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Nonparametric Aftershock Forecasts Based on
Similar Sequences in the Past
by Nicholas J. van der Elst and Morgan T. Page

ABSTRACT

The basic premise behind aftershock forecasting is that sequen-
ces in the future will be similar to those in the past. Most fore-
casts use empirically tuned parametric distributions to
approximate the behavior of past sequences and project those
distributions into the future. Although parametric models do a
good job of capturing the average behavior in a population,
they are not explicitly designed to capture the full range of vari-
ability between sequences, and sometimes suffer from instabil-
ities or inaccuracies due to overtuning of the model. Here, we
present a nonparametric forecast method that cuts out the
parametric “middleman” between training data and forecast.
The forecast is drawn directly from past outcomes of sequences
that appear similar to the target sequence, with similarity
defined as the Poisson probability that the event count in a
past sequence comes from the same underlying intensity as the
event count to-date in the target sequence. The forecast is just
the distribution of previously observed event counts, weighted
by their similarity. The similarity forecast is only marginally less
accurate than the parametric Reasenberg and Jones (1989;
hereafter RJ89) method. The rate of severe underpredictions,
however, is much lower for the similarity forecast. Although
10% of observed sequences exceed the upper 2.5% range of
the RJ89 forecast range, only 3% exceed this range for the sim-
ilarity forecast. Given an adequate database of past events, the
similarity method makes overtuning impossible, minimizes the
rate of surprises, and serves as a useful benchmark for more
precisely tuned parametric forecasts.

Electronic Supplement: An html document for calculating simi-
larity forecasts based on the set of 2307 global aftershock se-
quences used in this study.

INTRODUCTION

“From what has actually been, we have data for concluding
with regard to that which is to happen thereafter” (Hutton,
1788, p. 217).

Aftershock forecasting typically relies on statistical models
of past seismic sequences. These models can be more or less
sophisticated but rely on empirically tuned parametric distri-

butions to forecast magnitudes, times, and locations of after-
shocks. A typical model might consist of the Gutenberg–
Richter relation (Gutenberg and Richter, 1944) for the
magnitude probability distribution, the Omori law for the tem-
poral probability distribution (Utsu, 1961; Utsu et al., 1995),
and perhaps an exponential productivity relation to model the
scaling of direct and secondary aftershock productivity with
mainshock magnitude (Utsu, 1971; Ogata, 1988).

The application of parametric models, such as the
epidemic-type aftershock sequence (ETAS) model (Ogata,
1988, 1992), or the simpler Reasenberg and Jones forecasting
model (Reasenberg and Jones, 1989; hereafter, RJ89), allows a
forecast to be tuned to a specific sequence, and allows predic-
tions to be made outside the realm of previously observed
behavior. These parametric models are designed to capture the
typical behavior in a collection of sequences. It is less clear that
these models capture the true range of variability between
sequences. In standard applications using a central estimate of
the forecast model, the variability between sequences is as-
sumed to be a Poisson realization of the average rate model
(the Poisson variability is compounded within cascade models
such as ETAS, but variability is still fundamentally Poissonian).
More sophisticated applications may attempt to propagate
some of the epistemic uncertainty surrounding the central
parameter estimates (Omi et al., 2015), but this still may not
capture the true distribution of past and future event counts.

Although parametric forecasting models have great utility
(both authors are actively engaged in their development), there
may be some use for a model that hews as closely as possible to
describing past outcomes of similar sequences, without the in-
termediate step of tuning a parametric probability distribution.
Such a model would favor generality over precision and be
guaranteed to capture the range of previously observed behav-
ior. A forecast derived purely from the outcomes of past
sequences is also immune to runaway instabilities that can arise
when projecting epidemic-type parametric models outside the
range over which they have been tuned (Helmstetter and
Sornette, 2002).

In this article, we propose a nonparametric forecast
method that relies only on two basic assumptions: (1) self-
similar triggering—the observation that magnitude-normalized
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aftershock sequences tend to look similar; and (2) that after-
shock sequences that start out looking similar are likely to con-
tinue looking similar in the future. Both of these assumptions
are common to parametric forecasts as well; here, we evaluate
how far we can get with just this foundation. This approach
requires a large catalog of past aftershock sequences to draw
from; we apply it here to global seismicity.

The Self-Similarity Assumption
Mathematically, the statement of self-similarity is as follows.
Aftershock productivity increases exponentially with main-
shock magnitude Mms, with the number of aftershocks greater
than some cutoff magnitude M c described by

EQ-TARGET;temp:intralink-;df1;40;589N�M cjMms� � 10a�α�Mms−M c�; �1�
with parameters a and α (Ogata, 1988; Helmstetter and
Sornette, 2003; Felzer et al., 2004).

It is also widely assumed that the magnitudes of
aftershocks follow the Gutenberg–Richter distribution:

EQ-TARGET;temp:intralink-;df2;40;507N�mjMms� � N�M cjMms�10−b�m−M c�: �2�
Combining equations (1) and (2)

EQ-TARGET;temp:intralink-;df3;40;460N as�mjMms� � 10a�αMms−bm−�α−b�M c : �3�
The parameters α and b are typically found to be approxi-
mately equal (and similar to 1) (Felzer et al., 2004; Helmstetter
et al., 2005). The scenario (α � b) is referred to as self-similar,
the meaning of which becomes clear when we substitute
(α � b) into equation (3)

EQ-TARGET;temp:intralink-;df4a;40;366N�mjMms� � 10a�b�Mms−m� �4a�

EQ-TARGET;temp:intralink-;df4b;40;332N�Δm� � 10a−b�Δm�; �4b�
in which Δm � m −Mms is the differential magnitude with
respect to the mainshock. Self-similarity is hence the
assumption that aftershock sequences of different magnitude
mainshocks are statistically equivalent when defined in terms
of differential magnitude relative to the mainshock.

Given the assumption of self-similar triggering, we
propose a nonparametric approach for statistical aftershock
forecasting. Looking at the distribution of aftershock numbers
and differential magnitudes in past sequences, we define a
subset of sequences that appear similar in a quantifiable sense
to the sequence being forecast, and base our forecast directly on
the range of observed outcomes of those sequences.

METHOD

Defining Sequence Similarity
The core task in generating a similarity forecast is defining the
set of similar past sequences. We want the forecast to be as
close as possible to model-free, but we need to define a sim-

ilarity metric that includes some finite neighborhood around
a specific target sequence. One option would be to choose some
arbitrary number range around the target sequence count.
Another option is to treat the number of events observed
to-date in the target sequence as a realization of a random proc-
ess with some underlying rate. For each past sequence, its sim-
ilarity is the probability that its event count was generated from
the same random process. This is the approach we follow here.

Consistent with the previous work on aftershock forecast-
ing, we choose a Poisson model to relate observed aftershock
counts to an underlying statistical rate. This model has limi-
tations (Kagan, 2010), but is optimally simple, and lends itself
well to a parameter-free definition of similarity. Alternatives
for quantifying similarity include a boxcar function or a Gaus-
sian smoothing function, but the Poisson model has the advan-
tage of being always positive, having a range that increases with
the mean value, and requiring no super parameters.

To define similarity, we take the observed number of
events so far N 1 and treat it as a random variable realized from
a Poisson distribution with unknown intensity parameter λ.
We then seek out all past sequences of Ni events that could
be consistent with λ. Assuming an uninformative (uniform)
prior distribution for λ, the probability of obtaining Ni events
in a new trial, given that N 1 events were observed in an initial
trial (the ongoing sequence) is

EQ-TARGET;temp:intralink-;df5;311;445P�NijN 1� �
Z

∞

0
P�Nijλ�P�λjN 1�dλ; �5�

which has the solution

EQ-TARGET;temp:intralink-;df6;311;387P�NijN 1� � 2−�Ni�N 1�1� �Ni �N 1�!
Ni!N1!

: �6�

The probabilities wi � P�NijN1� are used to weight and com-
bine the observed outcomes of all past sequences into a prob-
ability distribution for the outcome of the current sequence.
That is, for each past sequence, we count the number of events
N 2 within the desired forecast window, and assign that value a
weight wi. The weighted distribution ofN 2 constitutes a prob-
ability distribution for the outcome of the ongoing sequence.

Forecast Metrics
The similarity forecast, like any other forecast, can be defined
in terms of the probability of exceeding some differential mag-
nitude threshold (e.g., the magnitude of the mainshock), or by
the mean, median, and range of the number of eventsN 2 in the
forecast window. The probability of getting at least one event is
given by the Poisson-weighted fraction of similar sequences
with N 2 ≥ 1. The mean is defined as the Poisson-weighted
mean of N 2. Likewise, the median and ranges of the N 2 fore-
cast are defined as quantiles of the cumulative distribution of
the weights.

Defining Past Aftershock Sequences
In this study, we define mainshocks asM ≥ 6 earthquakes with
depths of less than 300 km that are at least five rupture lengths
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away from all larger events in the previous year. For rupture
length, we use the Wells and Coppersmith (1994) relation that
averages over all focal mechanisms. Aftershocks of those main-
shocks are defined as all subsequent earthquakes with differential
magnitude Δm ≥ −1:5, occurring within three mainshock rup-
ture lengths. (The rupture length for an M 6 is 12 km.) The
cutoff on differential magnitude is chosen to be consistent with
the mainshock magnitude cutoff ofM 6, assuming a global aver-
age detection cutoff magnitude ofM 4.5 (Page et al., 2016). Us-
ing a lower differential magnitude cutoff may result in more
informative forecasts because there is more variability in event
counts at lower differential magnitude thresholds. However,
there is a direct trade-off between the number of aftershocks
gained by lowering the cutoff, and the number of remaining
sequences that meet the more stringent completeness level.

We focus on short-term aftershock forecasts, here, with
observation windows up to one week and forecast windows
up to one month (30 days). We therefore select aftershocks

that occur within 37 days following a main-
shock. We do not restrict aftershocks to be of
smaller magnitude than the mainshock. The
stacked sequences are shown in Figure 1.

RESULTS

Model Output
The similarity metric is illustrated in Figure 2,
which shows the complete set of normalized
aftershock sequences, colored according to their
similarity with a hypothetical sequence with
N 1 � 20 aftershocks after 7 days. The similarity
forecast distribution (Fig. 2b) has a coefficient of
variation (COV) of ∼14, much larger than the
equivalent Poisson forecast with COV � 1.

Figure 3 shows the forecast results as a function of the
number N 1 of M ≥ Mms − 1:5 aftershocks observed to-date
in a hypothetical aftershock sequence, for a range of observa-
tion windows (training intervals) and forecast durations. The
forecast is the smoothest at early times and lowN 1, where most
of the data reside. Conversely, a short duration forecast made
after a long observation window (e.g., T 1 � 7 days,
T 2 � 1 day) is not very robust, because the data are more
sparse, especially if N 1 is unusually large (Fig. 3c). As a final
step, we could regularize the forecast such that the probability
of N2 > 0 increases monotonically or smoothly with N 1. We
do not apply an additional regularization step in this study, so
that we can evaluate the maximally simple version of the
method.

Verification and Validation
To validate the similarity forecast, we take each of the 2307
sequences identified in the global catalog and compute a fore-
cast based on its similarity with the remaining 2306 sequences
(the leave-one-out method). Because there is no real training of
the similarity model, there is no need to isolate a disjoint train-
ing and testing set.

We test forecasts for observation intervals ranging from
1 hr to 7 days and forecast durations ranging between 1 and
30 days. The test statistic is the log10 ratio of predicted to
observed events, where the predicted count is taken to be the
mean or median of the forecast distribution. Using the median
gives an equal number of overpredictions and underpredic-
tions, and approximates the mode of the distribution. To
compute the ratio of events for cases where zero events are
predicted or observed, we regularize all ratios by again assuming
that the counts derive from a Poisson distribution and taking
the ratios of the expected Poisson intensities λi, rather than the
actual observed numbers Ni (Park et al., 2006). Assuming a
noninformative (uniform) prior distribution for λi, this regu-
larization amounts to hλ1i=hλ2i � �N 1 � 1�=�N 2 � 1� (see
the Appendix).

The distribution of log10 ratios for the median-based
forecast skews slightly toward the left (Fig. 4). The asymmetry
reflects the fact that underprediction errors tend to be larger
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▴ Figure 2. (a) Normalized aftershock sequences, colored by
their similarity with a hypothetical target sequence with
N1 � 20 aftershocks after 7 days. (b) Distribution of final event
counts, weighted by their similarity with the target sequence.
The solid line gives the Poisson forecast with the same mean,
for comparison.

▴ Figure 1. 2307 worldwide aftershock sequences, stacked by differential time
and magnitude with respect to the mainshock.
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than overprediction errors because there is a finite limit
(N � 0) on how far a sequence can fall below the prediction,
but there is no such limit on underpredictions. Additionally,
the median forecast value is often equal to zero, in which case
overprediction is impossible.

The Rate of Surprises
The main advantage of the similarity forecast is that it precisely
captures the full range of variability observed in past sequences,

without appealing to any parametric model of aleatory variabil-
ity. To evaluate the forecast range, we plot the value of the
cumulative forecast probability associated with each observa-
tion, defining

EQ-TARGET;temp:intralink-;df7;311;482q�ni� � Pi�N < ni� � μPi�N � ni�; �7�
in which ni are the observed event counts, Pi�N� are the fore-
cast probabilities as a function of event count N , and μ is a

uniform random number between 0 and 1
introduced to give a smooth distribution of q
despite the discrete distribution of each forecast
Pi�N�. If the forecast range is perfect, the
distribution of q�ni� should be uniform. The
distribution of q�ni� for the similarity forecast
is indeed nearly uniform for all observation and
forecast windows (Fig. 5).

For the purposes of aftershock forecasting,
we are most concerned with sequences that fall
outside the specified confidence limits of our
forecast, which we term surprises. We arbitrarily
define a surprising sequence as one with an out-
come that exceeds the upper 97.5% range of the
forecast. The surprise rate should be approxi-
mately equal to 2.5% if the forecast is working
perfectly.

The observed surprise rate depends on the
observation interval and forecast duration. It is
3.1% for one-month forecasts made after the
first hour. For longer observation intervals, the
surprise rate drops, with a 2.3% surprise rate for
one-month forecasts issued after 1 week. The
rate of surprises for anomalously low sequences
is essentially nil (the central 95% confidence
range almost always includes the value N 2 � 0).
This is not simply a consequence of the forecast
construction, as each target sequence is removed
from the distribution of possible outcomes for
the purposes of its own forecast.
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▴ Figure 3. Empirical probability of observing at least one additional earthquake of magnitude ΔM ≥ −1:5, given N1 earthquakes ob-
served so far, for various observation windows T 1 and forecast windows T 2. (a) T 1 � 1 hr; (b) T 1 � 1 day; (c) T 1 � 7 days.
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The surprise rate also depends on the database of past
sequences. If the database is small, the prevalence of never-
before-seen sequences will be higher. For catalogs greater than
about 100 events, however, the surprise rate converges below
3.5% (Fig. 6).

Comparison to Reasenberg and Jones (RJ89)
The similarity forecast approach is intended to make overtun-
ing the forecast impossible, capturing all of the real variability

between similar past sequences. We therefore
expect the similarity forecast to be less precise
than model-based approaches such as RJ89,
but perhaps with a smaller bias and certainly
with a lower rate of surprises.

We here compare the results of the similar-
ity forecast to a sequence-specific RJ89 forecast,
using global average Omori parameters as a
Bayesian prior for regularizing the sequence-
specific estimates (Page et al., 2016). The use
of a Bayesian prior means that a generic (aver-
age) forecast is issued if zero events are
observed in the training/observation interval.
Parameters a and p are assumed Gaussian with
mean −2.54 and 0.92, and standard deviations
0.71 and 0.14, respectively. Parameter c is fixed
to 0.018 days.

The RJ89 model is based on the Omori law
and an exponential productivity relationship,
governed by empirical parameters a, c, and p:

EQ-TARGET;temp:intralink-;df8;382;505r�t� � 10a�Mms−M c�t � c�−p: �8�

The distribution of the forecast number is
assumed Poissonian, with intensity parameter
equal to the integral of equation (8) over the
forecast interval. M c is here set to Mms − 1:5.

For the Bayesian regularization, we assume
the parameters a and p are independent and
Gaussian distributed (aμ � −2:54, aσ � 0:71,

pμ � 0:92, pσ � 0:14). The distribution of a reflects a Gaus-
sian approximation of an inversion result based on the first
10 days of a set of global aftershock sequences very similar
to the set used in this study (Page et al., 2016). The mean
and standard deviation for p come from the variability between
different tectonic regions found in that same study, whereas
parameter c � 0:018 days is fixed to the global average in that
study.

The performance of the RJ89 model is comparable to the
similarity forecast (Figs. 7 and 8). The main difference between
the forecasts is that the misfit between the median forecast
value and the observations is much more asymmetrical for
the similarity forecast than for RJ89 (Fig. 8). This reflects
the fact that the true distribution of observed event counts
used in the similarity forecast is skewed toward zero, whereas
the Poisson model assumes a more symmetrical distribution
around the expectation. Misfits based on the mean forecast
value are more symmetrical but result in a larger fraction of
overpredictions (Fig. 9), again reflecting the highly skewed
distribution of observed event counts.

As expected, the surprise rate is quite a bit larger for the
RJ89 forecast than for the similarity forecast. About 8%–14%
of sequences exceed the upper 97.5% limit of the one-month
RJ89 forecasts, depending on the length of the training
interval, compared to ∼3% for the similarity forecast (Fig. 8).

▴ Figure 5. Distribution of the cumulative probability of each observed event
count with respect to its own forecast (equation 7). An ideal forecast should give
a uniform distribution. Pink, the nonparametric similarity forecast; blue, the Rea-
senberg and Jones (1989; hereafter, RJ89) method assuming Poissonian variability.
Forecast start and end times are given in the legend.
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▴ Figure 6. Distribution of the cumulative probability of each ob-
served event count with respect to its own forecast (equation 7),
as a function of the size of the database of past events. Distri-
butions combine all nine of the observation and forecast widows
presented in Figure 5.
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An ETAS-based forecast, which includes sequence vari-
ability due to secondary triggering from large aftershocks,
would likely prove more accurate than the more simplistic
RJ89 approach. We nevertheless focus on RJ89 because it is
the closest to being a parametric version of the similarity fore-
cast we have developed here. In future iterations, the similarity
forecast could include information about the magnitude distri-
bution—rather than just the number—of aftershocks so far, in
which case the ETAS model would be the appropriate model
for comparison.

DISCUSSION

Advantages and Disadvantages of the Similarity
Forecast
The proposed similarity forecast is designed to be as close as
possible to model-free. This minimizes the possibility of over-
fitting and of surprise sequences that exceed the model confi-
dence bounds. The approach is limited in that it cannot predict
behavior for sequences outside the realm of previous observa-
tions. This shortcoming can be mitigated by supplying a large
set of past sequences data. Of course, collecting sequences over
a larger area may mask real differences related to the tectonic
environment of the mainshock (Page et al., 2016).

We made no attempt to remove possible background
earthquakes from the catalog for either the similarity forecast
or the RJ89 forecast. Instead, we assume that the background

rate is negligible compared to the aftershock
rate in the first 2 months, within three rupture
lengths of M ≥ 6 mainshocks. Indeed, the mea-
sured background rate in the global stack is one
earthquake per 230 days in the 1–12 months
prior to the mainshocks used in this study
(the one-month limit helps avoid foreshocks).
This background rate is less than 2% of the aver-
age rate during the first week of aftershocks.
However, the measured background rate consti-
tutes about 17% of the rate in the 7–37 days
postmainshock. Some fraction of the variability
in the one-month forecasts may therefore re-
flect statistics of the background rate, and push-
ing the similarity forecast method to longer
time intervals (say a year) will likely require
some consideration of catalog declustering, de-
pending on the intended application.

Other Similarity Metrics
We designed the similarity measure to be
particularly simple: it is based only on the num-
ber of earthquakes observed so far, above a rel-
atively high differential magnitude threshold
(ΔM ≥ −1:5). The use of a smaller magnitude
threshold would likely improve the forecast per-
formance, but would require a lower magnitude
of completeness, which may be hard to guaran-

tee in the early times after a large earthquake.
A simple way to expand the definition of similarity would

be to measure the number of earthquakes at additional differ-
ential magnitude thresholds and combine the respective sim-
ilarity forecasts. Other more sophisticated characteristics may
also be useful such as moments of the interevent time or differ-
ential magnitude distributions, but these would require a more
sophisticated machine learning approach to defining sequence
similarity and optimizing the weighting of the various charac-
teristics. We leave this for future research.

CONCLUSION

We presented a nonparametric similarity-based aftershock
forecasting method, based on the assumption of self-similar
triggering, and a Poisson definition of similarity between
sequences. The forecast is meant to provide a direct answer to
the question: “given N observed aftershocks so far, how many
aftershocks should we expect in some future interval based on
similar past sequences?” Although similarity between sequen-
ces is defined with respect to a Poisson process, the number
forecast is constructed directly from the outcomes of the sim-
ilar sequences, rather than on any parametric model of aleatory
variability.

The forecasting method is as close to model-free as pos-
sible, and serves as a reference forecast for comparison with
more precisely tuned methods such as Reasenberg and Jones
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(1989) or ETAS (Ogata, 1988). Although the
method ignores sequence-specific details such as
the specific rate of the Omori decay, it is guar-
anteed to capture the true variability observed
in past sequences. In general, the forecast per-
formance is comparable to the parametric Rea-
senberg and Jones method, but with a much
lower rate of surprises that exceed the upper
97.5% range of the forecast.

We envision this forecasting approach as
being a useful supplement to existing paramet-
ric methods. Work on ensemble forecasts has
shown that optimal success is typically obtained
by combining multiple models conditioned on
the data in different ways (Marzocchi et al.,
2012). The similarity forecast fills a methodo-
logical gap in the existing suite of parametric
approaches.

The similarity forecast method has the
advantage that the confidence bounds are rep-
resentative of true global variability in sequen-
ces, and overtuning is impossible, assuming the
database is large enough to be representative
of past behavior. The simplified model-free
approach may prove appealing to emergency
managers or nonspecialists who may have little
expertise or confidence in parametric models
but nonetheless wish to explore the dependen-
cies of the forecast on training and forecast
intervals. Readers may generate and explore
similarity forecasts using a Javascript code and
HTML graphical user interface included in
the Ⓔ electronic supplement to this article.

DATA AND RESOURCES

Earthquake data were downloaded from the
U.S. Geological Survey Comprehensive Catalog
(https://earthquake.usgs.gov/data/comcat/)
going back to 1990 (last accessed July 2017).
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APPENDIX

THE EXPECTATION OF LAMBDA FOR A POISSON
PROCESS

Given some observed event countN , what is the expectation of
the Poisson intensity λ? The maximum-likelihood estimate of
λ is just equal to the event countN , but we are interested in the
average value of λ that is consistent with N , assuming λ can
take any value with equal probability. The expectation of λ
given N is defined

EQ-TARGET;temp:intralink-;dfa1;311;601hλjNi≡
Z

∞

0
λf �λjN�dλ; �A1�

which for a Poisson distribution is

EQ-TARGET;temp:intralink-;dfa2;311;543hλjNi �
Z

∞

0
λ
λNe−λ

N !
dλ: �A2�

Multiplying the top and bottom by (N � 1), we get the
convenient result

EQ-TARGET;temp:intralink-;dfa3;311;459hλjNi � �N � 1�
Z

∞

0

λN�1e−λ

�N � 1�! dλ: �A3�

Because the term in the integral is just the Poisson like-
lihood of λ given event count N � 1, it must integrate to 1,
leaving

EQ-TARGET;temp:intralink-;dfa4;311;363hλjNi � �N � 1� �A4�
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