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Methodologies for Earthquake Hazard Assessment: Model Uncertainty

and the WGCEP-2002 Forecast

by Morgan T. Page and J. M. Carlson

Abstract Model uncertainty is prevalent in probabilistic seismic hazard analysis
(PSHA) because the underlying statistical signatures for hazard are unknown. Al-
though methods for incorporating parameter uncertainty of a particular model in
PSHA are well understood, methods for incorporating model uncertainty are more
difficult to implement because of the high degree of dependence between different
earthquake-recurrence models. We show that the method used by the 2002 Working
Group on California Earthquake Probabilities (WGCEP-2002) to combine the prob-
ability distributions given by multiple earthquake-recurrence models has several ad-
verse effects on their results. In particular, WGCEP-2002 uses a linear combination
of the models that ignores model dependence and leads to large uncertainty in the
final hazard estimate. Furthermore, model weights were chosen based on data, which
has the potential to systematically bias the final probability distribution. The weight-
ing scheme used in the Working Group report also produces results that depend on
an arbitrary ordering of models. In addition to analyzing current statistical problems,
we present alternative methods for rigorously incorporating model uncertainty into
PSHA.

Introduction

The goal of probabilistic seismic hazard analysis
(PSHA) is to provide a quantitative estimate of the likelihood
of exceeding a given threshold of earthquake-caused ground
motions in a specific region during a given time period
(Senior Seismic Hazard Analysis Committee [SSHAC],
1997). PSHA is characterized by deep uncertainty, for not
only is there parameter uncertainty regarding the values of
various model inputs needed to estimate hazard, there is also
model uncertainty. This type of uncertainty relates to the
statistical signatures for hazard, that is, how best to represent
the earthquake renewal process in a recurrence model. Al-
though methods for incorporating parameter uncertainty are
widely used, model uncertainty is less well understood
(Aposolakis, 1995). Nevertheless, it is prevalent in PSHA
and must be handled properly.

The 2002 Working Group on California Earthquake
Probabilities (WGCEP-2002, Working Group, or WG02) dif-
fered from previous reports in that an attempt to quantify
and incorporate model uncertainty was made. Unlike pre-
vious consensus reports in 1988, 1990, and 1995 (WGCEP,
1990a, b, 1995), in which a single model was agreed upon,
the WG02 report (WGCEP, 2003) used multiple models to
generate the 2002 forecast. Model uncertainty was incor-
porated by taking a linear combination of the probability
distributions given by several different models. Model un-
certainty comprises a large portion of the total uncertainty
in the WG02 forecast.

In this article, we refer periodically to the “true hazard”
of an earthquake in a given region. This notion is not com-
pletely straightforward, as discussed by Freedman and Stark
(2003). On one hand, either the earthquake will happen or
it will not, so in a sense the true hazard of a certain event is
0 or 1. However, it will most likely never be possible to
estimate hazard with complete confidence. Because of irre-
ducible (aleatory) uncertainty in earthquake forecasting, the
probability of an earthquake occurring must be expressed as
just that, a probability. For the purposes of this article, it is
helpful to think of true hazard as the probability of an earth-
quake occurring that we could deduce with only irreducible
uncertainty, that is, the best estimate we could make in light
of uncertainties that are stochastic in character. For more
information on aleatory uncertainties see the SSHAC (1997)
report.

We use the word “model” in this article in the sense of
an earthquake-recurrence model. Note that model uncer-
tainty may be present in other areas of PSHA as well, but
these are not the focus of this work. The role of ground-
motion model uncertainty has been analyzed by F. Scher-
baum et al. in light of the recent PEGASOS project (unpub-
lished manuscript, 2006). They find that incorporating
multiple ground-motion models with a logic tree approach
leads to an overestimation of the total epistemic uncertainty.

The goal of this article is to provide a careful critique
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of the WG02 report based on the underlying probabilistic
methods that were used. Using simple examples, we illus-
trate several key issues and assumptions that are problematic
and lead to biases in the final results. In addition, we discuss
various methods for avoiding these issues in the future. Pre-
cisely incorporating model uncertainty and dependence in
PSHA will allow for the most precise formulation of hazard
that the data allow.

This article is divided into three sections. First, we give
a brief summary of the various earthquake-recurrence mod-
els used in the WG02 report and the current methodology
that combines these models into a single probabilistic fore-
cast. Second, we diagnose several unintended biases inherent
in this type of PSHA formulation. In particular, any depen-
dence between the earthquake-recurrence models is ignored
in a weighted average of the individual model probability
distributions. We also show that the model weights, which
are based in part on data availability, have the potential to
systematically skew the final prediction. Model weights also
vary from fault to fault, and this is formulated in such a way
that the arbitrary order of the models themselves in the meth-
odology affects the result. Finally, we present alternative
methods for incorporating model uncertainty and model de-
pendence. We discuss Bayesian methods, which provide a
framework to update hazard estimates as more data become
available. Also, copulas (dependence models) provide a
means to combine multiple probability distributions into a
single distribution in a way that incorporates dependence.
We conclude with a simple example using copulas in a
Bayesian framework.

The WG02 Report

WG02 concluded that the probability of one or more
earthquakes exceeding moment magnitude 6.7 in the San
Francisco Bay Region for the 30-year period from 2002 to
2031 is 62% (with 95% confidence bounds of 27% and
87%). In addition to the regional estimate, the Working
Group calculated probabilities for fault segments, rupture
sources, fault systems, and the background. Below we give
a summary of their methodology relevant to our analysis.

The Working Group used five models to estimate earth-
quake probability in their report on earthquake hazards in
the San Francisco Bay Region. These models are statistical
models that attempt to estimate the probability of earthquake
occurrence. The first of these models, the Poisson model,
assumes that earthquakes randomly occur with a time-
independent probability. This model has only one parameter,
k, the average rate of earthquake occurrence (seismicity).
The Poisson probability density for an event as a function
of time t since the last event is given by

�ktf (t) � k e . (1)Pois

The second model, the empirical model, is also a one-
parameter Poisson-type model, but with a different value of

k. Whereas in the Poison model background seismicity is
taken to be the long-term, historical rate of earthquake oc-
currence, in the empirical model post-1906 seismicity is used
to estimate the corresponding k. Because recent seismicity
in the San Francisco Bay Region is lower than the historical
rate, the empirical model predicts lower probabilities than
the Poisson model.

The third model, the Brownian passage time (BPT)
model (Matthews et al., 2002; Kagan and Knopoff, 1987),
uses two parameters to compute the probability of an event:
k and the aperiodicity of events �. The probability density
for an event is given by

1 2 2�k(t�1/k) /2 t�f (t) � e . (2)BPT 2 3�2pk� t

Note that the probability density is zero at t � 0, as a new
earthquake is thought unlikely until stress reaccumulates on
the fault segment. The aperiodicity � is estimated from data
(Ellsworth et al., 1999). When � � 0, earthquake occur-
rence is periodic, and for large values of � this model be-
haves similarly to a Poisson process.

The fourth model, the BPT-step model, is a BPT model
that also incorporates the effects of stress interactions from
events on nearby faults. This interaction is incorporated into
the model by a “clock change,” that is, changing the value
of t in equation (2). WG02 used this model to incorporate
stress changes from two events: the 1906 San Francisco
earthquake and the 1989 Loma Prieta earthquake.

The final model is the time-predictable model (Shima-
zaki and Nakata, 1980). This model uses the slip in the last
earthquake, coupled with the slip rate of the fault segment,
to calculate the expected time of the next rupture. The fault
is expected to rupture once all of the strain released in the
last earthquake has reaccumulated on the fault. In the WG02
report this model is used only on the San Andreas fault seg-
ment.

Each of these models employs different data to estimate
earthquake hazard, and each of them has different assump-
tions as to what parameters drive the hazard. Consequently,
each of these models gives a different prediction for the level
of earthquake hazard in the San Francisco Bay Region. The
probability distributions given by each model for one or
more regional earthquakes with moment magnitude 6.7 or
greater are shown in Figure 1a. These histograms were gen-
erated by using 3000 Monte Carlo iterations for each model.
Each Monte Carlo iteration samples from possible values for
all model inputs, such as seismicity or aperiodicity. The
weights for the parameter values are estimated from data or
determined from expert opinion. Without this parameter un-
certainty, each model would give a point prediction for the
probability. However, as there are indeed uncertainties in the
inputs for these models, each of these models has its own
associated uncertainty. The spread of each distribution in
Figure 1a is a result of parameter uncertainty within each
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Figure 1. Adapted from the WG02 report
(WGCEP, 2003). Distributions of the regional proba-
bility of a M 6.7 earthquake calculated by using vari-
ous probability models. (a) Overlapping histograms
show probability calculated in 3000 iterations using
each of four models separately. The shape and width
of each distribution reflects epistemic uncertainty in
the choice of underlying models and parameters. (b)
Corresponding distribution calculated in 10,000 iter-
ations using the weighted combination of models
shown in Figure 4. The broad shape of this distribu-
tion reflects the combination of distinct behaviors of
the alternate models. Additional mass near P � 0.8
corresponds to realizations that employ the time-pre-
dictable model on the San Andreas fault, not shown
in (a).

model. Thus, the figure is showing probability distributions
for regional probability.

The issue at hand, which arises broadly in hazard anal-
ysis, is the following. Given all these different models and
different predictions, what is the best estimate for earthquake
hazard and uncertainty for the San Francisco Bay Region?
Each model gives a different probability distribution. The
problem reduces to combining the probability distributions
from different models into a single probability distribution
function that best represents current knowledge about earth-
quake hazard in the San Francisco Bay Region.

To arrive at one estimate of earthquake hazard, the
Working Group performed what is essentially a weighted
averaging of the models. That is, they carried out a Monte
Carlo sampling of all five models, so that the final answer
is a function of not just the mean prediction of a given model,
but depends on the entire probability distribution given by
that model. The top level of the logic tree, that is, the first
level randomly sampled in a given Monte Carlo run, deter-
mines which model will be used. The models themselves are
allowed to differ from fault to fault during a given Monte
Carlo run. We still refer to this methodology as an “aver-
aging,” since neglecting correlations of the models between
faults, the result of the weighted Monte Carlo sampling is a
weighted average of the probability distributions produced
by each model.

The final result of what is, to first order, a weighted
average of the individual model probability distribution
functions is shown in Figure 1b. The combined probability
distribution has an average of 62%, which is similar to the
mean result of the 1999 Working Group report (WGCEP,
1999). However, the uncertainty in the combined result, as
illustrated by the large variance in Figure 1b, is considerably
larger. Although new data have been added, they have not
improved the final uncertainty; the cost of adding new data
has been the incorporation of additional models, and these
have increased the uncertainty.

Current Statistical Biases in PSHA

The first step in providing a rigorous methodology to
incorporate model uncertainty in PSHA is a critique of pre-
vious analyses. The three problems with current methodol-
ogy that we discuss here are the linear combination of mod-
els, choosing model weights based upon data availability,
and arbitrary ordering of models. Below we present an anal-
ysis that illustrates key issues and points toward opportuni-
ties to improve hazard estimates.

Linear Combination of Models

Does averaging make sense for the earthquake-hazard
models? There is a fundamental problem assigning proba-
bility weights to different models. Averaging can be justified
if one and only one model describes the underlying mech-
anism generating hazard. In this case, the weights used in
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Figure 2. (a) Model A calculates hazard for the entire
set shown having risk factor A. The smaller circle shows
those members of the entire set that will in actuality have
the hazardous event. Model A gives a probability of �,
which is equal to the percentage of the entire set that is
in the smaller circle. Similarly, model B calculates a
probability of b, which is proportional to the number of
elements with risk factor B that are in the small blue
circle. What is the event probability for an element that
has both risk factor A and risk factor B? It could be 0%,
as shown in b, or nearly 100%, as shown in c, depending
on how the risk factors interact. (d) In some situations it
might be wise to predict that the risk factors are inde-
pendent, giving a probability of 1 � (1 � �) (1 � b).
In each of these cases, the true hazard cannot be obtained
by any average of � and b, and thus, it is not correct to
average the results of model A and model B.

the average would reflect the probability that a given model
is this one “true model” (Morgan and Henrion, 1990). How-
ever, this condition—that one model is “correct” and the
other models are not—is, in fact, a very strict condition, and
in most cases where hazard is generated by the interaction
of many factors in an unknown way, it will not be satisfied.
What is more likely is that each model captures some aspect
of the underlying process but is not in and of itself a com-
plete description, so that the probability that a given model
is correct is near zero. As the models are not collectively
exhaustive, the probability weights given to the models will
not sum to one (Morgan and Henrion, 1990; Winkler, 1995).
Nonetheless averaging of probabilities produced by different
models is practiced not just in the field of earthquake-hazard
estimation, but in climate-change studies as well (Lempert
et al., 2004).

It can be argued that the weights assigned to earthquake
recurrence models are not meant to be probabilities, but they
simply judge the “relative merit” of the individual models.
While there is some debate on this subject (see, for example,
Abrahamson and Bommer [2005], McGuire et al. [2005],
and Musson [2005]), the Working Group, in their analysis,
treats the weights as probabilities in their aggregation of the
models. Here we posit that averaging over the model weights
cannot be valid, because the weights themselves are neither
exclusive nor exhaustive probabilities.

Consider our case of earthquake-hazard estimation. One
model, for example, the time-predictable model, attempts to
quantify the hazard based on the slip in the last earthquake.
Another model, the BPT-step model, makes predictions
based on the stress shadows from previous earthquakes. Av-
eraging the predictions given by these two models is not
valid because it is unlikely that earthquake hazard is a func-
tion of slip in the last earthquake but not stress shadows, or
vice versa (Bier, 1995). To put it another way, the models
are not mutually exclusive. One would expect that both of
these factors are important in estimating earthquake hazard.
The best approach would use all available information to
arrive at a prediction and aggregate the models in a statis-
tically sound way.

To further demonstrate exactly why averaging models
can be incorrect, consider the following example. Suppose
we are trying to assess hazard for a given region. This region
has “risk factor A” and “risk factor B,” which could be any
type of input used in a hazard model to make a prediction.
For example, these “risk factors” could be time since the last
earthquake, recent seismicity, strain data, etc. Suppose also
that we have two models for earthquake occurrence on hand:
model A, which makes predictions for earthquakes based on
risk factor A, and model B, which makes predictions based
on risk factor B. Based on the historical catalog and/or physi-
cal reasoning, model A gives an event probability of � for
regions having risk factor A, and thus for the region in ques-
tion. Similarly, model B assigns an event probability of b to
the region. Now, as neither of these models is a perfect pre-
dictor, � is not equal to b. As is shown in Figure 2a, � and
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b are proportional to the size of the subset with the event
divided by the size of the set with the risk factor. In the light
of conflicting estimates, what is our best guess for the prob-
ability of an event? Should we average � and b according
to expert opinion in the validity of these models? What can
we say mathematically about the possible values for the true
hazard?

In fact, without knowing how risk factors A and B in-
teract, we can place no constraint on what the true hazard
is, even if both model A and model B describe how risk
factors A and B affect earthquake hazard perfectly. The
Venn diagrams in Figure 2 illustrate this point. It is perfectly
consistent with the information given that the probability of
earthquake occurrence in this region is anywhere between
0% and 100%, regardless of the values of � and b. Risk
factors A and B could interact as shown in Figure 2b, so that
the region has no probability of an event, or as shown in
Figure 2c, in which an earthquake is nearly guaranteed. If
risk factors A and B are completely independent, the event
probability is then given by 1 � (1 � �)(1 � b), which is
greater than both � and b. Thus, many of the plausible values
for event probability can not be obtained by any average.

To make this example more concrete, consider the case
where model A in our example is the Poisson model and
model B is the empirical model from the Working Group
report. In this case, risk factor A is historical seismicity and
risk factor B is recent (post-1906) seismicity. If all we know
about the system is historical seismicity, then we can apply
the Poisson model and achieve an unbiased (although not
very precise) hazard estimate. Similarly, we can imagine that
the empirical model would be a “correct” model in the sense
that systemwide it gives unbiased estimates, and that if all
we know about the system is recent seismicity, it will give
a best estimate with this information. Using both models,
however, is problematic unless we understand how recent
seismicity and historical seismicity interact. In this case if
� � b, we would expect the actual probability to indeed be
the �. However, � � b in the case of the San Francisco Bay
Region. That is, the Poisson model gives a higher probability
than the empirical model because historical seismicity is
higher than recent seismicity. It is at least plausible that true
hazard in this case could be greater than � if systems that
currently have a dearth in seismicity relative to the historical
average have a higher hazard, perhaps because a great deal
of stress has accumulated during the recent lull in seismicity.
This interpretation is somewhat controversial, and we are
not advocating this as fact, but simply presenting a plausible
example in which the true hazard cannot be obtained by any
average. It is possible for parameters in different models to
be dependent in this way, and this possibility is ignored by
the linear combination of models used in the WG02 report.

Choosing Model Weights Based on Data Availability

Seven faults that are believed capable of generating an
earthquake of magnitude 6.7 or greater are incorporated into

the WG02 hazard estimate. Each of the five probability mod-
els is assigned a weight for these faults, and these model
weights are sampled in the logic tree. Because the models
are not mutually exclusive, there is no simple interpretation
for the relative weights assigned to the different models for
each fault. At first glance, it appears that they reflect the
probability that a particular model is the “correct model,”
although we have shown that this is not as straightforward
as it sounds, as more than one model can be “correct” in the
sense of being unbiased. We could consider the more “cor-
rect” model to be that which most accurately describes earth-
quake generation, or, alternatively, the model which is the
most precise (that is, resolves the most parameters). How-
ever, even this problematic interpretation cannot be used, for
the model weights differ from fault to fault, and we surely
do not expect the process of earthquake generation (with the
exception of the model parameters themselves) to differ
from fault to fault. The model weights are a function of the
fault in question because weights were based on the “relative
amount and quality of geologic data” available for each fault.
However, weighting based on availability of data can lead
to systematic errors. Certainly the data available do not de-
termine which model is the more correct model, as the phys-
ics of earthquakes is not a function of what it is possible to
measure. Hence, it is incorrect to weight models based on
this.

To see how weighting based on data quality can lead to
systematic errors, consider two faults, fault A and fault B.
Suppose we also have two models of the earthquake prob-
ability, the Poisson model and a recurrence model that gives
low probabilities after large earthquakes and higher proba-
bilities after a seismic lull. Suppose further that fault A has
been active historically, so that data exist from past earth-
quakes. We might be apt to give the Poisson model a low
weight for fault A, as the recent seismicity and abundance
of data seems to make the recurrence model a better fit. After
all, we should be able to make better predictions than the
Poisson model (which while it is unbiased has low precision)
for fault A because we have such an abundance of data.
Now, suppose fault B has been seismically inactive during
the historical record. We have few data, making it difficult
to apply the recurrence model in this case, which requires
information about past earthquakes. So we might be apt to
give the Poisson model a larger weight. But notice what we
have done. Compare the model predictions for the two faults
as shown in Figure 3. The recurrence model would give a
low probability for fault A because there were recent earth-
quakes and a high probability for fault B because there were
not. In each case, we weighted the model that gave the low-
est prediction the most. In this example, giving model
weights based on data availability systematically skewed the
hazard estimates to the low side.

Arbitrary Ordering of Models

Because the model weights in the WG02 report varied
from fault to fault, it was not possible to have the same
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Figure 3. Choosing model weights based on data
availability can lead to systematic bias, as shown in
this example. Fault A has recent activity, and a re-
currence model (R) gives a low probability for future
rupture. Fault B has no recent earthquakes, and thus
the recurrence model gives a high probability. The
Poisson model (P) gives the same probability estimate
for both faults. However, by weighting the models
based on the amount of data available, we systemat-
ically choose the model giving the lowest estimate in
each case.

Figure 4. Adapted from the WG02 report
(WGCEP, 2003). Division of weight assigned to each
probability model for each fault, as determined by
expert opinion. The time-predictable model was ap-
plied only to the San Andreas fault.

model in effect on each fault for a given Monte Carlo iter-
ation. To mitigate this problem, the models were organized
in the order shown in Figure 4. Then, for a given Monte
Carlo iteration, a single random number between 0 and 1
determined which model would be in effect on each fault.
The method can be seen graphically from Figure 4: a given
random number determines the horizontal position on the
graph. A vertical line drawn at that position specifies which
model is employed on each fault. For example, if the random
number is 0.6, the Mt. Diablo fault uses the Poisson model,
the San Andreas fault uses the BPT model, and the remaining
faults use the BPT-step model. This method has several prob-
lematic outcomes: certain models can interact, while others,
such as the empirical model and the BPT model, will never
both be used in the same iteration. Perhaps the most trou-
bling result of this method is that the ordering of the models
changes the result. That is, the Working Group positioned
first the empirical model, followed by the Poisson model,
the BPT-step model, and the BPT model, and arranged the
time-predictable model last, as shown in Figure 4. However,
a different ordering of these five models would lead to a
different, albeit only slightly different, result for the com-
bined hazard. This is troubling since the ordering is arbitrary.
According to the WG02 report, an independent sampling of
model weights on each fault would have resulted in the same
mean regional probability, but a smaller variance.

Note that the problems associated with choosing
weights based on data availability and the arbitrary ordering
of models could be avoided by making the model weights
constant from fault to fault. This would result in large pa-
rameter uncertainty on some faults for some models. The
probability distributions of unknown parameters (for ex-
ample, for the time-predictable model) would have to be
assessed in this implementation.

Solutions

The simplest way to incorporate model uncertainty is to
reparameterize model uncertainty as parameter uncertainty.
Morgan and Henrion (1990) suggest forming a metamodel,
which reduces to various individual models in special cases.
This is possible if the models are sufficiently similar, as with
WG02’s BPT and BPT-step model, where model uncertainty
could be recast as parameter uncertainty regarding the size
of the stress-step interaction.

However, to combine probability distributions from suf-
ficiently different models, a careful consideration of model
dependence is needed. Here, in brief we discuss Bayesian
methods and copulas (dependence models) and present a
simple example using this machinery to aggregate different
models based on the level of dependence between them.

Bayesian Methods

A straightforward formulation for the model-depen-
dence problem is offered by Bayesian statistics (Gelman et
al., 1995). If model A gives a distribution fA, and model B
gives a distribution fB, then Bayes’ Rule gives the posterior
probability distribution

f ( f , f ) � f(p)L( f , f |p) . (3)Post A B A B

Here, f(p) is the prior probability distribution and L(fA, fB|p)
is the likelihood that both model A and model B will give
distributions fA and fB, respectively, if the actual probability
is p (Bier, 1995). The Bayesian formulation provides a nat-
ural way to incorporate expert information as prior knowl-
edge; alternatively, one could use a Poisson distribution as
a prior. As more information is acquired for a given region
or fault, the prior is updated, and a new distribution is ob-
tained. Naturally, assessing the likelihood function is the real
challenge (Clemen and Winkler, 1999). In the case of mul-
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tiple models, as shown above, the likelihood function incor-
porates all notions of bias and dependence.

The advantage to the Bayesian approach is that the same
framework can easily be used in regions of high or low seis-
micity, regardless of the amount of data available. A Poisson
prior is in many ways ideal as it gives the level of hazard
one would assume having no information other than seis-
micity. This is exactly the function of a prior in Bayesian
analysis—to assess the state of knowledge before looking at
other sources of information. This prior can then be updated
as new information is acquired for a particular fault. For
example, updating a Poisson prior with a likelihood function
based on the additional information of time since the last
earthquake would multiply the probability based on histori-
cal seismicity alone by the likelihood that the time since the
last earthquake is consistent with that historical seismicity,
according to a recurrence model of the analyst’s choice.

Two potential pitfalls here must be avoided. First, to
avoid bias it is necessary to incorporate all information that
is known. For example, suppose for fault A we know the
time since the last earthquake. On fault B we know there has
been no earthquake in the past several hundred years. In
addition to updating our prior for fault A with this new in-
formation, the prior for fault B must be updated as well. In
this example, we have a lower limit on the time since the
last earthquake for fault B, and this information must be
incorporated into the hazard estimate. Should Bayesian
methodology be used, failure to account for all information
can lead to systematic bias. For example, it would be incor-
rect to lower hazard estimates on faults that ruptured in re-
cent history without also raising estimates for faults with no
recent activity. The Poisson model can have no bias overall,
that is, it can be correctly normalized over the entire system
of faults. We want to use more information than the Poisson
model alone, since the Poisson model has poor precision.
However, when we update the Poisson prior, we must be
careful to do it in such a way that total hazard systemwide
remains unchanged. Otherwise, we risk sacrificing low bias
for precision, which is a poor trade.

A second pitfall must be avoided in the Bayesian for-
mulation. In general, it is possible to update a prior with
several types of data. The prior can be updated with some
data, yielding a posterior distribution, which then becomes
the “new prior” that can be updates via Bayes’ Rule with
additional data. However, this is only possible when the data
are independent. If the data are dependent, the dependence
must be included in a single likelihood function as shown in
equation (3). The prior and the likelihood function as well
must be independent to multiply them as is done in Bayes’
Rule.

Copulas

Copulas are dependence models that are ideally suited
to the task of combining distributions. They are often used
to combine knowledge from different experts into a single-

probability distribution (Clemen et al., 2000; Jouini and Cle-
men, 2002). The expert-aggregation problem is similar to
that of the model-aggregation problem. As with model in-
formation, expert knowledge is partially dependent, because
experts share knowledge. It is not a matter of which expert
is right and which is wrong; rather, each expert gives addi-
tional information (presumably a function of the knowledge
that differs between experts). As this is very similar to the
case of model uncertainty, copulas could be used to combine
multiple probability distributions from individual models
into a single probability distribution.

Copulas are functions that combine univariate marginal
distributions into multivariate distribution functions. A key
theorem here is Sklar’s theorem (Sklar, 1959), which states
that given an n-dimensional distribution function Hn(x1,. . .,
xn) with marginal distributions h1(x1),. . . , hn(xn), there exists
a copula C such that

H (x , . . . , x ) � C(h (x ), . . . , h (x )) . (4)n 1 n 1 1 n n

Furthermore, if h1(x1),. . . , hn(xn) are continuous, C is unique.
Copulas thus combine the information from the mar-

ginal distributions (in this case, the individual model prob-
ability distributions) into a single distribution Hn. Consider
two models that make a prediction based on different sets of
parameters. If true hazard is not a function of one set of
parameters or the other, but rather an albeit complicated
function of both sets of parameters, then each model is giv-
ing information that should determine the final hazard. The
final probability distribution for hazard should be a function
of each model output. The copula is the function that com-
bines the two probability distributions into one distribution.

From Sklar’s theorem one can see that any multivariate
distribution defines a copula. The choice of copula is a func-
tion of the dependence structure of the marginals, but not a
function of the marginals themselves. Choosing the copula
that correctly describes the dependence between two models
is the most important part of this formulation. Clemen and
Reilly (1999) discussed how to use expert opinion to this
end. If the models are exchangeable in terms of their depen-
dence, an Archimedian copula is ideal, as it treats the mar-
ginal distributions symmetrically (Jouini and Clemen, 2002).
For more flexibility, the multivariate normal copula can be
used (Clemen and Reilly, 1999). It encodes dependence by
using pairwise correlation coefficients, for example, Spear-
man’s q or Kendall’s s (Lehmann, 1966). This can be ideal
in situations where there are few data, for the statistical mea-
sures of dependence q or s can be assessed with expert
opinion.

A Simple Example

Jouini and Clemen (2002) presented a simple method
using copulas in a Bayesian framework to combine multiple
probability distributions from experts. We follow their
method here to combine two distributions from the WG02
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report: the probability distributions given by the Poisson and
empirical models.

Jouini and Clemen (2002) used a uniform prior distri-
bution for the application of Bayes’ Rule (equation 3). To
calculate the likelihood function, they combined the individ-
ual expert probability distributions fi(h) using a family of
copulas described by Frank (1979). This family of copulas
is indexed by a single parameter, Kendall’s s (Kendall,
1938). For two independent and identically distributed pairs
of random variables, Kendall’s s is defined as the probability
of concordance minus the probability of discordance. The
copula family of Frank (1979) can capture the full range of
positive dependence from s � 0 (independence) to s � 1
(perfect positive dependence). Furthermore, Jouini and Cle-

men assume for simplicity that given a random median Mi

given by the ith marginal, the marginal distributions are only
dependent through their estimation errors h � Mi .

Under these assumptions, the posterior probability dis-
tribution is proportional to

c(1�F (h), . . . , 1�F (h)) f (h) . . . f (h) , (5)1 n 1 n

where c is the copula density function, and Fi is the cumu-
lative probability distribution generated from the ith mar-
ginal fi .

An example of this copula-based method is applied to
the Poisson and empirical probability distributions from the
WG02 report and shown in Figure 5. We fit the individual

Figure 5. Combining the Poisson and empirical models with an equally weighted
linear combination (a) leads to quite different results than a using a copula-based ag-
gregation method (b)–(d). If the two models are independent, Kendall’s s equals zero
and our copula reduces to the independence copula. This aggregation has the least
variance (b). If we assume more dependence between the input models, then there is
less total information. As we expect, in that case the combined model has higher
variance, as shown (c) and (d).
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probability distributions from Figure 1a with Gaussian dis-
tributions. Recall that each statistical model produces a dis-
tribution of values for the probability of an earthquake of
magnitude 6.7 of greater. The width of the Gaussian that we
fit is determined by the parameter uncertainty of the indi-
vidual models. In Figure 5a, we show the regional proba-
bility distributions given by the Poisson and empirical mod-
els, along with an equally weighted average of the two in
black. This is analogous to the WG02 methodology. Figure
5b, c, and d shows examples of the copula-based aggregation
for three different levels of dependence. Figure 5b shows an
aggregation in which the two models are assumed to be in-
dependent (s � 0). In this case, Frank’s copula reduces to
the independence copula C � f1 f2. If the two models are
independent, then together they provide the most informa-
tion, and the variance in the combined distribution is as small
as possible. Higher levels of dependence result in more var-
iance, as more weight is added to regions where the two
distributions differ. Large values of Kendall’s s result in a
bimodal combined distribution (Fig. 5d). In the case of two
Gaussian marginals with equal variance, the combined dis-
tribution would be symmetric. In general, Frank’s copulas
give more weight to the marginal with less variance, and
thus the empirical model is given more weight in the aggre-
gated distributions in this example.

The copula-based aggregations shown in Figure 5b, c,
and d do not assume that the Poisson and empirical models
are mutually exclusive. Rather, they treat both models as
marginal distributions. The Poisson model is a marginal dis-
tribution for historical seismicity and the empirical model is
a marginal distribution for post-1906 seismicity. The copula
is the function that combines the two marginals into the bi-
variate probability density.

The preceding approach can easily be generalized to
incorporate more than two models. For each pair of models,
one pairwise correlation coefficient is needed to completely
define the copula from this particular family. Expert opinion
could easily be used to this end. The main drawback of this
formulation is that the answer is highly dependent on the
type of dependence structure between the models, and thus
on the copula chosen. Archimedian copulas, which treat the
dependence between the marginal distributions symmetri-
cally, are certainly the easiest to implement. The copulas we
use here from Frank (1979) are members of this class. Mod-
eling complex dependence structures, however, requires a
more sophisticated analysis. To this end, Clemen and Reilly
(1999) discuss methods using the copula underlying the mul-
tivariate normal distribution. In addition, MacKenzie (1994)
develops a class of copulas with even more flexibility.

Treating the model weights as probabilities (as a linear
combination does) is problematic because the weights are
not mutually exclusive or collectively exhaustive. Copulas
provide a way to combine multiple models without aban-
doning probabilism.

Conclusion

We have identified several problems with WG02’s for-
mulation of model uncertainty. In particular, using a linear
combination of different models ignores model dependence
and results in large uncertainties in their results. Although
the true epistemic uncertainty may indeed be large, the actual
amount of uncertainty is ultimately a function of the depen-
dence structure between the models, which was not assessed.
In addition, we find that choosing model weights based on
data availability can lead to systematic bias. Eliminating bias
is paramount because hazard estimates are used to assess
insurance rates, building codes, and public policy. We seek
a hazard formulation that is both correct in the sense that
there is no statistical bias and as good as possible in the sense
that it is as precise as the data allow. To do this, a proper
formulation of model uncertainty and dependence is needed.
We have presented here one possible solution that combines
Bayesian methods with copulas to model dependence struc-
tures. These methods must be implemented with careful con-
sideration of the type of dependence between different mod-
els. If implemented properly, these methods may reduce the
total uncertainty in hazard estimates, as well as eliminate
sources of bias in existing methodology.
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