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and Intersequence Variability
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Abstract Following a large earthquake, seismic hazard can be orders of magnitude
higher than the long-term average as a result of aftershock triggering. Because of this
heightened hazard, emergency managers and the public demand rapid, authoritative,
and reliable aftershock forecasts. In the past, U.S. Geological Survey (USGS) after-
shock forecasts following large global earthquakes have been released on an ad hoc
basis with inconsistent methods, and in some cases aftershock parameters adapted
from California. To remedy this, the USGS is currently developing an automated after-
shock product based on the Reasenberg and Jones (1989) method that will generate
more accurate forecasts. To better capture spatial variations in aftershock productivity
and decay, we estimate regional aftershock parameters for sequences within the García
et al. (2012) tectonic regions. We find that regional variations for mean aftershock
productivity reach almost a factor of 10. We also develop a method to account for the
time-dependent magnitude of completeness following large events in the catalog. In
addition to estimating average sequence parameters within regions, we develop an
inverse method to estimate the intersequence parameter variability. This allows for a
more complete quantification of the forecast uncertainties and Bayesian updating of
the forecast as sequence-specific information becomes available.

Online Material: Omori parameter confidence limits, alternative Omori fits taking
into account b-value variation, larger tectonic regions, and a longer temporal fitting
window, and synthetic test results.

Introduction

Because earthquakes cluster in time and space, past
earthquakes provide a great deal of information about time-
dependent changes in future earthquake hazard. During an
active aftershock sequence, probability gains relative to a
time-independent earthquake rate model can reach several
orders of magnitude (Jordan et al., 2011). In some cases,
aftershocks can be more damaging than mainshocks, as was
the case in the 2011M 6.3 Christchurch, New Zealand, earth-
quake. Furthermore, aftershocks are not always smaller than
the mainshock: statistically the probability of a larger earth-
quake follows from the probabilities of smaller ones (Felzer
et al., 2004).

The statistical law that governs aftershock occurrence 
has been known for over 100 years (Omori, 1895). This re-
lation, Omori's law, as modified by Utsu (1957), states that 
the rate of aftershocks as a function of time t from the main-
shock decays as

EQ-TARGET;temp:intralink-;df1;313;268λ�t� � K�t� c�−p; �1�

in which K, p, and c are constants. The predictability of this
relation is impressive, even when extrapolated far into the
future. The classic example of this predictability is the 1891
Nobi earthquake, the decay of which was studied by Omori
(1895). One hundred years later, the sequence continued to
follow Omori decay (Utsu et al., 1995).

The U.S. Geological Survey (USGS) has issued after-
shock probability reports following M ≥5 earthquakes in
California since the 1990s, based on the methodology of
Reasenberg and Jones (1989), which combines Omori’s law
with Utsu scaling (the relation between the mainshock magni-
tude and aftershock productivity, see Utsu, 1972). In the
Reasenberg and Jones (1989) formulation, the rate of after-
shocks with magnitude at or above Mmin is written as

EQ-TARGET;temp:intralink-;df2;313;89λ�t;Mmin� � 10a�b�Mmain−Mmin��t� c�−p; �2�

BSSA Early Edition / 1

Bulletin of the Seismological Society of America, Vol. 106, No. 5, pp. –, October 2016, doi: 10.1785/0120160073



in which Mmain is the magnitude of the mainshock, and b is
a constant from the Gutenberg–Richter magnitude–fre-
quency relationship (Gutenberg and Richter, 1944). By fit-
ting many sequences in California, Reasenberg and Jones
(1989) give probability distributions for a, p, and b.

The USGS does not have a fully operational procedure
for generating aftershock probability reports outside of Cal-
ifornia. However, the USGS has issued probability estimates
for some global events on an ad hoc basis. In the cases of the
2010M 7.0 Haiti, 2010M 8.8 Chile, 2010M 7.2 El Mayor–
Cucapah, and 2011 M 5.8 Mineral, Virginia, earthquakes,
aftershock estimates were generated using parameters fit to
California data, apart from the Omori a-value, which was
adjusted to match early data from the specific sequence under
consideration. This approach has several drawbacks; Califor-
nia parameters, for example, the Omori p-value, may not be
applicable elsewhere. Also, fitting the Omori a-value to the
early aftershocks is only possible once those aftershocks
have occurred, which introduces an undesirable delay before
the first probability estimates can be issued.

In this article, we present Omori parameter estimates,
using the framework of Reasenberg and Jones (1989), which
can be used to generate aftershock forecasts for mainshocks
occurring across the globe. We aim to improve on past work
in several respects by accounting for degradation in catalog
completeness following large earthquakes, by finding param-
eter differences between tectonic regions, and by developing
a new inverse approach to solve for intersequence variability
that allows us to use information from all sequences, even
those sequences with few or no aftershocks.

Reasenberg and Jones (1989) with a Time-
Dependent Magnitude of Completeness

Following large earthquakes, catalog completeness is
worse than in quiet times; this phenomenon is known as
short-term aftershock incompleteness (STAI; Kagan, 2004).
Because of the changing magnitude of completeness follow-
ing a large earthquake, we revise equation (2) to include a
time-dependent magnitude of completeness, Mc�t;Mmain�,
instead of a constant minimum magnitude Mmin. The rate
of aftershocks larger than Mc�t;Mmain� is then given by

EQ-TARGET;temp:intralink-;df3;55;233λ�t;Mc�t;Mmain�� � 10a�b�Mmain−Mc�t;Mmain���t� c�−p: �3�
We parameterize the time-varying magnitude of com-

pleteness as

EQ-TARGET;temp:intralink-;df4;55;176Mc�t;Mmain� � max
�

Mmain
2

− G − log10�t�
Mcat

; �4�

in whichMcat is the known completeness of the catalog when
a large earthquake has not recently occurred, and G is a con-
stant. This function differs from previous work (Helmstetter
et al., 2006) in that both the amplitude of the incompleteness
and the time to return to the baseline completenessMcat scale

with Mmain=2, rather than as Mmain. This alternative param-
eterization is based on an analysis of global earthquakes, as
described below, and may indicate a stronger dependence on
mainshock coda duration, as opposed to coda amplitude, for
the large global earthquakes analyzed in this study, compared
to the California dataset studied by Helmstetter et al. (2006).
Our analysis also finds that incompleteness in the global
catalog is not simply a function of earthquake rate, as sug-
gested by Helmstetter et al. (2006) and assumed in more re-
cent work by Hainzl (2016) for regional catalogs.

We estimate the parameters of the time-varying magni-
tude of completeness (equation 4) using a full magnitude
range method (Ringdal, 1975; Ogata and Katsura, 2006; Omi
et al., 2014), which models the detection rate q�mjμ�t�; σ� at
magnitude m as a cumulative normal distribution:

EQ-TARGET;temp:intralink-;df5;313;553q�mjμ�t�; σ� � 1����������
2πσ2

p
Z

m

−∞
e−

�x−μ�t��2
2σ2 dx: �5�

The parameter σ determines the sharpness of the rollover of
the detection function. In the context of a cumulative normal
detection function, μ�t� can be interpreted as the level at which
50% of events are detected, and μ�t� � nσ gives confidence
levels [68%, 95%, 99%] of event detection for n � �1; 2; 3�,
respectively. For this study, for Mc�t� we use μ�t� � 2σ. The
instrumentally recorded magnitude–frequency distribution
f�mjμ�t�; σ� is then given as the product of an exponential
Gutenberg–Richter magnitude distribution (Gutenberg and
Richter, 1944) and the detection function:

EQ-TARGET;temp:intralink-;df6;313;388f�mjμ�t�; σ� ∝ q�mjμ�t�; σ�10−bm: �6�

Omi et al. (2014) proposed to estimate μ�t� using a mov-
ing window on the data, with Bayesian prior and smoothing
constraints to achieve a stable solution. Our approach is to
assume μ�t� � 2σ given by equation (4) and use maximum-
likelihood estimation (MLE) to determine G and σ. For sim-
plicity, we assume b � 1.

Our dataset is the global National Earthquake Informa-
tion Center (NEIC) catalog from 1 January 1990 to 1 January
2015 (see Data and Resources). For the purposes of this
study, the mainshocks we select are M ≥6 earthquakes for
which there is not a larger earthquake within three fault
lengths (defined for each mainshock using the Wells and
Coppersmith, 1994, magnitude–length relation that averages
over all focal mechanisms), for the 90 days prior to and
10 days following its occurrence. We use mainshocks down
to a depth of 50 km. Aftershocks are assigned to the nearest
mainshock if they occur within the larger of three fault
lengths or 5 km from the mainshock. This gives a total of
2100 sequences with Mmain ≥6.

Figure 1 shows the results for all global sequences using
a running-window fit for μ�t� assuming only equation (6),
using separate mainshock magnitude bins and a running win-
dow of �0:5 log-time units. The model fit for μ�t� to the
complete dataset using equations (4) and (6) is also shown.
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The two methods agree very closely, validating the use of
equation (4). Our assumed form for Mc�t�, using G � 0:25
(found via maximum likelihood) and Mcat � 4:5 (this back-
ground completeness level fits the catalog well as a whole), is
also shown.

Using equation (4) to model the time-dependent magni-
tude of completeness Mc�t;Mmain�, we use maximum like-
lihood to estimate the Omori parameters. Given a set of N
aftershocks occurring at times ti, the log likelihood of param-
eter values a and p is

EQ-TARGET;temp:intralink-;df7;55;166 logL�a; p� �
XN
i�1

log λ�ti;Mc�ti;Mm��

−
Z

tend

tbeg

λ�t;Mc�t;Mmain��dt; �7�

in which tbeg and tend are the beginning and end of the time
period used to fit the data, respectively.

In Figure 2, we compare the performance of a fore-
cast using the time-varying magnitude of completeness to
forecasts using a constant Mc and a discretely varying Mc

for the case of the 2010 Mw 8.8 Maule, Chile, earth-
quake. The smoothly varying Mc method shown uses the
method introduced in this article, assuming G � 0:25 and
Mcat � 4:5. A stepwise calculation of the magnitude of com-
pleteness, estimated from the data using the maximum cur-
vature method (Wiemer and Wyss, 2000) is also shown. The
a-value is computed assuming these two representations of
the magnitude of completeness, and also assuming a constant
magnitude of completeness of Mcat. To compute the a-value
at a given time, all events are used that are prior to that time
and above the magnitude of completeness at their time of
occurrence. The exception is the stepwise magnitude of com-
pleteness, where all events within the last 4 hrs are used, ex-
cept after 8 hrs, in which case all events at least 4 hrs after the
mainshock are used. This method produces artificial fluctu-

Figure 1. Time-dependent magnitude of completeness analysis for all global aftershock sequences. Irregular curves in the left panels are
running fits to the 50% completeness level μ�t� for each mainshock magnitude range individually (time-window width is�0:5 log-time units).
Dashed lines are model fits for μ�t� assuming equation (4) and fitting the entire dataset simultaneously. Solid black lines show the assumed
functional dependence of Mc�t;Mmain�, given by equation (4) with G � 0:25 and Mcat � 4:5. Right panels show individual magnitude dis-
tributions for successive time ranges as a function of mainshock magnitude. Dashed lines are the model fit to the entire dataset (equations 4 and 6).
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ations in the forecast, which align with changes in the as-
sumedMc. Finally, these methods are compared with a fixed
magnitude of completeness, which uses only events above
the maximum magnitude of completeness in the time period
used. This fixed Mc calculation underestimates the a-value
because of missing early events and is not stable with time as
the real completeness evolves. Incorporation of the time-
varying magnitude of completeness into the likelihood cal-
culation allows for all the data above Mc�t� to be used and
avoids undesirable fluctuations in the forecast.

The Reasenberg and Jones (1989) formulation assumes
that aftershock productivity scales with the magnitude of the
mainshock as 10bMmain , in which b is a constant from the Gu-
tenberg–Richter relation (Gutenberg and Richter, 1944).
Other formulations for aftershock productivity, for example,
the epidemic-type aftershock sequence model (Ogata, 1988),
assume productivity scales as 10αMmain , with α not necessarily
equal to b. In the case that α � b, as we assume here, the
total number of aftershocks triggered by all mainshocks
within a given mainshock magnitude unit is a constant, and
the Båth’s law value (the magnitude difference between the
mainshock and the largest aftershock, on average) is main-
shock magnitude independent. The α � b assumption is con-
sistent with data in California (Felzer et al., 2004; Helmstetter
et al., 2005).

We find that the maximum-likelihood b-value (Aki, 1965)
corrected for magnitude rounding (Shi and Bolt, 1982) for the
NEIC catalog (1990–2015) is 1.03. This is very close to the

canonical value of 1.0 (Frohlich and Davis, 1993). In the fol-
lowing section, we present results assuming b � 1 for all re-
gions, as well as results using region-specific b-values.

Mean Omori Parameters within Tectonic Regions

To better capture spatial variations in aftershock produc-
tivity and decay, we estimate regional aftershock parameters
for sequences within the García et al. (2012) tectonic re-
gions, shown in Figure 3. These regions were developed for
use in the USGS ShakeMap system (García et al., 2012) and are
modifications of the Flinn–Engdahl regionalization scheme
(Flinn and Engdahl, 1965; Young et al., 1996; see Data and
Resources).

We select mainshocks and aftershocks using the exclu-
sion criteria defined in the previous section. The 10-day
stacked fit for the mean aftershock rate within all tectonic re-
gions, assuming b � 1, is shown in Figure 4. This is a maxi-
mum-likelihood fit for all aftershocks above Mc�t;Mmain�,
assumingG � 0:25 andMcat � 4:5. For this STAI fit, we also
add an inequality constraint that prevents the rate from drop-
ping below the M ≥4:5 fit for all times in the fitting interval.
This prevents the STAI fit from giving a lower productivity
than the M ≥4:5 aftershocks imply; which would be nonsen-
sical, because STAI can only result in fewer events in the cata-
log. In this way, even in the STAI fits, we use information from
the catalog for events between Mcat and Mc�t�. The 95% con-
fidence limits for the Omori parameters for each tectonic region
are shown in Ⓔ Figure S1, available in the electronic supple-
ment to this article. The inequality constraint is neglected in
these confidence limits, which show the area of parameter
space within three log-likelihood units of the maximum.

The exclusion criteria we use are chosen to capture as
much of the aftershock triggering as possible while limiting
contamination from background sources and other sequen-
ces. To test whether background events are impacting the
Omori fits, we reduce the aftershock capture zone from three
to two rupture lengths; this impacts the estimated p-values
by less than 2% for all regions apart from ANSR-HOTSPOT,
where one of the five aftershocks is lost (resulting in a 14%
p-value increase—parameters in this data-poor region are
quite ill-constrained). If significant background were being
captured in the 10-day fits, we would expect significant
p-value increases with this capture region reduction.

The mean Omori parameters from the global fit imply a
median 10-day Båth’s law value (the magnitude difference
between the mainshock magnitude and largest aftershock
magnitude, see Richter, 1958) of 1.21. In subsequent region-
specific fits, we fix the Omori c-value to the c-value from this
global fit (c � 0:018). This reduces instability for regions
with a small number of sequences, especially when incorpo-
rating the STAI correction.

Fits for aftershock sequences within individual regions,
assuming b � 1, are shown in Figure 5. Fits using region-
specific b-values are shown in Ⓔ Figure S2. We show both
a fit using all recorded aftershocks down toMcat � 4:5 and a
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Figure 2. Maximum-likelihood fits of the (a) Omori a-value for
the first day after the 2010 Mw 8.8 Maule, Chile, mainshock, com-
puted using three different assumptions about the (b) magnitude of
completeness. Assuming a constant Mc results in an unstable fore-
cast that underestimates aftershock rates early in the sequence. The
calculation with the stepwise magnitude of completeness contains
abrupt changes, some aligned with the changes in the completeness,
which could lead to undesirable fluctuations in the forecast as it is
updated. The forecast with the smoothly varying magnitude of com-
pleteness, in contrast, produces a smooth and stable a-value over the
entire first day.
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fit using a STAI correction (G � 0:25). Estimated b-values
differ from 1 most in the regions ANSR-ABSLDEC
(b � 1:20� 0:03) and SCR-GENERIC (b � 1:25� 0:08).
The SZ-GENERIC region, which dominates the global data-
set, has a b-value consistent with 1.0 (1:01� 0:01). For the
remaining results in the article, we assume α � b � 1.

We also compute fits for the combined active nonsub-
duction regions (ANSRs) and subduction zone (SZ) regions,
which may be preferable than the finer-scale regions that
have little data. These are shown in Ⓔ Figure S3. The
100-day fits for the 13 García et al. (2012) regions are
also shown in Ⓔ Figure S4. For longer time periods, it is
preferable to extend these parameters rather than do direct
fits, due to contamination from background and other se-
quences.

An Inverse Method to Find Productivity Variability
between Sequences

As Reasenberg and Jones (1989) note, generic after-
shock parameters of the type we estimate here can be updated
with Bayes’ rule as data accumulate during an ongoing after-
shock sequence, provided that there is a prior distribution for
the generic parameters. Thus, we wish not only to estimate
the mean Omori parameters, as we have done in the stack fits
above, but also to estimate the intersequence variability—
that is, how much the Omori parameters vary from sequence
to sequence.

Investigations of the 2014M 6.0 South Napa earthquake
sequence found that updating both the Omori a- and p-values
made early sequence fits unstable (Llenos, 2014). For this rea-
son, we investigate intersequence variability of the Omori
a-value, so that Bayesian updating of this parameter can be
performed while the p-value is held constant. Alternatively,
one could put a narrow prior on the Omori p-value, which
would result in Bayesian updating of the p-value only if the
data (dramatically) warranted it.

Sequence-specific fits to the productivity are difficult
because half of the sequences have no aftershocks above the
completeness magnitude. Reasenberg and Jones (1989) dealt
with this problem by fitting only the sequences with suffi-
cient data; however, this had the effect of overestimating
the mean productivity, resulting in an informal correction
whereby many researchers adjust the published value of
a � −1:67 to a � −1:85 (Felzer et al., 2003).

The discrete nature of the aftershocks is apparent in the
sequence-specific MLE fits shown in Figure 6a. Furthermore,
we expect that due to the stochasticity of aftershock occur-
rence, the distribution of MLE a-values, even for the sequen-
ces with many aftershocks, will have a larger spread than the
true, underlying a-value distribution. To back out the under-
lying intersequence a-value distribution in light of these dif-
ficulties, we set up an inverse problem of the form Ax � d.

     ANSR-ABSLDEC
     ANSR-ABSLOCB
     ANSR-ABSLSHC
     ANSR-DEEPCON
     ANSR-HOTSPOT
     ANSR-OCEANBD
     ANSR-SHALCON
     SCR-ABVSLAB
     SCR-GENERIC
     SOR-ABVSLAB
     SOR-GENERIC
     SZ-GENERIC
     SZ-INLBACK
     SZ-ONSHORE
     SZ-OUTERTR

Figure 3. García et al. (2012) tectonic regionalization. Regions are not a function of depth. ANSR, active nonsubduction region; SCR,
stable continental region; SOR, stable oceanic region; SZ, subduction zone; ABSLDEC, above-slab deep continental; ABSLOCB, above-slab
oceanic boundary; DEEPCON, deep continental; OCEANBD, oceanic boundary; SHALCON, shallow continental; ABVSLAB, above-slab; INL-
BACK, inland/back-arc; OUTERTR, outer-trench.

Time since Mainshock (days) 

10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

102

103

104

105

106

107

a = -2.12, p = 0.92, c = 0.018

M ≥ 4.5 data

M ≥ Mc(t) data

Figure 4. Maximum-likelihood fit (solid line) to the rate for all
aftershocks from global M ≥6 mainshocks, 1990–2015. Each data
point shows the instantaneous rate for a consecutive aftershock pair.

Three Ingredients for Improved Global Aftershock Forecasts 5

BSSA Early Edition



Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

100

102

104

106
ANSR-ABSLDEC 
a =–2.04, p =1.01, c =0.018

Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

100

102

104

106
ANSR-ABSLOCB
a =–2.00, p =0.64, c =0.018

Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

100

102

104

106
ANSR-ABSLSHC
a =–2.44, p =1.06, c =0.018

Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

100

102

104

106
ANSR-DEEPCON
a =–2.01, p =0.98, c =0.018

Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

100

102

104

106
ANSR-HOTSPOT
a =–2.84, p =1.12, c =0.018

Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

100

102

104

106
ANSR-OCEANBD
a =–2.69, p =1.08, c =0.018

Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

100

102

104

106

ANSR-SHALCON
a =–2.16, p =0.98, c =0.018

Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

100

102

104

106
SCR-GENERIC
a =–2.28, p =0.73, c =0.018

Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 
100

102

104

106

SOR-GENERIC
a =–2.98, p =0.97, c =0.018

Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

100

102

104

106

SZ-GENERIC
a =–2.09, p =0.88, c =0.018

Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

100

102

104

106
SZ-INLBACK
a =–2.09, p =0.86, c =0.018

Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

100

102

104

106

SZ-ONSHORE
a =–2.02, p =0.81, c =0.018

Time since Mainshock (days) 
10–3 10–2 10–1 100 101

D
ai

ly
 a

fte
rs

ho
ck

 r
at

e 

100

102

104

106

SZ-OUTERTR
a =–1.97, p =0.92, c =0.018

M ≥ 4.5 data
M ≥ Mc(t) data

Figure 5. Stacked Omori fits for aftershock sequences within the 13 García et al. (2012) tectonic regions with data (Fig. 3). Dashed line,
maximum-likelihood fit to the Mcat � 4:5 data; solid line, maximum-likelihood fit (parameters shown in subfigure titles) for the M ≥4:5
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For each sequence, we find the MLE a-value, assuming
the STAI parameter G � 0:25 and incorporating the inequal-
ity constraint, as was done in the stacked fits discussed
above. The p-value and c-value are fixed to a sequence aver-
age for the stack, either a tectonic region or the whole globe.
The data vector d then gives the number of sequences in each
MLE a-value/mainshock magnitude bin. A visualization of
the data vector for all global sequences is shown in Figure 6a.

We invert for the unknown model vector x, which
describes the true, underlying a-value distribution that the
individual sequences are sampling. The vector x gives the frac-
tion of sequences in each (underlying) a-value/mainshock
magnitude bin. The matrix A gives the mapping between true
values of a and the MLE estimates of a for different mainshock
magnitudes. The values of the matrix A are found by simu-
lating many synthetic sequences and performing STAI fits with
an inequality constraint, using the same algorithm (described
in the Mean Omori Parameters within Tectonic Regions sec-
tion) that is used to fit the real data. The element Aij gives the
fraction of sequences within the jth a-value/mainshock mag-
nitude bin that will have an MLE estimate within the ith
a-value/mainshock magnitude bin.

Elements of the model vector x cannot be negative, so we
invert for the underlying distribution of a-values using the
nonnegative least-squares algorithm (Lawson and Hanson,
1974). This algorithm gives very sparse solutions, so we
additionally append Laplacian smoothing constraints. We also
minimize the edges of the distribution (at a � −4:5 and
a � −0:5) and constrain the mean productivity to approxi-
mately equal the productivity given by the stack of all
the sequences.

We first look at the global data, inverting for the a-value
distribution for each 0.1-magnitude unit mainshock magni-
tude bin above Mmain � 6. For this dataset, we smooth only
between adjacent a-value bins within a given Mmain bin to
look for systematics in productivity as a function of main-
shock magnitude. The results are shown in Figure 6. Because
of smoothing constraints and the stochasticity of the simu-
lated aftershock sequences, our synthetics (given by Ax
shown in Fig. 6b) are considerably smoother than the sparse
sequence data at high mainshock magnitudes. They do repro-

duce the discrete a-values seen for sequences with zero or
small numbers of aftershocks, as seen in the real data. Thus
with the inversion method, we can use sequences without re-
corded aftershocks to constrain the productivity distribution.

The inversion result, or the model vector x, is shown in
Figure 6c. This is the distribution of a-values, as a function
of mainshock magnitude Mmain, which produces the syn-
thetics. (In these a-value distributions, the effect of the
smoothing constraints between adjacent a-value bins is vis-
ible—these smooth the distributions along the x-axis.)

Average inversion results for 6 ≤ M < 7, 7 ≤ M < 8,
and M ≥8 mainshocks are shown in Figure 7a. We find that
there is less intersequence variability among sequences with
larger mainshock magnitudes. This could be because larger
mainshocks are sampling local aftershock productivity within
a larger volume, thereby averaging out some of the local vari-
ability. To make sure that the differences we observe are not
due to the inversion, we perform a synthetic test where all
mainshock magnitude bins have the same underlying variabil-
ity. The results shown inⒺ Figure S5 show that, although the
inversion does somewhat smear out the a-value distribution, it
recovers the true mean and does not artificially generate the
mainshock magnitude dependence that we see in Figure 7a.

The mean Omori a-values also show small differences
between the mainshock magnitude bins; however, we sus-
pect that this is not signal but noise, possibly due to system-
atic magnitude errors in the catalog, because the mean values
do not change in a consistent way (the highest a-value is in
the intermediate mainshock magnitude bin).

Stacked inversion results for all mainshock magnitudes
are shown in Figure 7b. These are well-fit by a Gaussian dis-
tribution with a mean of a � −2:54 and a standard deviation
of 0.71. The mean of the distribution is different from the
a-value of the global stack shown in Figure 4 because the
number of aftershocks scales as 10a. Productive aftershock
sequences dominate the stack, and the mean number of after-
shocks observed per sequence is larger than the typical,
median number of aftershocks observed.

Next, we invert for the intersequence a-value distribution
in each of the 13 García et al. (2012) regions. Because of the
paucity of data in some of the tectonic regions, in the regional
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Figure 6. A visualization of the inversion (a) data vector, (b) synthetics, and (c) model (inversion result).
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fits we remove mainshock magnitude dependence (aside from
the scaling of aftershock rate with mainshock magnitude as-
sumed in equation 3) from the parameterization for the a-value
distribution. Thus, our model vector x for the regional fits is a
probability distribution for a. Inverted a-value distributions for
each region, along with Gaussian fits, are shown in Figure 8.

We can use our global results to recover the mainshock
magnitude dependence of the productivity variability in the
regional fits. We assume that the variance in the Omori
a-value consists of two terms:

EQ-TARGET;temp:intralink-;df8;55;404σ2 � σ20 �
σ21

10Mmain
: �8�

The first term represents productivity variability due to main-
shock magnitude error or gross source properties, apart from
area. The second term is an additional variance that is re-
duced as mainshock area increases (because local aftershock
productivity will be averaged over larger areas as mainshock
area increases). We assume that σ0 is constant and σ1 is re-
gion-dependent. Because of the area dependence, this formu-
lation predicts that regions with higher mean stress drop (and
thus smaller rupture areas) will have increased intersequence
aftershock productivity variability. This is indeed what we
see in the regional inversion results; SCR-GENERIC, for ex-
ample, has a much higher variability than ANSR-SHALCON
or SZ-GENERIC, which is consistent with the high stress
drops observed in stable continental regions (Allmann and
Shearer, 2009).

From the global inversion results, we obtain a best fit to the
distributions as a function of mainshock magnitude (Fig. 7a)
with σ0 � 0:49 and σ1 � 750. When equation (8) is integrated
over all mainshock magnitudes, this predicts σ � 0:72, which
agrees closely with the stacked inversion result (Fig. 7b) of
σ � 0:71.

Assuming σ0 � 0:49 for the individual tectonic regions,
we fit the regional inversion results (Fig. 8) to obtain σ1 for
each region. The results are given in Table 1. These values

can be used to generate mainshock-magnitude-dependent
distributions for the Omori a-value for each tectonic region.

Combining Generic- and Sequence-Specific
Information

The region-specific p-values and a-value distributions
presented in this article can be used to generate aftershock
probability forecasts immediately following an earthquake.
As time passes and aftershocks are recorded, these initial es-
timates can then be updated with sequence-specific informa-
tion. Bayes’ rule provides a formal way to do this updating;
the regional a-value distribution can be used as a prior, and
then updated using aftershock data. The posterior distribu-
tion for the a-value distribution is proportional to the product
of the prior distribution and the data likelihood (equation 7).

An example of Bayesian updating as a sequence pro-
gresses is shown in Figure 9, which shows prior and posterior
distributions for the Omori a-value at various times follow-
ing the 2010 Mw 8.8 Maule, Chile, earthquake. The prior
distribution uses the region-specific a-value distribution
for the SZ-GENERIC region, modified using equation (8)
to account for the mainshock magnitude. This prior distribu-
tion can be updated based on available aftershock data at
various time intervals following the mainshock, which pro-
gressively shrinks the uncertainty in a.

Bayesian updating has the advantage of smoothly
changing aftershock probabilities as more information is
gathered about the sequence. The likelihood function will
penalize a-values that are not consistent with the recorded
data and allows for updating of the prior probability in sit-
uations where the rate is low or even in situations where no
aftershocks have been recorded over a period of time. Rea-
senberg and Jones (1989) also advocate Bayesian updating;
in their case, they present prior distributions that can be used
to update a, p, and b simultaneously. Although Reasenberg
and Jones (1989) parameters are currently used for USGS
aftershock alerts in California, formal Bayesian updating is
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not used. Here, we show a method to update only the a-value,
which is potentially more stable than simultaneously updating
a, p, and b. One could attempt to update more than just the
Omori a-value and keep the probability estimates stable using
tight priors for the p-value or both p and b.

Discussion and Conclusions

One way to check the accuracy of our estimations, in-
cluding our α � b assumption, is a comparison to Båth’s law
(Richter, 1958), the magnitude difference between a main-
shock and its largest aftershock. Båth’s law is a useful mea-
sure of productivity in that it is insensitive to catalog
incompleteness; however, it does only use one aftershock
from each sequence, so it uses less information than a whole
sequence fit. We compare the median Båth’s law value, be-
cause this can be calculated as long as at least half of the
sequences have at least one aftershock.

Table 2 compares median Båth’s law values for each re-
gion to the values implied by the mean Omori parameter fits
(from the stack of all sequences) as well as the distribution of
a-values found by the inversion method. Implied Båth’s law
values from the mean Omori parameters systematically
underpredict the actual measured Båth’s law values from
the catalog. This is to be expected because the mean param-
eters are more productive than the median aftershock se-
quence. When we use the a-value distribution to account for
intersequence variability, the actual and implied Båth’s law
values match quite well. In fact, the correlation between the
shift in implied Båth’s law values between the mean param-
eter predictions and a-value distribution predictions corre-
lates positively with the difference between the implied
Båth’s law values for the mean parameters and the actual
parameters from the catalog (linear correlation of 0.60)—
which demonstrates that the differences in a-value distribu-
tions between regions are robust—they are as wide as they
need to be in each region to bring the Båth’s law values into
alignment.

The reader may note that the measured Båth’s law values
in Table 2 are higher than the oft-quoted value of 1.2. These
are 10-day Båth’s law values (in contrast to many published
values, which do not give a time interval, e.g., Richter, 1958;
Båth, 1965), and they are median values. We do find a mean
10-day Båth’s law value for global M ≥6:0 mainshocks of
1.17 if the ∼40% of sequences without a recorded aftershock
above Mcat � 4:5 are excluded. For Mmain ≥8:1, there is at
least one aftershock for all global sequences, allowing the
mean Båth’s law value to be defined; this leaves 16 sequen-
ces and gives a mean 10-day Båth’s law value of 1.4.

Differences in productivity between regions vary by al-
most an order of magnitude. The most productive regions
ANSR-ABSLDEC and SZ-OUTERTR are 5–9 times more pro-
ductive in the first 10 days of sequences than the least pro-
ductive regions SOR-GENERIC and ANSR-HOTSPOT. Even in
regions where there are very little data, the data that are avail-
able show significant differences in productivity between
regions.

The differences in intersequence productivity are more
difficult to interpret. On the one hand, the inversion method
we use requires some regularization because the inverse
problem is underdetermined due to sequences without after-
shocks. We choose to regularize via smoothing, which has
the effect of smearing out the a-value distributions and mak-
ing it difficult to recover the true intersequence variability.
Although we use the same weight on the smoothing con-
straint for all regions, the smoothing constraint may have
more relative power in regions with little data (i.e., in regions
where the data power is low). However, our Båth’s law val-
ues using these distributions agree well with the actual
catalog—and on a region-by-region basis, our inverted
a-value distributions recover the actual Båth’s law values

Table 1
Estimates of the σ1 Component of Intersequence
Aftershock Productivity Variability, Assuming

Equation (8) and σ0 � 0:49

Region σ1

ANSR-ABSLDEC 560
ANSR-ABSLOCB 890
ANSR-ABSLSHC 800
ANSR-DEEPCON 250
ANSR-HOTSPOT 680
ANSR-OCEANBD 500
ANSR-SHALCON 570
SCR-GENERIC 870
SOR-GENERIC 650
SZ-GENERIC 570
SZ-INLBACK 640
SZ-ONSHORE 500
SZ-OUTERTR 540
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Figure 9. Posterior distribution example using the 2010Mw 8.8
Maule, Chile, earthquake. Immediately following the earthquake,
the region-specific Omori a-value distribution can be used. The dis-
tribution shown is for the SZ-GENERIC region, using mainshock
magnitude dependence (Table 1). As the aftershock sequence pro-
gresses and additional data are collected, this distribution can be
treated as a prior distribution and updated using Bayes’ rule. Pos-
terior distributions at subsequent time intervals are shown.
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from the catalog far better than applying a single a-value
uncertainty to each region would do.

Because of the significant differences in productivity
between regions, and our good regional Båth’s law fits us-
ing our a-value distributions, we conclude that the García
et al. (2012) tectonic regions are useful for the purpose of
generic aftershock parameter estimation. The regional fits
are more informative than the global fits, and the additional
information that the tectonic region provides is useful,
particularly early in the sequence before significant after-
shock data have been recorded. Better regionalization for
the purposes of teasing out difference between aftershock
parameters may certainly exist, and there is likely utility
in fitting data in smaller regions where there are good
regional networks. As the García et al. (2012) tectonic re-
gions were developed for the purposes of regionalizing
ground-motion prediction equations, their utility here is a
pleasant surprise.

Data and Resources

The National Earthquake Information Center (NEIC)
catalog, also known as ComCat, is available at http://
earthquake.usgs.gov/earthquakes/search/ (last accessed Sep-
tember 2015). Because the ComCat catalog is not currently
versioned, we provide the catalog we used in this analysis
(https://github.com/mtpage/Aftershocks, last accessed April
2016). This link also contains MATLAB codes to sort the
catalog into mainshock/aftershock sequences and reproduce
the regional Omori fits shown in Figure 5. Code to apply the
Flinn–Engdahl-based regionalization scheme is available at
https://github.com/usgs/strec (last accessed April 2016).
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