logic tree, each of
which average over 10 SA runs, are well resolved for all these
hazard metrics. Branch-averaged results are extremely well re-
solved for hazard metrics; in fact inversion nonuniqueness was
found to be negligible for the 2% in 50 yrs PGA, 1% in 100 yrs
PGA, and 2% in 50 yrs hazardmaps, as well as the 1% in 100 yrs
3 s spectral acceleration hazard maps. In fact, a single SA run per
branch would be adequate for these hazard metrics.

Synthetic Test

To test the ability of the inversion method to recover a
solution, we create a synthetic test based on the inversion

10
2

10
1

10
010

6

10
5

10
4

10
3

10
2

10
1

10
0

2% in 50 yrs AFE

10% in 50 yrs AFE

Peak Ground Acceleration (g)

A
nn

ua
l F

re
qu

en
cy

 o
f E

xc
ee

da
nc

e

 

 

Mean of 200 curves
Mean of 200 solutions

(a) 

10
2

10
1

10
010

7

10
6

10
5

10
4

10
3

10
2

10
1

2% in 50 yrs AFE

10% in 50 yrs AFE

Peak Ground Acceleration (g)

A
nn

ua
l F

re
qu

en
cy

 o
f E

xc
ee

da
nc

e

 

 
(b) 

10
2

10
1

10
010

7

10
6

10
5

10
4

10
3

10
2

10
1

2% in 50 yrs AFE

10% in 50 yrs AFE

Peak Ground Acceleration (g)

A
nn

ua
l F

re
qu

en
cy

 o
f E

xc
ee

da
nc

e

 

 
(c) 

Mean of 200 curves
Mean of 200 solutions

Mean of 200 curves
Mean of 200 solutions

Los Angeles San Francisco Diablo Canyon

Figure 8. Convergence test showing hazard curves from 200 runs of the UCERF3 reference branch. For (a) Los Angeles and (b) San
Francisco, the range of hazard curves from multiple runs (shaded area) is so small that it is not visible behind the mean hazard curve over all
runs. We also show a hazard curve for (c) Diablo Canyon, because in this case differences between different inversion runs for the reference
branch are visible at very low annual frequencies of exceedance; this is the largest variance among the 60 test locations.
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synthetics from the UCERF3 reference branch. The data
used include the slip rate, paleoseismic, regional magnitude
distribution, fault section MFD, and Parkfield event-rate
synthetics. The magnitude-distribution smoothing constraint
(used on fault sections with paleoseismic data) was applied
as in a typical inversion, without using the reference branch
synthetics. No errors were added to the input data. Misfits in
the synthetic test demonstrate how well the inversion con-
verges and differences between different runs of the synthetic
test give a sense of the null space of the problem.

We ran the synthetic test with two different starting mod-
els, which are sets of initial rupture rates input to the simu-
lated annealing algorithm. In UCERF3, our starting model is
all zeros, that is, each rupture rate starts at a value of 0. In
addition, for testing purposes, we also used a starting model
of UCERF2 ruptures rates (or more accurately, UCERF2
rates mapped onto the inversion rupture set, we find the clos-
est analogs to UCERF2 ruptures given our discretization of
the fault system). The zero starting model allows for a wider
range of final models (and thus a more thorough exploration
of epistemic uncertainty). By contrast, with the UCERF2
starting model, the final rupture rates show less variation
from run to run and are closer to the UCERF2 ruptures rates.

Slip-rate fits for multiple runs of this synthetic test are
shown in Figure 9. The total squared misfit of the slip rates is
18 times less than that for the UCERF3 reference branch.
The largest systematic discrepancy on the major faults is an
overprediction of the slip rate of approximately 10% on the
Mojave South section of the southern SAF. In addition, the
southern end of the Ozena fault and the Swain Ravine fault
have slip rates that are more severely overpredicted and
underpredicted, respectively. These systematics are not per-
sistent features of UCERF3 inversion runs.

The synthetic test runs fit the input regional MFD quite
well, as shown in Figure 10. The average moment rate of the

Figure 9. Slip-rate fits from five synthetic test runs (using the
zero starting solution). Color shows the solution slip rate divided by
the target slip rate, with white being no misfit.
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Figure 10. California-wide MFD for five runs of the synthetic
test with zero starting solution compared to the input distribution.
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synthetic tests is very close to (0.07% lower than) the moment
rate of the model used to create the synthetics. UCERF3, on
average, underpredicts the moment rate given by the deforma-
tion models by 1.3%, and the moment rate on individual
branches ranges from 79% to 115% of the target moment.
The synthetic tests suggest that moment-rate misfits are due
to the data inconsistencies and not the inversion procedure.

Paleoseismic data fits for the synthetic model are shown
in Figure 11. The fits are excellent and are not sensitive to the
starting model used in the simulated annealing algorithm.
Individual fault magnitude distributions, however, do show
slight dependence on the starting solution used, as shown in
Figure 12. In general, the fault MFDs are more variable for
the synthetic test results using the zero starting model. This is
not surprising, as the UCERF2 starting model better fits the
data than the zero starting model, meaning that more of the
initial perturbations will be kept in the latter case because
they improve the misfit. If the inversion were to spend more
time at high temperature, this dependence on the starting
model should weaken; changes in the annealing schedule
are discussed further in the Long Cooling Test section. In
Figure 12 it is also apparent that synthetic test MFDs are more
similar to the input model for the zero starting solution,
which is the starting solution that was used for the synthetic
test input model.

Synthetic test results for an isolated fault section, Battle
Creek, are shown in Figure 13. In this figure, we can also see
that while rates of individual ruptures vary from run to run,
averaged quantities such as slip rates and total event rates are
much more stable.

Slip-rate misfits have little dependence on the starting
model. However, the zero starting solution models give a wider
range of solutions, as well as less compact solutions (more rup-
tures have rates above the water-level rates), so they may be
preferable in that they more adequately sample the null space.

Alternative Simulated Annealing Algorithms

We tested a variety of published perturbation functions
and cooling functions to ensure that the simulated annealing
algorithm we are using is optimized for our problem. The
cooling functions, which give the simulated annealing tem-
perature T as a function of iteration number i, include the
following:

1. Classical SA (Geman and Geman, 1984):
T � 1= log�i� 1�,

2. Fast SA (Szu and Hartley, 1987): T � 1=i,
3. Very fast SA (Ingber, 1989): T � e−i�1.

The perturbation functions we tested, in units of 1=yr,
as a function of a random number R → 0 1

� �
, are as

follows:

1. Uniform, no temperature dependence: Δx �
0:001�R − 0:5�,

2. Gaussian: Δx � 0:001T−1=2Re1=2T ,
3. Tangent: Δx � 0:001T tan�πR − π=2�,
4. Power

Law: Δx � sgn�R − 0:5��0:001T��1� 1T�j2R−1j−1,
5. Exponential: Δx � 0:001T 10R.

The normalization factors for each of the above functions
have been optimized within a factor of 10 to produce the fast-
est convergence. We tested each combination of cooling
schedules and perturbation functions for both the serial
and parallel SA algorithms. For UCERF3 runs we use the
fast SA cooling schedule with uniform (no temperature
dependence) perturbations. This produces the best final en-
ergies (and therefore lowest misfits) for both the parallel and
serial simulated annealing algorithms, within the noise (i.e.,
neglecting the small differences in final energies typically
seen over multiple runs of the same inversion).
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Long Cooling Test

The simulated annealing algorithm more adequately
searches the solution space with slower cooling schedules,
although this also requires more computational time. Early in
the simulated annealing, when temperature is high, jumps to
worse solutions are more likely to be taken. This is necessary
in order to avoid getting stuck in local minima. Our default
simulated annealing parameters have been chosen to achieve
the lowest misfit for simulated annealing runs that take
4–8 hrs; given the computational capacity we have at our
disposal this allows us to compute the entire UCERF3 model,
with 10 runs of each branch, in under a day using supercom-
puters. To ensure this annealing schedule is adequate, we ran a
series of long cooling tests with the reference branch. Each was
run for 40 hrs in total, using both the serial and parallel algo-
rithms, for the standard cooling schedule, and for schedules in
which the temperature is lowered 2, 5, and 10 times slower.

Figure 14 shows the simulated annealing energy (pro-
portional to the squared misfit) versus time for the slow

cooling tests. The parallel algorithm outperforms the serial
algorithm, which is not surprising because it uses multiple
processors and is searching more of the space (and represents
more total computational time summed over all processors).
However, the difference between the parallel and serial algo-
rithm is less pronounced at longer times, which suggests that
while the parallel algorithm converges faster, given enough
time, the serial algorithm can catch up.

The speed of the cooling, at least within the range we
tested, has negligible effect on the final energies at very long
times. The differences at 40 hrs between the test runs are
within the variability seen for multiple runs with the same
parameters. The same is true at 8 hrs, with the exception of
the very slowest cooling schedule for the serial simulated
annealing algorithm. However, at even shorter times the
slower cooling functions perform less well. Thus we are not
finding lower minima with the slower cooling, but we are
converging to similar minima at a slower pace. This test can
give us confidence that we are not quenching the system too
fast. Although longer annealing times could improve our
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misfits somewhat, each additional amount of computational
time comes at less and less benefit to the misfit.

We visually inspected event-rate and slip-rate synthetics
for the different long cooling tests and found no differences
in the final models apart from typical run-to-run variability.
In particular, there were no systematic differences in the
types of solutions found with the slower cooling or with
the serial versus parallel algorithm. Most importantly, it does
not appear that we are neglecting a better set of minima by
using our current annealing schedule.

Modeling Results

We now present results for the Mean UCERF3 model,
which is the branch-weighted average of 10 runs for each of
the 1440 branches of the UCERF3 logic tree shown in
Figure 1. For simplicity, in map-based plots below, we ne-
glect the fault model 3.2 branches.

In many of the figures below we compare the UCERF3
model to UCERF2, or rather a mapping of UCERF2 into our
rupture set. For this mapped UCERF2 model, we set the
magnitudes of ruptures to their mean UCERF2 values and

average (with 50% weight each) a tapered along-strike slip
distribution and a uniform slip distribution for each rupture
(these are the same weights used for the along-strike slip dis-
tributions in UCERF3).

UCERF3 Fits to Data

UCERF3 is constrained to match slip-rate targets, as
defined by the deformation models, for each fault subsection.
Figure 15 shows fits to the slip rates for UCERF2, Mean
UCERF3, and branch-averaged solutions for each deforma-
tion model. The UCERF2 model tends to overpredict slip
rates in the centers of fault sections and underpredict slip
rates on the edges of fault sections. This is due to two effects:
the 50% weight on the tapered along-strike slip distribution,
and the floating ruptures used in UCERF2, the set of ruptures
for each magnitude bin allowed at different positions along a
given fault section, which overlap more in the center of
fault sections. Slip-rate fits for the UCERF3 models are on
the whole good, although individual branches have total
moment rates ranging from 79% to 115% of the total on-fault
target moment (this is the moment given by the deformation

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
–10

–9

–8

–7

–6

–5

–4

–3

–2

–1

L
o

g
1

0
(Y

e
a

rl
y 

P
a

rt
ic

ip
a

io
n

 R
a

te
)

Synthetic Test Input Model
Synthetic Test Output Models

Model Slip Rate / Target

(a) 

Log10(Yearly Rate)

Magnitude

(b) 

Battle Creek
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model, less creep and subseismogenic-rupture moment).
Mean UCERF3 underpredicts the target moment rate (as
determined by the deformation model slip rates) by 1.3%.

The two biggest slip-rate overpredictions are on the
northern end of the Elsinore fault and in the center of the
Creeping section of the San Andreas. The model overpredicts
the target slip rate on the Elsinore fault due to a high paleo-
seismic event rate on that fault. The outlier in the Creeping
section occurs where the mean slip rate is reduced by 80% to
5 mm=yr in order to account for creep. The inversion is
unable to match this rapid along-strike slip-rate change; the
solution only reduces the slip rate to approximately 10 mm=yr.
The slip-rate reduction in the center of the Creeping section
limits the rate that ruptures can propagate through this fault
section and results in average repeat times for wall-to-wall San
Andreas ruptures that extend from the (center of) SAF-Offshore
to the SAF-Coachella section of 150,000 yrs. Ruptures that ex-
tend from the SAF-North Coast to SAF-Mojave South section

occur approximately every 2500 yrs in UCERF3, and ruptures
that extend (just barely) through the Creeping section, from
SAF-Parkfield to SAF-Santa Cruz, occur every 900 yrs.

All other UCERF3 slip-rate overpredictions are within
20% of the targets, and virtually all those greater than 10%
can be explained by paleoseismic constraint inconsistencies.
Furthermore, mean slip rates on all faults are within the error
bounds given by the geologic deformation model, even
though these error bounds were not used in the inversion.

Slip-rate and paleoseismic data fits for the SAF are
shown in Figure 16. The target slip rate is underpredicted on
the Cholame section of the San Andreas, and this is system-
atic across different UCERF3 branches. If the regional MFD
constraint is removed (thus allowing the inversion as many
ruptures in a given magnitude range as needed to minimize
misfits to other data), the slip rate on the Cholame section can
be fit nearly perfectly. However, given the limited budget for
moderate-size earthquakes throughout the region, this slip

Figure 14. Simulated annealing energy (summed squared residuals) versus time for (a, b) standard and (c, d) a cooling schedule 10 times
slower, using the serial simulated annealing (a, c) and parallel simulated annealing (b, d) algorithms.
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rate cannot be fit without increasing misfits to other con-
straints. Contributing to the problem is the tendency for
many of the branches to overpredict the slip rate on the Park-
field section (and thus preventing more Cholame ruptures
from continuing to the north). This is because much of the
slip rate for the Parkfield section is taken up in Parkfield
M ∼ 6 ruptures, which are constrained to have a mean recur-
rence interval of 25 yrs. The mean slip in the Parkfield rup-
tures ranges from 0.27 to 0.35 m for the Shaw (2009) scaling
relation and the Hanks and Bakun (2008) scaling relation to
0.57–0.73 m for the Ellsworth-B (WGCEP, 2003) scaling
relation. Thus 10–29 mm=yr is taken up on the Parkfield
section just in Parkfield M ∼ 6 ruptures, which leaves very
little, if any, remaining moment for other ruptures on this
fault section. The slips given by the scaling relations for the
Parkfield ruptures are quite high, and perhaps too high, be-
cause the Parkfield ruptures tend to have larger areas and
smaller slips thanM 6 ruptures elsewhere (Arrowsmith et al.,
1997). The UCERF3 scaling relations are not necessarily de-
signed to work properly on highly creeping faults (to achieve
magnitudes of approximately 6 for the Parkfield earthquakes,

in UCERF2 and UCERF3 average aseismicity was set to
80% and 70%, respectively, on the Parkfield section). In
UCERF3 the Parkfield constraint is weighted quite highly
relative to the slip-rate constraint; thus the model fits the his-
torical rate of Parkfield earthquakes very precisely at the ex-
pense of slip-rate fits; this is preferable because hazard is
more sensitive to event rates than slip rates. In future models,
adjustments to the scaling relations for highly creeping
faults, and possibly relaxation of the Parkfield event-rate
constraint, could mitigate this problem.

Paleoseismic mean recurrence intervals (MRIs) for all
UCERF3 timing sites are shown in Table 2. Five of the
UCERF2 MRIs are outside of the (UCERF3) 95% confi-
dence bounds on the UCERF3 observed rate; all of the
UCERF3 MRIs are within the bounds. All but five of the
paleoseismic sites are closer to the mean observed MRIs
in UCERF3 versus UCERF2.

One readily apparent systematic in the paleoseismic mis-
fits is that paleoseismic synthetics on the southern SAF are
lower than the mean observed rates (recurrence intervals in
the model are, on average, longer than observed). This is also

Figure 15. Slip-rate misfits for UCERF3, the UCERF2 mapped solution, and UCERF3 branch averages for each deformation model (see
Parsons et al., 2013 for deformation model details). Note that these plots show ratios of the model slip rates to the target, thus deformation
models with very small target slip rates appear to have large misfits. This happens in particular with the Average Block Model (ABM), which
has slip rates below 10−17 mm=yr on some faults. Inset: Histograms of normalized slip-rate misfits show that UCERF3 has smaller slip-rate
residuals than UCERF2 on average.
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Figure 16. San Andreas slip-rate and paleoseismic data fits for (a,b) UCERF2, and (c,d) UCERF3. Paleoseismic mean slip data have
been converted to proxy event-rate data. The paleoseismic data in both subplots shown is from the UCERF3 model; UCERF2 mean paleo-
seismic event-rate data and error bounds were quite different in some locations. UCERF2 event rates plotted with UCERF2 data are shown in
the UCERF3 main report.
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the case with the UCERF2 model, although the UCERF2 pa-
leoseismic data (see fig. 20 in the UCERF3 main report) had
higher means and larger error bars on this fault. The southern
SAF paleoseismic data could be better fit by increasing the
weight on the paleoseismic data, but this would degrade the
slip-rate fit and lead to (further) overfitting of the paleoseismic
data in other areas. In fact, the reduced chi-square value for the
UCERF3 paleoseismic event-rate fits is 0.72. Because this is
less than 1, this means that given the uncertainties, on the
whole UCERF3 overfits the paleoseismic data. Although
event rates on the southern SAF are systematically lower than
the observed rates, these sites do not represent independent
data. These sites are all seeing overlapping time periods on
the San Andreas. Therefore, if activity is above or below the
long-term average on the southern San Andreas, it could be
above or below average at all sites. In addition, many events
are seen in multiple, neighboring trenches, so the event rates
measured at nearby different paleoseismic sites are not inde-
pendent. Given the correlated data, the spatial systematics in
the paleoseismic misfits are expected.

On-fault, off-fault, and total magnitude distributions for
UCERF2 and UCERF3 are shown in Figure 17. All branches

Table 2
Paleoseismic Mean Recurrence Intervals (MRIs) for UCERF2 and UCERF3 Compared to UCERF3

Paleoseismic Data and Error Bounds

Paleo Site Location (Fault Model 3.1)
Observed
MRI (yrs)

Upper 95%
Confidence (yrs)

Lower 95%
Confidence (yrs)

UCERF2
MRI (yrs)

UCERF3
MRI (yrs)

Calaveras (North), subsection 6 618 1189 321 365 611
Compton, subsection 2 2658 6072 1164 N/A 2766
Elsinore (Glen Ivy), subsection 1 179 262 122 441 244
Elsinore (Julian), subsection 4 3251 128205 881 1278 2526
Elsinore (Temecula), subsection 4 1019 94340 11 708 1077
Whittier, subsection 4 3197 126582 867 1206 2510
SAF* (Big Bend), subsection 6 149 269 82 199 245
Garlock (Central), subsection 6 1435 3293 625 858 1229
Garlock (West), subsection 6 1230 2891 524 882 1264
Green Valley, subsection 3 293 542 159 N/A 334
Hayward (North), subsection 3 318 492 206 196 326
Hayward (South), subsection 3 168 217 129 211 178
SAF (North Coast), subsection 28 870 34364 236 250 401
SAF (Santa Cruz Mts), subsection 5 110 182 66 242 164
SAF (North Coast), subsection 16 306 431 218 247 288
SAF (North Coast), subsection 3 264 408 170 250 254
SAF (Offshore), subsection 8 188 248 142 225 195
Puente Hills, subsection 2 3506 5238 2346 2516 3490
San Gregorio (North), subsection 8 1019 40323 276 622 955
Rodgers Creek, subsection 2 325 785 135 N/A 351
San Jacinto (Anza), subsection 3 312 549 177 256 363
San Jacinto (Superstition Mtn), sub. 0 508 1687 153 401 509
SAF (Carrizo), subsection 1 115 205 64 187 193
SAF (San Bernardino South), subsection 6 205 354 119 312 289
SAF (Coachella), subsection 1 178 321 99 162 259
SAF (Coachella), subsection 1 277 449 171 162 259
SAF (Mojave South), subsection 9 149 225 99 158 180
SAF (San Bernardino North), subsection 2 173 284 106 190 249
SAF (San Bernardino South), subsection 1 205 345 122 244 264
SAF (San Gorgonio Pass-Garnet Hill), sub. 0 261 409 167 394 306
SAF (Mojave South), subsection 13 106 148 76 174 138

*San Andreas fault.
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Figure 17. California-wide MFDs for the UCERF2 and mean
UCERF3 models. The UCERF3 model does not have a overpredic-
tion aroundM 6.5–7 (the bulge) that was present in UCERF2. Note
that above M 7.8 the inversion target MFD only specifies an upper
bound.
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of UCERF3 fit the target MFD quite well. At high magnitudes
the regional MFD tapers away from the b � 1 extrapolation
(which does not contribute to the regional MFD misfit because
the MFD constraint becomes an inequality constraint above
M 7.85). The background MFD is similar, but smoother,
than the background MFD in UCERF2. Most importantly,
the inversion methodology eliminates the bulge problem
in UCERF2—the overprediction of earthquakes around
M 6.5–7. Through testing changes to the rupture set, we de-
termined that fitting the MFD constraint and thus eliminating
this bulge required multifault ruptures not included in
UCERF2. By allowing faults to “link up,” the UCERF2
M 6.5–7 overprediction has been removed through the
accommodation of seismic moment in larger ruptures. It is
also worth noting that were UCERF2 methodology used with
UCERF3 ingredients, the bulge problem would have gotten

even worse due to additional faults and on-fault moment in
UCERF3.

Model Segmentation

We compare segmentation on the SAF between UCERF2
and UCERF3 in Figure 18. In general, UCERF3 allows for
many more fault connections than UCERF2; however, due to
slip-rate incompatibilities many ruptures that include these
connections have low rates relative to ruptures on single, con-
tiguous faults. Thus in UCERF3, some segmentation is a re-
sult of the data rather than being strictly imposed through
model parameterization. On the SAF, UCERF2 allowed for
ruptures between different fault sections (e.g., from SAF Chol-
ame to SAF Carrizo), except through the Creeping section.
UCERF3 preserves some of the segmentation of UCERF2,
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Figure 18. Segmentation on the San Andreas fault (SAF) system for (a, b) UCERF2 and (c, d) UCERF3, for (a, c) ruptures with M ≥7
and (b, d) all supra-seismogenic-thickness ruptures. Note that panels (c) and (d) include the Brawley and Imperial faults on the southern end;
the Brawley seismic zone was not a fault-based source in UCERF2. Points show the rate at which neighboring subsections do not rupture
together; this rate is normalized by the total rate of ruptures involving those two subsections. Thus, when the line reaches one, there is strict
segmentation and no ruptures break through that location.
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but it is not as strict at many of the fault junctions. The seg-
mentation present in UCERF3 is also magnitude dependent.

Model Participation Rates

The rate at which each fault participates in ruptures in a
given magnitude range, for UCERF2 and UCERF3, is shown
in Figure 19. Because of the added faults and increased fault
system connectivity in UCERF3, many more faults partici-
pate in larger earthquakes than in UCERF2. For example, in
the mapped UCERF2 model only the southern and northern
SAF (separately) rupture inM ≥8 earthquakes; the UCERF3
model includes M ≥8 ruptures all along the San Andreas,
including (rarely) through the Creeping section, and also
on the Garlock, San Jacinto, and Hosgri faults.

Of particular importance for seismic hazard is the dis-
tribution of event sizes at a point. Magnitude–frequency par-
ticipation distributions for selected faults of interest, the
South section of the Hayward fault and Mojave South section
of the SAF, are shown in Figure 20. The increased connec-
tivity of the fault system allowed in UCERF3 is readily ap-
parent in these examples; multifault ruptures allow for larger
magnitudes on many major faults. Further visualizations of
ruptures including the Hayward North and SAF Mojave
South fault sections are shown in Figures 21 and 22.

Timing Correlations between Neighboring
Paleoseismic Sites

The UCERF3 models are directly constrained to fit pa-
leoseismic event rate and mean slip data at points along

faults. One set of data that is not directly included, however,
is the correlation of event dates between adjacent paleoseis-
mic sites. This is a nonlinear constraint that is difficult to
include directly in the inversion; however, we can check to
see how well the inversion matches this independent data.

We compare the fraction of events that are correlated
between paleoseismic sites (the total number of events for
which the age probability distributions are consistent
between sites divided by the number of events) with the
fraction of the time those fault subsections rupture together
(in paleosiesmically visible ruptures) in the inversion. This
comparison for the southern SAF is shown in Figure 23. The
95% probability bounds on the data show sampling error
only, given the number of events observed; they do not take
into account, for example, the probability that closely spaced
events in time could have consistent ages. For this fault,
UCERF2 and UCERF3 each fall outside of the 95% confi-
dence bounds of the data for one site pair. However, they are
each below the bounds, which may be acceptable because
not all timing correlations in the paleoseismic data neces-
sarily represent the same event. Some correlated events could
be separate events beyond the time resolution of the paleo-
seismic data. Being above the 95% confidence bounds is
more problematic—UCERF2 falls above the bounds at one
site on the northern SAF and both UCERF2 and UCERF3 are
above the bounds at one site on the San Jacinto fault,
although UCERF2 misses the data by more at this site.

In conclusion, Mean UCERF3 fits the paleoseismic tim-
ing correlations slightly better than UCERF2, although this
may not be true for every individual branch of UCERF3. The

Figure 19. Fault participation rates for different magnitude ranges, for the mapped UCERF2 model (top panels) and mean UCERF3
(bottom).
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Figure 21. Visualization of ruptures involving the Hayward South fault section. (a) Faults that rupture with the Hayward South are
colored by the total rate those ruptures occur. (b) A visualization of those ruptures; the trace of ruptures is plotted floating above the fault
trace, ordered by rate. Segmentation can be seen as common stopping points for ruptures; this segmentation is not prescribed explicitly by the
model, but rather is a consequence of the data and constraints.
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Figure 20. Magnitude-participation distributions for selected faults for UCERF2 and mean UCERF3. These distributions only include
ruptures of length greater than the subseismogenic thickness. Note that in general, multifault ruptures in UCERF3 allow for higher magnitude
ruptures on many faults. These plots include the aleatory variability in magnitude present in UCERF2; without this magnitude smoothing,
UCERF2 results would be less smooth than UCERF3.
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Figure 22. Visualization of ruptures involving the Mojave South fault section of the SAF. (a) Faults that rupture with any of the sub-
sections of Mojave South are colored by the total rate those ruptures occur. (b) Avisualization of those ruptures; the trace of ruptures is plotted
floating above the fault trace, ordered by rate. Common stopping points for these ruptures include the SAF Creeping section and the San
Jacinto/SAF boundary.
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Figure 23. Comparison of timing correlations between paleoseismic sites and the rate these sites rupture together in UCERF2 and
UCERF3 for the southern SAF. As discussed in the text, UCERF3 matches the correlation data slightly better than UCERF2, on average,
even though these data are not directly constraining the inversion.
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performance of UCERF3 is surprisingly good, given that it
outperforms UCERF2 without including this data directly as
a constraint.

Misfits for Individual Logic-Tree Branches

We can compute misfits for each constraint of each
logic-tree branch (as well as a total misfit that is a weighted
average of these); examination of these misfits allows us to
determine which branch choices are preferred by the inver-
sion in the sense that the misfits are smaller. In general,
branches that have lower misfit are branches in which the
total moment balancing is less constrained. For example, bet-
ter misfits are typically obtained with the UCERF3 spatial
seismicity distribution, which leaves more available moment
on the faults; similarly, a higher total seismicity rate for the
region (which, again, leaves more available moment to dis-
tribute on the faults) gives lower misfits. The Average Block
Model (ABM; Parsons et al., 2013) typically gives the worst
misfits among the deformation models; it has the largest tar-
get moment on the faults (and this makes moment balancing
more constrained because UCERF3 models underpredict the
total on-fault moment).

These misfits also presumably include information about
correlations between logic-tree branches. For example, one
scaling relation (that, say, tends to give high slips) may work
poorly with a deformation model that has high slip rates but
well with a deformation model that gives lower slip rates.
Logic trees employed in probabilistic seismic-hazard analysis
(PSHA) typically do not have a mechanism to include corre-
lations between branches; that is, the choice on one level of the
logic tree is independent of the choice at another level. One
could devise, however, a weighting scheme that uses the total
misfit for each branch of the logic tree as a likelihood function
to update the prior weights determined from expert opinion
using Bayes’ rule. In this way, single paths through the logic
tree that do not fit the data as well could be down weighted.

We are not currently employing such a Bayesian scheme
in UCERF3; we are using only a priori weights determined
by expert opinion. Branch misfits do not necessarily re-
present model likelihood; for example, the branches using
uniform slip along a rupture outperform those branches that
use a tapered slip distribution. This is despite the fact that the
tapered distribution far better reflects the average slip distri-
bution of ruptures seen in the data. The uniform distribution
of slip has lower misfits because it makes it easier to fit the
step-like changes in slip rates along faults. These slip-rate
changes are probably not physical either; they are simply
a modeling simplification. However, in this case, the inver-
sion misfits are not telling us that the uniform slip distribu-
tion is correct, just that it is more consistent with other data
simplifications in the model.

Additional Results

Many more plots than are feasible to present here have
been generated and are available in the link given in Data and

Resources. Plots available include magnitude distributions
on every fault in the model, paleoseismic fits for all faults
with paleoseismic data, and hazard results using a range of
metrics.

Concluding Remarks

The inversion approach developed for the UCERF3
project relies on data inputs and models from many other
project tasks to determine the rates of on-fault ruptures. Many
of these inputs will be uncertain and subject to debate. How-
ever, it is important to note that all these uncertainties existed
in the previous methodology for determining rupture rates as
well. The inversion methodology described here eliminates
the need for prescriptive assignment of rupture rates. Impor-
tantly, we have shown that given a more realistic set of pos-
sible ruptures, the data are not sufficient to uniquely constrain
individual rupture rates. However, all the hazard metrics we
tested were quite robust to particulars of our inversion algo-
rithm, whether it be the equation set weights chosen, cooling
schedule, or startingmodel employed. The stochasticity of the
simulated annealing method allows multiple models to be
explored, but these models do not differ significantly in terms
of hazard implications, especially when compared to the in-
fluence of logic-tree epistemic uncertainties.

In California, we have particularly rich geologic, geo-
detic, paleoseismic, and seismic datasets. The inversion
methodology developed for UCERF3 could be applied to
other regions as well, provided there were sufficient data to
constrain the solution. At minimum, slip rates on faults and a
regional MFD are needed; however, it may be most useful
where paleoseismic data are available. The inversion has a
particular advantage over previous PSHA methodology in
that it can simultaneously fit slip-rate and event-rate (for
example, paleoseismic rate) datasets.

The grand inversion provides a means to easily update
the model as new data become available. In addition, the in-
version methodology provides a mechanism to constrain the
model by multiple datasets concurrently. This was lacking in
UCERF2—expert opinion did not simultaneously satisfy slip
rates and event rates, and the magnitude distribution of the
final model was inconsistent with the observed distribution
and the well-supported assumption that the regional MFD
will be characterized by a GR distribution (Felzer, 2013).
The inversion allows all these constraints to be satisfied to
the extent that they are compatible.

The inversion can also be used as a tool to determine
when a set of constraints is not compatible. Earlier inversion
models, for example, showed that some deformation models
(since updated) were not compatible with historical seismic-
ity rates and the assumption of full coupling on the faults.
This led to significant revisions of the deformation models,
which brought the inversion ingredients into better align-
ment. The GR branch of the model also demonstrates incom-
patibilities with model ingredients: given the current
connectivity of the model, on-fault deformation model
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moments, if fully seismic, are not compatible with low his-
torical seismicity rates if we assume an on-fault b-value of
1.0 and assume 58% of seismicity is on the faults (see the
UCERF3 main report for more details). These branches have
been given zero weight in UCERF3 due to the low on-fault
coupling coefficients that they imply. One way these incom-
patibilities might be mitigated is with increased connectivity,
which would allow more on-fault moment in the model.

The degree to which modeled fault connectivity affects
the final model results is quite significant. There are several
aspects of the model that suggest the connectivity assumed in
UCERF3, while greater than connectivity assumed in past
models, is an underestimate of the true connectivity in nature.
By several metrics, the rates of multifault ruptures in the
model underpredict their observed rates. Furthermore, many
of the misfits in the model might be improved if maximum
magnitudes, particularly on secondary faults, were higher.
For example, more moderate-size earthquakes on the
southern San Andreas would bring the synthetic paleoseis-
mic rates closer to the observed rates. However, the regional
magnitude distribution constraint only allows a finite budget
of moderate earthquakes, and many are instead used to match
slip rates on faults that cannot rupture in large, M ∼ 8 earth-
quakes due to the connectivity assumptions.

Because of the global nature of the applied constraints,
all aspects of the model are linked; hence, changing the data
or parameterization for one particular fault can affect the sol-
ution elsewhere in the fault system. This can be problematic
in that errors in the inputs can propagate spatially; however,
the flexible, system-level UCERF3 approach allows for sen-
sitivity to connectivity and other model assumptions to be
explored. This leaves many exciting avenues for future work,
such as investigating trade-offs in the model and testing new
hypotheses of earthquake recurrence.

Data and Resources

Additional figures describing details of the UCERF3
model are available at http://pubs.usgs.gov/of/2013/1165/data
/UCERF3_SupplementalFiles/UCERF3.3/index.html (last ac-
cessed January 2014). The inversion code implemented in
OpenSHA, an open-source Java platform for seismic-hazard
analysis, is available at www.opensha.org (last accessed June
2013).
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