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[1] We present a resolution analysis of an inversion of GPS data from the 2004 M,, 6.0
Parkfield earthquake. This earthquake was recorded at thirteen 1-Hz GPS receivers, which
provides for a truly coseismic data set that can be used to infer the static slip field. We find
that the resolution of our inverted slip model is poor at depth and near the edges of the
modeled fault plane that are far from GPS receivers. The spatial heterogeneity of the
model resolution in the static field inversion leads to artifacts in poorly resolved areas of
the fault plane. These artifacts look qualitatively similar to asperities commonly seen in
the final slip models of earthquake source inversions, but in this inversion they are caused
by a surplus of free parameters. The location of the artifacts depends on the station
geometry and the assumed velocity structure. We demonstrate that a nonuniform gridding
of model parameters on the fault can remove these artifacts from the inversion. We
generate a nonuniform grid with a grid spacing that matches the local resolution length on
the fault and show that it outperforms uniform grids, which either generate spurious
structure in poorly resolved regions or lose recoverable information in well-resolved areas
of the fault. In a synthetic test, the nonuniform grid correctly averages slip in poorly
resolved areas of the fault while recovering small-scale structure near the surface. Finally,
we present an inversion of the Parkfield GPS data set on the nonuniform grid and analyze

the errors in the final model.

Citation: Page, M. T., S. Custédio, R. J. Archuleta, and J. M. Carlson (2009), Constraining earthquake source inversions with GPS
data: 1. Resolution-based removal of artifacts, J. Geophys. Res., 114, B01314, doi:10.1029/2007JB005449.

1. Introduction

[2] Kinematic inversions of seismic data are routinely
used to create models of the temporal evolution of slip on
finite faults. While kinematic inversions remain our best
tool with which to image the earthquake source, they are
problematic because quantifying model error is difficult.
Traditional estimates of goodness of fit to seismic data are
not necessarily reliable measures of model error. Exact
solutions may depend on poorly determined features of the
data, and thus limiting free parameters can improve the
model [Jackson, 1972]. Furthermore, constraints and stabil-
ity criteria are necessary to produce physically meaningful
solutions [Olson and Apsel, 1982]. Still, a stable solution
that matches physical constraints is not necessarily closely
related to the true slip distribution. This is evident in com-
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paring source models for a given earthquake produced by
competing research groups. Alternative models that fit the
data may appear to be virtually uncorrelated (P. M. Mai,
SRCMOD: A database of finite source rupture models, 2007,
available at http://www.seismo.ethz.ch/srcmod).

[3] Because of the limited number of seismic stations
close to the earthquake source, in practice the inverse
problem is often underdetermined. This means that the
available data are not sufficient to uniquely determine every
source parameter [Menke, 1989]. Thus resolution is of vital
importance for the reliability of the final slip model.
Specifically, in this paper, we analyze model resolution,
which is the ability of the inversion to uniquely determine
model parameters. Note that resolution error is a different
type of error than perturbation error, which is the error in the
final model due to errors in the data. Both types of errors
affect the inversion result, and both must be quantified in
order to assess the validity of the final model.

[4] Because the data cannot resolve trade-offs between
model parameters, not all structure seen in the final model is
required by the data. The inversion result depends on
choices made during the inversion process, including grid
size and any smoothing or damping used [e.g., Hartzell,
1989; Hartzell and Langer, 1993; Das and Suhadolc,
1996b; Liu and Archuleta, 2004]. In addition, the near-
field station geometry can strongly affect the solution
[Sarac et al., 1988; Olson and Anderson, 1988]. We will
discuss optimal smoothing and gridding choices that can

B01314 1 of 13


http://dx.doi.org/10.1029/2007JB005449

B01314

remove artifacts in the final model that are due to the
station distribution and inversion parameterization.

[5] Kinematic inversions can employ a variety of differ-
ent data types. In this paper we focus on the resolving power
of Global Position System (GPS) data. GPS data measure the
displacement at a particular point on the surface. The sam-
pling rate of GPS is typically too poor to resolve temporal
details of the earthquake rupture. Thus, unlike dynamic mea-
surements such as accelerograms, which contain informa-
tion about the dynamics of faulting, GPS receivers measure
the static field (the final displacement). GPS data are ideally
suited to invert for the final slip distribution on the fault,
rather than the temporal evolution of slip.

[6] GPS data provide a particularly interesting case to
study, as the static field decays very quickly with distance
from the source. (The static field decays as the inverse
square of the source-to-receiver distance, whereas dynamic
waves decay as the inverse of this distance [44i and Richards,
2002].) Thus, the resolving power of GPS data varies sig-
nificantly for different areas of the fault plane. Synthetic
tests of different data types confirm this [e.g., Delouis et al.,
2002]. Compared to static measurements, seismic waves
can resolve slip that occurs deeper and further from stations.
However, GPS data can still provide important information
about the rupture that dynamic data cannot. Because of low-
frequency noise, accelerometer records typically must be
filtered, which eliminates the possibility of retrieving infor-
mation at 0 Hz. In contrast, GPS data and other static field
measurements are sensitive to the final slip. Thus static and
dynamic measurements provide complementary information
about the rupture process. In the companion paper, Custodio
et al. [2009] describe a two-step inversion scheme that uses
both GPS and strong motion data to image the temporal
evolution of slip.

[7] We use data from the 2004 M,, 6.0 Parkfield earth-
quake to investigate the resolution of GPS inversions. The
details of this earthquake rupture are of particular interest as
the Parkfield earthquake sequence is extremely important
for testing ideas of earthquake recurrence and predictability
[Bakun and Lindh, 1985; Bakun et al., 2005]. Historically,
the Parkfield earthquake series provided the impetus for
formulating the characteristic earthquake hypothesis that
still greatly impacts ideas used in seismic hazard analysis
[Jackson and Kagan, 2006]. By comparing kinematic
inversions of past earthquakes at Parkfield we can determine
to what extent these earthquakes are similar, and thus, to what
extent ideas developed in this region can be extrapolated to
future seismicity on other faults [Murray and Langbein,
2006; Custodio and Archuleta, 2007].

[8] In addition, the quantity of data available at this site
allows us to probe the earthquake source at a finer resolu-
tion than has been possible in less well recorded earthquakes.
Thus the 2004 M, 6.0 Parkfield earthquake provides the
ideal setting to investigate a central issue for earthquake
source physics: the resolving power of kinematic inversions.
To compare the source processes of different earthquakes or
interpret individual source models, a quantitative measure
of the uncertainty associated with different models is needed.
The goal of this paper is to separate robust features of
inversions from artifacts so that kinematic inversions can
provide more reliable, easily interpretable images of the
earthquake process at depth.

PAGE ET AL.: RESOLUTION-BASED REMOVAL OF ARTIFACTS

B01314

[v] We study the impact that nonuniqueness has on the
solution in the case of the Parkfield GPS data inversion. In
section 2, we compute the resolution matrix for an inversion
of the Parkfield GPS data and demonstrate how the spa-
tial variability in the resolution affects the model in a series
of synthetic tests. Section 3 contains an alternative method
using a nonuniform grid that removes artifacts caused by
poor resolution. We show via synthetic tests that the
nonuniform grid outperforms uniform grids of various sizes,
even when smoothing constraints are imposed to destroy
artifacts in the model. We then apply the nonuniform grid to
an inversion of the Parkfield GPS data set in section 4, and
we quantitatively assess the effect of both resolution errors
and data errors on the solution. Finally, in Appendix A, we
demonstrate that bootstrapping, a technique that has been
used in past attempts of model error quantification, fails to
distinguish true structure from artifacts, and in fact gives
incorrect error bounds that are lower in areas where the
model error is large due to poor resolution. This underscores
the importance of the alternative techniques that we present
here.

1.1. Formulation of the Inverse Problem

[10] Kinematic inversions image the earthquake rupture
by exploiting the linearity between slip on a fault plane
and ground motions recorded in the surrounding medium.
In the full spatial and temporal problem the displacement u
recorded by a seismograph on the surface is represented by

ui()_c'7t):/0[ /Z‘Auj(gn')G,-j(fc’—E,t—r)dgdﬂ (1)

where Au is the slip on the fault surface 3, and G is the
Green’s function for a point dislocation and a given crustal
structure.

[11] The above integral, when discretized in space and
time, becomes a linear matrix equation of the form AX = f,
where f is the data vector composed of displacements
measured on the surface, X is the fault slip to be recovered,
and A is the matrix describing the system response (Green’s
function) at the locations where measurements are available.
The goal of the inversion is to find the slip X, given the
known data f and the system response matrix 4. To write
the inverse problem in the linear form 4 ¥ = f, one must
specify the discretization of X a priori; that is, one must
specify the rupture time windows in advance. For the full
inversion in space and time, this can be difficult, because
the temporal problem is nonlinear in rupture velocity (i.e.,
the correct rupture time windows at each fault location are
in fact not known). One must either linearize the problem by
choosing a discretization of ¥ (for example one could
choose a constant rupture velocity, although this is not
required) or by moving to a nonlinear algorithm that may
not necessarily find the global minimum. There are dis-
advantages to either approach. The linearized solution may
not be close to the true solution if extensive nonlinearities
are present, or the nonlinear algorithm may be too compu-
tational intensive to adequately search the parameter space.
The nonlinearity of the dynamic problem complicates the
resolution issue as well; conventional methods [e.g., Backus
and Gilbert, 1968; Wiggins, 1972] for assessing model
resolution fail under strong nonlinearity.
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Figure 1. Horizontal static offsets recorded at GPS sta-

tions during the 2004 M,, 6.0 Parkfield earthquake. The dark
grey solid line shows the horizontal extent of our modeled
fault plane. The surface trace of the San Andreas Fault is
shown in black [Rymer et al., 2006], aftershocks are shown in
light grey [Thurber et al., 2006], and the epicenter of the
earthquake is denoted by the star. Note that the stations are
primarily located near the center of the modeled fault trace.
This results in poor spatial resolution near the edges of the
fault plane and at depth, as shown in Figure 3. Figure 9b
shows the vertical GPS offsets.

[12] As the resolution of nonlinear inversions is difficult
to assess, we focus on the static inverse problem in this
paper. GPS data give final displacements, which eliminates
the time component in equation (1) and renders the problem
linear. With static GPS data, we can only image the final slip
on the fault plane. The linearity of the static inverse problem
allows us to describe the resolving power of the Parkfield
GPS data set quantitatively.

[13] We find the minimum-length least squares solution
of our inverse problem, 4AX = f, using the Moore-Penrose
Generalized Inverse of 4, A. Also termed the ‘“natural”
inverse, 4 gives one of the least squares solutions (it
minimizes the data residual ||[4X — f||,). In addition, the
solution is termed minimum length because it is the least
squares solution with the smallest solution length (||X||» is
minimized). _

[14] We can find A4 using singular value decomposition
(SVD) [Nash, 1990]. Initially, we find the SVD of 4:

A=UAVT, (2)

where U and V are orthogonal and A is diagonal with ele-
ments \;. The singular values )\; are unique for a given A.
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Once A is decomposed in this manner, the generalized
inverse of 4 is given by

if \; > 0.

~ —17sT -y — )‘i;17
A=VA'UT, where(A )ﬁ—{ 0. ifA;—0. 3)

While there is some freedom in the choice of U and V] the
generalized inverse A is unique. Our preferred solution
satisfies x = Af.

[15] Notice that the preferred solution given by SVD
eliminates the parts of the solution that correspond to zero
singular values of 4 (by setting (A~'); = 0 when the
singular value )\; = 0). This eliminates unstable parts of
the solution, as zero singular values correspond to vectors
in the model space (the solution space) that have no effect
on the data. As such, the data can place no constraint on the
weight given to zero singular vectors in the solution. The
Moore-Penrose solution gives these unconstrained vectors
zero weight. This is why the solution is minimum length,
as adding unstable vectors to the solution does not improve
the data residual but does increase ||X||,. Using the Moore-
Penrose inverse achieves the same result as a small amount
of damping, which also removes small singular vectors from
the solution.

1.2. Inversion Parameters

[16] Our modeled fault plane and the surrounding GPS
stations are shown in map view in Figure 1. We use 1-Hz
GPS data from 13 stations located close to the fault. The GPS
displacements were obtained from Johnson et al. [2006].
The 1-Hz data were processed according to the method of
Larson et al. [2003] with added modified sidereal filtering
[Choi et al., 2004]. Figure 2a shows displacement wave-
forms recorded at the GPS station HOGS during the 2004
Parkfield earthquake. Figure 2b shows the ground velocity
obtained by differentiation of the 1-Hz GPS displacement
waveform. For comparison, we also plot the velocity
waveform (computed by integration of the accelerogram)
recorded at the nearby strong motion station PHOB (Figure
2¢). The GPS waveform is strongly aliased, i.e., the GPS
sampling rate is too low to record adequately the pulses of
ground motion of the Parkfield earthquake. For this reason,
we do not use GPS waveforms in the inversion. Rather, we
only use GPS coseismic offsets, which are inferred from the
continuous displacement time series. We compute the
coseismic offsets by subtracting the average ground posi-
tions 40—100 s after the earthquake from the average
ground positions 5—100 s before the earthquake. This
choice of time intervals excludes the passage of the larg-
est-amplitude seismic waves and yields static offsets that are
truly coseismic. It is especially important to obtain truly
coseismic offsets for the Parkfield earthquake given that
strong postseismic deformation started immediately after
the earthquake [Rymer et al., 2006, Langbein et al., 2006;
Johanson et al., 2006; Johnson et al., 2006].

[17] We assume the rupture occurs on a fault plane 40 km
in the strike direction x13.65 km downdip, in accordance
with aftershock locations (grey dots, Figure 1) [Thurber et
al., 2006]. Source parameters are specified on a grid with
subfaults (discretized areas of the fault plane) that are 2 km
along strike by 1.95 km downdip, and then interpolated to a
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Figure 2. Horizontal components of ground motion
recorded at colocated stations HOGS (GPS station) and
PHOB (strong motion, SM, station). (a) Displacement wave-
forms recorded at the 1-Hz GPS station HOGS. (b) Velocity
waveforms obtained by differentiation of the GPS waveforms
recorded at HOGS. (c) Velocity waveforms obtained by
integration of the accelerograms recorded at strong motion
station PHOB. By comparison with the strong motion wave-
forms, we conclude that the sampling rate of the GPS data is
too low to accurately record the pulses of ground motion of
the Parkfield earthquake. For this reason we do not use GPS
waveforms in our inversion. Instead, we use only GPS static
offsets, which we infer from the continuous GPS data.

500 m x 487.5 m grid before convolution with Green’s
functions. We assume that the fault strikes 140° SE and dips
87° SW, and the ruptured area is deeper than 0.5 km (that
is, there is no surface rupture). The velocity structure is
approximated by a 1D bilateral model [Liu et al., 2006] with
slower material to the northeast side of the fault [Thurber et
al., 2003, 2006]. This velocity structure provides a good
approximation to the true three-dimensional structure,
which has been shown to be less important for static
problems [Wald and Graves, 2001]. Following Liu et al.
[2006], Green’s functions for this layered velocity structure
are computed using the frequency—wave number method
[Zhu and Rivera, 2002].

[18] We use synthetic tests to investigate the resolution
errors present in a typical formulation of the Parkfield GPS
inversion. Resolution errors are due to the underdetermined
nature of the inversion and are independent of data errors
(also termed perturbation errors), which we do not focus on
in this work. To isolate the effects of resolution errors on the
inversion result, we do not perturb the data in our synthetic
tests. This allows us to use the generalized inverse solu-
tion with no additional damping or smoothing. In our final
inversion of the Parkfield GPS data set, we do sample the
actual GPS data errors via a Monte Carlo procedure, as the
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nonuniform grid that we introduce allows both resolution
and data errors to be taken into account. This is explained
further in section 4.

2. The Parkfield GPS Resolution Matrix

J19] Recall that our solution satisfies x = Af = A(4Ax) =
(AA)x. The matrix R = AA is the resolution matrix, which
maps the true solution to the inversion result. If the
resolution matrix equals the identity matrix, then the esti-
mated model is perfectly resolved. For inverse problems
that are underdetermined, there are insufficient data to
resolve all the model parameters. Hence, the estimated
model parameters are actually averages of the true model
parameters [Menke, 1989]. The ith row of the resolution
matrix shows how the ith model parameter is mapped to
other estimated model parameters by the inversion process.
In most geophysical problems, as in ours, there is a natural
spatial ordering of model parameters. (In our problem, the
entries of X represent slip on various subfaults, which are
arranged spatially on a two-dimensional grid.) In these
cases, a length scale can be determined from each row of
R, and this resolution length gives the distance over which
slip from a subfault (gridded area of the fault) is “smeared
out” by the inversion. For example, if there is a one-
dimensional spatial ordering of model parameters (if we
were only inverting for offsets on the fault trace), then if we
were to plot the entries for a particular row of the resolution
matrix, we would expect something similar to a Gaussian
centered at the diagonal element. In our case, the model
parameters have a two-dimensional spatial ordering, so in
fact, we might expect to see the elements in a given row to
resemble a two-dimensional Gaussian when plotted onto
their corresponding subfaults. The resolution length for a
given subfault (which may be different in the along-strike
direction and downdip direction) can be found by explicitly
fitting a Gaussian distribution to the elements of the row of
R corresponding to that subfault, or alternatively, estimat-
ing the spread of the Gaussian from the magnitude of the
diagonal element (assuming that the Gaussian normalizes to
unity).

[20] The Parkfield GPS inverse problem, when gridded
into 2 km x 1.95 km subfaults, is severely underdetermined.
There are 13 static GPS stations, with 3 components each,
thus giving 39 data points to invert. However, with source
parameters located every ~2 km, there are 168 subfaults.
Solving for rake rotation in addition (allowing slip to occur
in either the strike or the dip direction) doubles the number
of free parameters, giving 336 model parameters. In either
case, the null space of A4 is large, which means there are
many vectors in the model space that are unconstrained by
the data. Thus, we can only solve for averages of the model
parameters, even if the data and Green’s function contain
no errors.

[21] As shown in Figure 1, the GPS stations in the
Parkfield region are primarily located in the middle of the
fault section. Thus we expect resolution to be poor near
the northwest and southeast edges of the modeled fault
plane. This is confirmed in Figure 3, which shows the
diagonal elements of the Parkfield GPS resolution matrix
mapped onto the fault plane. The diagonal elements show
how much slip in a particular subfault is correctly mapped
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(a) Diagonal Elements of Resolution Matrix (No Rake Rotation)
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Figure 3. The diagonal elements of the Parkfield GPS
resolution matrix plotted on the fault plane. A value of unity
indicates perfect resolution for a particular subfault. (a) In
the case where slip is assumed to occur in the along-strike
direction only, there are 168 model parameters (compared to
39 data points). The problem is severely underdetermined,
and resolution is particularly poor near the edges of the fault
and at depth, far from the GPS stations. (b) and (c) Illus-
tration of how the resolution suffers when rake rotation is
allowed. Allowing rake rotation doubles the number of free
parameters in the inversion.

to that subfault by the inversion; thus, a value of unity
indicates perfect resolution. Given the Parkfield GPS data,
slip in a small region of the center part of the fault and near
the surface is well resolved. Slip placed by the inversion
elsewhere on the fault has large spatial uncertainties. When
rake rotation is also solved for, as in Figures 3b and 3c, the
problem becomes even more underdetermined and resolu-
tion worsens. This can be seen graphically, as the well-
resolved areas (the red areas) are substantially smaller in
Figures 3b and 3c than in Figure 3a.

[22] Even though the resolution is near zero in many of
the deeper subfaults, this does not mean that the data
contain no information about slip at depth. Rather, slip is
unlikely to be recovered in the correct spatial location. This
is because the data place no constraint on unstable slip pat-
terns in the model space that correspond to small-scale struc-
ture at depth.

[23] The diagonal elements of the resolution matrix are
a simple measure of the resolution of each subfault, but
neglect subfault correlations. The off-diagonal structure in R
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affects the inversion result as well. To aid the reader in
visualizing this structure, we present in Figure 4 three rows
of the resolution matrix, corresponding to subfaults with
varying resolutions. While what is being shown are rows of
the resolution matrix, we have plotted the elements in these
rows two-dimensionally, because each element corresponds
to a particular subfault on the fault plane. A single row of
the resolution matrix shows the result of the following
synthetic test: data are generated for slip (with a magnitude
of one) for a single subfault (shown in the white box in
Figure 4); these data are then inverted using the Moore-
Penrose inverse. The extent to which the final image “smears
out” the input slip to neighboring subfaults is indicative of
the resolving power of the data for that subfault. Figure 4a
shows that in well-resolved regions of the fault plane, the
inversion maps the slip to the correct subfault. Slip from
deeper subfaults (see Figures 4b and 4c) is “smeared out”
by the inversion over progressively larger areas of the fault
as depth increases.

[24] Because of structure in R, it is possible to obtain
structure even by inverting a random field. In Figure 5, we
show a synthetic test to probe the resolving power of the
Parkfield GPS data set. Synthetic data are generated from an
input distribution of random, uncorrelated slip (with uniform
probability between zero and one for both the along-strike

(a) Row of Resolution Matrix Corresponding to Well-Resolved Subfault
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Figure 4. Rows of the resolution matrix corresponding
to three sample subfaults are mapped onto the fault plane.
The row shown corresponds to the subfault that is outlined
in white. (a) For a well-resolved subfault, all of the slip is
recovered in the correct location. (b) and (c) However, for
less resolved subfaults, some of the slip is mapped to other
subfaults. Note that the color scale is different in each plot.
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(a) Input Slip Model (Uncorrelated Random Field)
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Figure 5. Because of structure in the resolution matrix, it
is possible to obtain structure by inverting a random field.
(a) The slip field in this synthetic test is uncorrelated noise,
(b) but the inversion result shows apparent “asperities” that
are due to off-diagonal structure in R rather than structure
in the data. Off-diagonal structure in the resolution matrix R
can play a large role in apparent heterogeneity that appears
in the inversion result. (¢) The summed rows of R for an
inversion with rake rotation is shown for comparison. Note
that Figure 5b correlates strongly to Figure Sc, showing that
inverted structure can be due to structure in R, rather than
structure in the data.

and the updip direction) at each subfault. The slip model
inverted from the synthetic data shows apparent structure
not present in the original slip model. This happens because
of structure in the resolution matrix. The rows of R do not,
in general, sum to unity. This means that some slip is lost in
the mapping of the true solution x to the final model X; thus
the inversion does not preserve moment without an addi-
tional constraint. Even with this constraint, however, addi-
tional structure in R can allow slip to be preferentially
mapped to certain subfaults rather than others. The under-
determined nature of the inverse problem leads to spatial
uncertainty in slip. The inversion “smears out” slip from its
true location to surrounding subfaults. Often there is a
spatial bias in this process due to structure in R. The
elliptical (rather than circular) shape of the resolution
kernels shown in Figure 4 shows this bias. As a result,
some subfaults have more slip incorrectly mapped to them
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in the inversion process than other subfaults. This leads to
spurious structure in the final inverted image. It is common
for resolution kernels to have this spatial bias [Harris and
Segall, 1987; Du et al., 1992].

[25] While the input slip model in this particular synthetic
test is physically unrealistic, this test demonstrates an
important point: Because inversions are stabilized and
smoothed, they may return apparently “sensible” results
even if the data or Green’s functions are not at all sensible.
This test contains no perturbation error, and in fact, the
inversion result fits the data perfectly. In underdetermined
problems, data fit is not a good measure of model resolu-
tion. With enough free parameters, one can always fit the
data; but this does not mean that the model error is small.

[26] The off-diagonal structure of R can be visualized
by plotting the summed rows of R onto the fault plane, as
shown in Figure 5c. It is no accident that Figure 5b and 5c
are highly correlated. The resolution matrix as a whole
contains all the information about how the true slip model is
mapped to the inversion result. Each row provides an image
of how slip in one subfault is “smeared out” by the
inversion. The inversion will not recover the correct solu-
tion because of the lack of data; furthermore, damping of
unstable modes results in slip accumulation in certain areas
of the fault plane. This can be visualized by looking at the
summed rows of the resolution matrix. These summed rows
show which subfaults tend to have more slip incorrectly
mapped to them. The structure seen in the output slip model
is a function of the Green’s function, and thus the station
locations, rather than structure associated with the seismic
source. The resolution matrix explains this finding, which
has been seen in synthetic tests for other inverse problems
as well [Sarad et al., 1988; Olson and Anderson, 1988].

[27] Results from another synthetic test are shown in
Figure 6. The input model in this test is more physically
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Figure 6. (a) A synthetic test showing the resolving power
of the Parkfield GPS stations for a rectangular slip patch in
the input model with uniform slip only along strike. (b) The
inversion result shows strong spurious structure because the
problem is very underdetermined.
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(a) Input Slip Model (Checkerboard Test) Sl
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Figure 7. (a) We generate data from a synthetic slip model (a checkerboard test) and invert the data onto
three different grids. (b) With a small, uniform grid, the inverse problem is severely underdetermined.
While the small-scale structure is correctly recovered in the well-resolved portion of the fault near the center
of'the fault trace, spurious structure is generated at depth. (c) With a larger uniform gridding, the problem is
not underdetermined. However, structure near the surface is lost, and spurious structure is again generated at
depth in part because the large subfaults near the surface are removing structure that is within the resolution
length of the problem. (d) With a nonuniform grid with spacing that approximates the local resolution
length on the fault plane, structure is adequately recovered in well-resolved portions of the fault, and
spurious slip is avoided in poorly resolved areas. This inversion parameterization correctly averages
small-scale structure in poorly resolved areas while recovering small-scale structure near the surface.

realistic than the test shown in Figure 5 but yields a similar
result. Here the input model has uniform slip in the strike
direction only, but as the inversion allows for rake rotation
the problem is extremely poorly constrained. The resulting
slip model obtained by the inversion shows structure, not
present in the input model, that correlates strongly with
structure in the off-diagonal elements of the resolution
matrix in the strike direction.

[28] We also tested the ability of moment minimization to
limit spurious slip. (The generalized inverse minimizes the
L, norm of the slip field, whereas moment is proportional to
the L; norm of the slip field.) We find that least squares
solutions with a moment minimization constraint have more
spurious heterogeneity than the generalized inverse solution
gives. The results of a synthetic test are shown in Figure S1
in the auxiliary material.'

[29] In practice, the inverted slip model will contain
true structure from the data and artificial structure due to
resolution problems. While consideration of the structure of
the resolution matrix may help one interpret the final model,
it does not provide a definitive means to determine which
features are robust. Structure in well-resolved areas is cer-
tainly more trustworthy than structure elsewhere, but in GPS
inversions even large-scale features at depth may not be an
accurate reflection of the true slip field. In Appendix A, we
demonstrate that bootstrapping fails to determine which
slip features are reliable. Improving the resolution of source

'Auxiliary materials are available in the HTML. doi:10.1029/
2007JB005449.

models requires a spatially heterogeneous approach, which
we discuss in section 3.

3. Optimal Gridding of the Fault Plane

[30] As we have seen, formulating the inverse problem in
a way that is severely underdetermined can lead to spurious
structure in the final model. In the inversion of Parkfield
GPS data, the resolution is highly spatially variable, with a
much smaller resolution length near the top and center of
the fault plane. We can improve the model resolution by
making the subfaults larger in poorly resolved areas. A
nonuniform grid with cells that match the local resolution
length on the fault plane simultancously maximizes the
recoverable information in well-resolved areas of the fault
while avoiding spurious structure in poorly resolved areas.

[31] We use a checkerboard synthetic slip model (Figure 7a)
to generate data at the Parkfield GPS stations, and invert it
with different subfault parameterizations to test how the
gridding of the fault plane can affect the inversion result. As
Figure 7b demonstrates, when we use a small uniform grid
of ~2 km, information from the well-resolved portion of the
fault plane is recovered, but spurious structure is generated
elsewhere. Figure 7c shows results using a large approxi-
mately uniform grid such that the inverse problem is not
underdetermined. Here information from the well-resolved
portion of the fault plane is lost; also spurious structure is
generated at depth because the inversion is sensitive to
structure at a smaller scale than the grid size near the surface
allows. Finally, in Figure 7d we show the inversion result
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using a nonuniform grid in which the scale of the subfaults
was chosen to approximate the local resolution length on
the fault plane. In this optimal gridding of the fault, we see
that information from the well-resolved portion of fault
plane is recovered, and in other areas of the fault the
inverted slip represents a spatial average (in the larger sub-
faults, the recovered slip is near 0.5, which is the average
slip of the input checkerboard model in a subfault of that
size). No spurious, larger-scale structure is generated. This
is an optimal result: the inversion on the nonuniform grid
resolves small-scale features in areas where they can be
recovered without adding artifacts elsewhere.

[32] This irregular grid is similar to nonuniform grids
presented in other static inversions, which also seek to more
closely match grid size and resolution length [Sagiva and
Thatcher, 1999; Pritchard et al., 2002; Simons et al., 2002].
A similar multiscale inversion approach is discussed by
Uchide and Ide [2007]; it jointly performs the inversion on
three uniform grids of different sizes with constraints to
ensure that they are mutually compatible. An iterative algo-
rithm for creating a grid to match the local resolution length
is described by Lohman and Simons [2005], who use an
irregular grid for InNSAR data down sampling based on data
resolution (rather than model resolution, as we discuss in
this work).

[33] Smoothing, of course, can help to eliminate spurious
structure in poorly resolved inversions. None of the inver-
sions shown in Figure 7 contain smoothing (except for the
larger subfault size in the Figures 7c and 7d, which in a
sense is smoothing with a boxcar function). While spatially
uniform smoothing in the regular grid inversion shown in
Figure 7b eliminates spurious structure, it also eliminates
true structure in the well-resolved portion of the fault. The
nonuniform grid eliminates this trade-off by accounting for
the spatially varying resolution length in the structure of
the grid itself. Spatially variable smoothing can achieve a
similar result. Smoothing explicitly via the grid has the
advantage that the resolution length scale is readily apparent
in the final image.

4. Inversion of Parkfield GPS Data

[34] We perform a traditional inversion of the Parkfield
GPS data on a uniform 2 km x 1.95 km grid and compare
this result to an inversion performed on the nonuniform grid
shown in Figure 7d. We weight the data in proportion to the
inverse square of the data errors given by the GPS process-
ing, which are 1.49 mm for the east component, 2.97 mm
for the north component, and 3.77 mm for the up compo-
nent of displacement.

[35] Unconstrained inversions of these data show back-
slip, which is unphysical. This may be a sign of Green’s
function errors (i.e. deficiencies in the velocity structure), as
we did not see backslip in synthetic tests. To prevent back-
slip, we use the nonnegative least squares (NNLS) algo-
rithm of Lawson and Hanson [1974]. The NNLS algorithm,
unlike the generalized inverse solution, is not minimum
norm and is not inherently smooth. Therefore we append
Laplacian smoothing constraints to the system of equations
[Hartzell and Heaton, 1983] and choose the amount of
smoothing via finding the corner in the data residual versus
model roughness trade-off curve [Harris and Segall, 1987].
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In addition, we apply a moment constraint to match the
observed moment of 1 x 10'® Nm [Langbein et al., 2005].
This has the effect of preventing the slip from reaching the
bottom edge of the modeled fault plane. With a moment
constraint applied, edge constraints (constraining the slip to
go to zero at the edges of the fault plane) were not needed.
Slip is assumed to be purely right lateral in agreement with
past inversions [Custodio et al., 2005; Liu et al., 2006;
Murray and Langbein, 2006; Johanson et al., 2006], which
reduces the number of free parameters and improves reso-
lution considerably. Thus the resolution in this inversion is
similar to that shown in as Figure 3a, rather than Figures 3b
and 3c.

[36] Figures 8a and 8b show the slip model from the
uniform grid inversion and the associated perturbation error
from a Monte Carlo sampling of the errors in the GPS data.
For the Monte Carlo error sampling, we generate 1000 per-
turbed sets of GPS data. Each set of perturbed data is a
random realization of the data errors, which we assume are
uncorrelated and Gaussian, with standard deviations as
given by the GPS processing. We then invert the perturbed
data sets and generate a suite of slip models. Next, we
compute the standard deviation of slip for each subfault
using the range of slips produced for that subfault from the
suite of slip models. It should be noted that this data error
is only part of the error in this model because the resolu-
tion error is not adequately captured in this uniform grid
inversion.

[37] The inversion on the nonuniform grid, as shown in
Figure 8c, captures the resolution error in the gridding of
the fault plane. The perturbation error in this model is
shown in Figure 8d, which we computed in the same way
as for the regular grid. Thus both types of uncertainty have
been captured in this final model. The maximum slip in the
two models is comparable, as is the variance reduction,
which is 90% for the uniform grid inversion and 89% for
the nonuniform grid inversion. This small difference in
variance reduction is despite the fact that the uniform grid
inversion employs significantly more free parameters. The
perturbation error in the nonuniform grid inversion is
slightly higher than in the regular grid inversion, which
demonstrates the trade-off between resolution and variance
[Menke, 1989]. The fit to the data is similar in both
inversions, and is shown for the nonuniform grid inversion
in Figure 9.

[38] In our view, the nonuniform grid inversion of the
Parkfield GPS data is superior because it assesses both
resolution and perturbation errors. In addition, it is less
likely to contain artifacts because the larger subfaults at
depth limit the number of free parameters. In the companion
to this paper, the nonuniform grid GPS inversion results are
used to constrain the final slip in an inversion of the strong
motion data from the 2004 M,, 6.0 Parkfield earthquake
[Custodio et al., 2009].

5. Conclusion

[39] Underdetermined inversions do not have enough
data to constrain all of the model parameters. When it is
not possible to obtain more data, the way to remedy this
problem is to limit the number of free parameters. As we
have shown, a surplus of free parameters leads to artifacts
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Figure 8.
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(b) Standard Deviation (cm) of Regular Grid Solution
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Inversion of Parkfield GPS data (a) on a regular grid, and (c) on an irregular grid, with (b

and d) associated perturbation errors found via Monte Carlo sampling of GPS errors. Both inversions
give similar fits to the data with a variance reduction of 89—-90%. The fit to GPS data for the irregular

grid inversion is shown in Figure 9.

in the final slip model. In poorly resolved regions, these
artifacts can look very similar to slip asperities. These
artifacts can even appear to be robust features, because they
depend upon the station distribution, which does not change
even as other model assumptions are varied or the data
values are perturbed. Thus it is important to limit the
number of free parameters in inversions. While extra free
parameters can improve the data fit, we have shown that the
data fit it not a good measure of model error, which is what
modelers want to minimize.

[40] Static inversions such as GPS inversions have a
highly nonuniform resolution in space. Thus, to prevent
information in well-resolved regions from being lost, free
parameters must be limited via a spatially nonuniform
approach. The ideal solution would have no resolution
artifacts, and would still resolve source structure at the
finest scale possible. We have presented a method that
achieves these goals. By employing a nonuniform grid, free
parameters are limited in regions where the model param-
eters are most underdetermined. This solution allows for
artifacts to be removed from regions with poor resolution,
while preserving information recoverable from areas with
superior resolution.

[41] Two types of uncertainty must be quantified in
kinematic inversions: resolution error and perturbation error.
These types of error differ in character, and therefore require
different types of quantification. Perturbation errors are
errors in the solution resulting from errors in the data. They
can be captured through Monte Carlo sampling, and can be
described in terms of error bounds on the slip at each
subfault (as well as subfault-to-subfault correlations, which
are more difficult to describe concisely). Resolution errors,
which are due to insufficient constraints and data, cannot be
captured via error bounds because in a strict mathematical
sense they are unbounded (that is, the null vectors can be of
any magnitude without affecting the data). Because resolu-

tion error is best described in terms of a length scale, it is
appropriate to capture this type of error in the grid itself.
We have shown that a nonuniform grid, with grid spacing
equal to the local resolution length, can capture this type of
uncertainty, and thus prevent spurious structure from con-
taminating the solution. Subsequent Monte Carlo sampling
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Figure 9. The fit to GPS data from the nonuniform grid
inversion. Data is shown in black, and synthetics are shown
in red. The variance reduction is 89%, compared to 90% for
the inversion on the uniform grid.

9 of 13



B01314

of data errors on the nonuniform grid can allow both types
of errors to be quantified, leading to a more easily inter-
preted slip model.

[42] The impact of other types of perturbation error on
this inversion have not been included, but merit further
study. Errors in the Green’s function due to incorrect veloc-
ity structure or fault location and geometry are highly non-
linear, and can change the final slip model significantly
[Das and Suhadolc, 1996a; Sekiguchi et al., 2000]. A
thorough quantification of errors in kinematic inversions
will allow for the determination of robust features in the
models, which will allow researchers to draw firmer con-
clusions from this information.

Appendix A: Bootstrapping in Underdetermined
Problems

[43] Previously we showed that in an underdetermined
inversion the slip model could contain artifacts due to
structure in R (and thus A4) rather that structure in the data.
In this appendix we investigate the ability of a commonly
used error estimation method, bootstrapping, to distinguish
artifacts from true structure.

(a) Input Slip Model (Uncorrelated Random Field) Slip

Depth (km)

0 10 20 30 40
Distance along Strike (km)

(b) Mean Output Slip Model
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(c) Standard Deviation in Slip Model Slip
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Figure Al. Bootstrapping fails to give the correct error
bounds for underdetermined problems. (a) Here we use a
random synthetic input slip model without any rake rota-
tion. (b) The average inversion result from the bootstrapping
analysis contains spurious structure. (c) Also, 60% of the
subfaults fall outside of the 95% confidence bounds given
by the bootstrapped inversions.
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(a) Input Slip Model ("Worst Case" Scenario)
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Figure A2. Here we show a “worst case” scenario for

inverting an underdetermined problem. We formulated a
synthetic test that exploits the structure in R and places slip
in regions with little off-diagonal weight in the resolution
matrix. (a) The synthetic input slip model. (b) The inversion
tends to put high slip in regions where the input model had
little slip, which is nearly the converse of our input model.
(c) Even though this example has a smoother input model
than the example shown in Figure A1, bootstrapping again
severely underestimates the standard deviation of model
parameters.

[44] In Figure Al, we demonstrate that a random field
input again yields structure, this time for an inversion
without rake rotation, which is better resolved than the
inversion with rake rotation shown in Figure 5. A boot-
strapping analysis is a resampling plan that consists of
inverting data sets that are randomly resampled from the
original, complete data set [Efion, 1982]. The length of each
bootstrapped data vector equals the length of the original
data vector, but as each of the 39 data points are chosen
randomly, some data are included multiple times while
others are omitted. Then each of the bootstrapped data vec-
tors are inverted separately to create a family of slip models.
If every slip model shows a particular feature, it is assumed
that that feature is robust. We invert 1000 bootstrapped data
sets and calculate statistics on the resulting slip models.
Figure Alb shows the average slip values obtained, and
Figure Alc shows the standard deviation of slip for each
individual subfault.
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b) Percentage of Subfaults Missed by Bootstrap Error Bounds

o ©
o)
8.693,008,8 o3
_éogo °°§§99°°88809@°00 R
088 ° 8 008 8 @@g@ 88 00
i o [e3¢) o _o
8%808833 o gcg
o o © @Bog 888
15 20 25 30 35 40 45 50

Number of stations
c) Correlation between Bootstrap Standard Deviation and Model Error

Number of stations

Figure A3. Bootstrap error bounds improve as more GPS stations are added to the data set. (a) Black
dots show the locations where synthetic Green’s functions were calculated for this test (i.e., locations of
synthetic stations), with the surface projection of the modeled fault plane shown for reference. (b) The
percentage of subfaults that are outside the 95% error bounds given by bootstrapping falls as the number
of stations increases; however, even with 50 GPS stations, approximately 35%, rather than 5%, of sub-
faults are outside the error bounds. (c) The correlation between the bootstrap standard deviation and the
true model error is shown. Unfortunately, this correlation is negative when the number of stations is
small, which means that the subfaults that in actuality have the largest errors are ascribed the smallest

bootstrap variances.

[45] Bootstrapping substantially underestimates the un-
certainty for this synthetic model, in part because slip is
correlated on a smaller scale (the subfault size) than the
resolution length for much of the fault. In fact, approxi-
mately 60% of the subfaults fall outside of the 95%
confidence window given by the bootstrapping analysis.
Bootstrapping fails because the null spaces in the individual
bootstrapped inversions are highly correlated. As such,
certain unstable slip distributions (corresponding to zero
singular values of A) are given zero weight in every boot-
strapped inversion. The uncertainty stemming from this
poor resolution is never sampled.

[46] In addition to substantially underestimating the un-
certainty in the model parameters, the bootstrapping anal-
ysis also fails to capture the spatial distribution of model
error. In fact, there is a negative correlation (» = —0.1819)
between the absolute model error and the standard deviation
given by the bootstrapping analysis. This means that sub-
faults given a lower variance by the bootstrapping analysis
are more likely to have larger absolute errors.

[47] In Figure A2, we show a “worst case” inversion
scenario exploiting the structure of R. The input slip model
in this synthetic test has low slip in subfaults with high off-
diagonal elements in R, i.e., in subfaults where slip tends to
be mapped due to the structure of R. As a result, the inverted
model appears to be closer to the complement of the true
slip model. As before, the bootstrapping analysis fails to
fully capture the model uncertainty. Despite the input slip
model being spatially smoother in this example, 57% of the
subfaults fall outside of the 95% confidence window given
by bootstrapping.

[48] We probe the sensitivity of the bootstrap test to the
number of GPS stations by computing Green’s functions for
an additional 50 hypothetical stations (shown in Figure A3a)
located close to the fault trace. We then perform bootstrap
analyses of GPS inversions with sets of these synthetic GPS
stations, to test how the bootstrapping error bounds scale
with the amount of available data. The results, shown in
Figures A3b and A3c, have considerable scatter due to the
station selection and the slip field used in the synthetic test,
both of which are chosen randomly. Still, it is clear that the
bootstrapping bounds perform better as the number of
stations increases. However, even with 50 GPS stations,
approximately 30—40% of subfaults fell outside of the 95%
confidence intervals given by the bootstrapping analysis
(rather than the ideal 5%). Also, the standard deviation
given by the bootstrapping analysis is negatively correlated
with the true model error per subfault when the number of
stations is less than approximately 43—46. This means that
one needs nearly 50 stations to have a good idea of which
subfaults are more likely to have larger errors (that is, for
the spatial information provided by the bootstrapping anal-
ysis to be useful). It should be noted that these results are
dependent on the number of model parameters, which in
this case is 168 subfaults. Even with 50 GPS stations, there
are 150 data points, and the problem is slightly under-
determined. Thus we see that for underdetermined inverse
problems, bootstrapping error bounds are far too small; also,
the spatial information provided by bootstrapping is not
helpful unless there are nearly as many data points as model
parameters.
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[49] This analysis does not mean that bootstrapping fails
to provide reasonable error bounds for overdetermined
inversions. Bootstrapping is designed for data sets that con-
tain redundant information. Poorly constrained inversions
are not good candidates for this procedure, and bootstrap-
ping can easily give a false picture of the model error. Boot-
strapping fails to capture resolution error, the model error
that is due to the infinite class of solutions present in an
underdetermined inversion. This failure occurs because the
null space of 4 is never sampled by the bootstrapping, and
the null space is in fact the source of the resolution error.

[s0] The jackknife method is a similar resampling tech-
nique that omits one data point with each resampling. This
also fails to quantify resolution error because the null space
is never sampled.

[51] Acknowledgments. We would like to thank Peng-Cheng Liu for
use of his Green’s function and kinematic inversion code. M.T.P. acknowl-
edges the support of a LEAPS fellowship as part of an NSF GK-12 grant to
UCSB. In addition, this work was supported by the James S. McDonnell
Foundation (grant 21002070), NSF grant DMR-0606092, the David and
Lucile Packard Foundation, and USGS NEHRP grant 06HQGR0046. S.
Custddio acknowledges a Ph.D. fellowship from Fundagdo para a Ciéncia e
Tecnologia (Portuguese Foundation for Science and Technology). This work
was supported by a grant from the National Science Foundation EAR-
0512000. This research was supported by the Southern California Earthquake
Center. SCEC is funded by NSF Cooperative Agreement EAR-0106924
and USGS Cooperative Agreement 02HQAGO0008. This is SCEC contri-
bution 1127 and ICS contribution 0812.

References

Aki, K., and P. G. Richard (2002), Quantitative Seismology, 2nd ed., Univ.
Sci. Books, Sausalito, Calif.

Backus, G., and F. Gilbert (1968), The resolving power of gross Earth data,
Geophys. J. R. Astron. Soc., 16, 169—-205.

Bakun, W. H., and A. G. Lindh (1985), The Parkfield, California, earth-
quake prediction experiment, Science, 229, 619-624, doi:10.1126/
science.229.4714.619.

Bakun, W. H., et al. (2005), Implications for prediction and hazard assess-
ment from the 2004 Parkfield earthquake, Nature, 437(13), 969—-974,
doi:10.1038/nature04067.

Choi, K., A. Bilich, K. M. Larson, and P. Axelrad (2004), Modified sidereal
filtering: Implications for high-rate GPS positioning, Geophys. Res. Lett.,
31, 122608, doi:10.1029/2004GL021621.

Custodio, S., and R. J. Archuleta (2007), Parkfield earthquakes: Character-
istic or complementary?, J. Geophys. Res., 112, B05310, doi:10.1029/
2006JB004617.

Custaddio, S., P. Liu, and R. J. Archuleta (2005), The 2004 M,,6.0 Parkfield,
California, earthquake: Inversion of near-source ground motion using
multiple data sets, Geophys. Res. Lett., 32, 123312, doi:10.1029/
2005GL024417.

Custodio, S., M. T. Page, and R. J. Archuleta (2009), Constraining earth-
quake source inversions with GPS data: 2. A two-step approach to com-
bine seismic and geodetic data sets, J. Geophys. Res., 114, B01315,
doi:10.1029/2008JB005746.

Das, S., and P. Suhadolc (1996a), On the inverse problem for earthquake
rupture: The Haskell-type source mode, J. Geophys. Res., 101, 5725—
5738.

Das, S., and P. Suhadolc (1996b), On the inverse problem for earthquake
rupture: The Haskell-type source model, J. Geophys. Res., 101, 5725—
5738.

Delouis, B., D. Giardini, P. Lundgren, and J. Salichon (2002), Joint inver-
sion of InSAR, GPS, teleseismic, and strong-motion data for the spatial
and temporal distribution of earthquake slip: Application to the 1999 zmit
mainshock, Bull. Seismol. Soc. Am., 92(1), 278—-299.

Du, Y., A. Aydin, and P. Segall (1992), Comparison of various inversion
techniques as applied to the determination of a geophysical model for
the 1983 Borah Peak earthquake, Bull. Seismol. Soc. Am., 82(4), 1840—
1866.

Efron, B. (1982), The Jackknife, the Bootstrap and Other Resampling
Plans, Soc. for Ind. and Appl. Math, Philadelphia, Pa.

Harris, R. A., and P. Segall (1987), Detection of a locked zone at depth on
the Parkfield, California, segment of the San Andreas Fault, J. Geophys.
Res., 92, 7945-7962.

PAGE ET AL.: RESOLUTION-BASED REMOVAL OF ARTIFACTS

B01314

Hartzell, S. (1989), Comparison of seismic waveform inversion results for
the rupture history of a finite fault: Application to the 1986 North Palm
Springs, California, earthquake, J. Geophys. Res., 94, 7515-7534.

Hartzell, S., and C. Langer (1993), Importance of model parameterization in
finite fault inversions: Application to the M,, 8.0 Peru earthquake, J.
Geophys. Res., 98, 22,123-22,134.

Hartzell, S. H., and T. H. Heaton (1983), Inversion of strong ground motion
and teleseismic waveform data for the fault rupture history of the 1979
Imperial Valley, California, earthquake, Bull. Seismol. Soc. Am., 73(6),
1553-1583.

Jackson, D. D. (1972), Interpretation of inaccurate, insufficient and incon-
sistent data, Geophys. J. R. Soc. London, 28, 97—109.

Jackson, D. D., and Y. Y. Kagan (2006), The 2004 Parkfield earthquake, the
1985 prediction, and characteristic earthquakes; lessons for the future,
Bull. Seismol. Soc. Am., 96(4B), S397—-S409, doi:10.1785/0120050821.

Johanson, I. A., E. J. Fielding, F. Rolandone, and R. Burgmann (2006),
Coseismic and postseismic slip of the 2004 Parkfield earthquake from
space-geodetic data, Bull. Seismol. Soc. Am., 96(4B), S269—S282,
doi:10.1785/0120050818.

Johnson, K. M., R. Biirgmann, and K. Larson (2006), Frictional properties
on the San Andreas Fault near Parkfield, California, inferred from models
of afterslip following the 2004 earthquake, Bull. Seismol. Soc. Am.,
96(4B), S321-S338, doi:10.1785/0120050808.

Langbein, J., et al. (2005), Preliminary report on the 28 September 2004, M
6.0 Parkfield, California earthquake, Seismol. Res. Lett., 76, 1—17.

Langbein, J., J. R. Murray, and H. A. Snyder (2006), Co-seismic and initial
post-seismic deformation from the 2004 Parkfield, California, earthquake
observed by global positioning system, electronic distance meter, creep-
meters, and borehole strainmeters, Bull. Seismol. Soc. Am., 96(4B),
S304—-S320, doi:10.1785/0120050823.

Larson, K. M., P. Bodin, and J. Gomberg (2003), Using 1-Hz GPS data to
measure deformations caused by the Denali fault earthquake, Science,
300, 14211424, doi:10.1126/science.1084531.

Lawson, C. L., and R. J. Hanson (1974), Solving Least Squares Problems,
Prentice-Hall, Englewood Cliffs, N.J.

Liu, P, and R. J. Archuleta (2004), A new nonlinear finite fault inversion
with three-dimensional Greens functions: Application to the 1989 Loma
Prieta, California, earthquake, J. Geophys. Res., 109, B02318,
doi:10.1029/2003JB002625.

Liu, P, S. Custddio, and R. J. Archuleta (2006), Kinematic inversion of the
2004 M 6.0 Parkfield earthquake including an approximation to site
effects, Bull. Seismol. Soc. Am., 96(4B), S143—S158, doi:10.1785/
0120050826.

Lohman, R. B., and M. Simons (2005), Some thoughts on the use of InNSAR
data to constrain models of surface deformation: Noise structure and data
downsampling, Geochem. Geophys. Geosyst., 6, Q01007, doi:10.1029/
2004GC000841.

Menke, W. (1989), Geophysical Data Analysis: Discrete Inverse Theory,
Academic, San Diego, Calif.

Murray, J., and J. Langbein (2006), Slip on the San Andreas Fault at
Parkfield, California, over two earthquake cycles, and the implications
for seismic hazard, Bull. Seismol. Soc. Am., 96(4B), S283—-S303,
doi:10.1785/0120050820.

Nash, J. C. (1990), Compact Numerical Methods for Computers: Linear
Algebra and Function Minimisation, 2nd ed., pp. 30—48, Adam Hilger,
Bristol, U.K.

Olson, A. H., and J. G. Anderson (1988), Implications of frequency-domain
inversion of earthquake ground motions for resolving the space-time
dependence of slip on an extended fault, Geophys. J., 94(3), 443—-455.

Olson, A. H., and R. J. Apsel (1982), Finite faults and inverse theory with
applications to the 1979 Imperial Valley earthquake, Bull. Seismol. Soc.
Am., 72(6), 1969—-2001.

Pritchard, M. E., M. Simons, P. A. Rosen, S. Hensley, and F. H. Webb
(2002), Co-seismic slip from the 1995 July 30 A, = 8.1 Antofagasta,
Chile, earthquake as constrained by InSAR and GPS observations, Geo-
phys. J. Int., 150(2), 362—376.

Rymer, M. J., et al. (2006), Surface fault slip associated with the 2004
Parkfield, California, earthquake, Bull. Seismol. Soc. Am., 96(4B),
S11-S27, doi:10.1785/0120050830.

Sagiya, T., and W. Thatcher (1999), Coseismic slip resolution along a plate
boundary megathrust: The Nankai Trough, southwest Japan, J. Geophys.
Res., 104, 1111-1129.

Sarad, A., S. Das, and P. Suhadolc (1988), Effect of non-uniform station
coverage on the inversion for earthquake rupture history for a Haskell-
type source model, J. Seismol., 2(1), 1-25.

Sekiguchi, H., K. Irikura, and T. Iwata (2000), Fault geometry at the rupture
termination of the 1995 Hyogo-ken Nanbu earthquake, Bull. Seismol.
Soc. Am., 90(117-133), 117-133.

Simons, M., Y. Fialko, and L. Rivera (2002), Coseismic deformation from
the 1999 M,, 7.1 Hector Mine, California, earthquake as inferred from

12 of 13



B01314

InSAR and GPS observations, Bull. Seismol. Soc. Am., 92(4), 1390—
1402.

Thurber, C., S. Roecker, K. Roberts, M. Gold, L. Powell, and K. Rittger
(2003), Earthquake locations and three-dimensional fault zone structure
along the creeping section of the San Andreas fault near Parkfield, CA:
Preparing for SAFOD, Geophys. Res. Lett., 30(3), 1112, doi:10.1029/
2002GL016004.

Thurber, C., H. Zhang, F. Walfhauser, J. Hardebeck, A. Michael, and
D. Eberghart-Phillips (2006), Three-dimensional compressional wave-
speed model, earthquake relocations, and focal mechanisms for the
Parkfield, California, region, Bull. Seismol. Soc. Am., 96(4B), S38—S49,
doi:10.1785/0120050825.

Uchide, T., and S. Ide (2007), Development of multiscale slip inversion
method and its application to the 2004 mid-Niigata Prefecture earth-
quake, J. Geophys. Res., 112, B06313, doi:10.1029/2006JB004528.

Wald, D. J., and R. W. Graves (2001), Resolution analysis of finite fault
source inversion using one- and three-dimensional Greens functions: 2.
Combining seismic and geodetic data, J. Geophys. Res., 106, 8767—
8788.

PAGE ET AL.: RESOLUTION-BASED REMOVAL OF ARTIFACTS

B01314

Wiggins, R. A. (1972), The general linear inverse problem: Implication of
surface waves and free oscillations for earth structure, Geophys. J. R.
Astron. Soc., 10(1), 251-285.

Zhu, L., and L. A. Rivera (2002), A note on the dynamic and static dis-
placements from a point source in multilayered media, Geophys. J. Int.,
148(3), 619—-627, doi: 10.1046/j.1365-246X.2002.01610.x.

R. J. Archuleta, Institute for Crustal Studies, University of California,
Girvetz Hall 1140, Santa Barbara, CA 93106-1100, USA. (ralph@crustal
.ucsb.edu)

J. M. Carlson, Department of Physics, University of California, Santa
Barbara, CA 93106-9530, USA. (carlson@physics.ucsb.edu)

S. Custodio, Centro de Geofisica, Universidade de Coimbra, Avenida Dr.
Dias da Silva, P-3000-134 Coimbra, Portugal. (susanacustodio@dct.uc.pt)

M. T. Page, U.S. Geological Survey, 525 South Wilson Avenue,
Pasadena, CA 91106-3212, USA. (pagem@caltech.edu)

13 of 13



