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[1] We investigate the ground motion produced by rupture propagation through circular
barriers and asperities in an otherwise homogeneous earthquake rupture. Using a three-
dimensional finite difference method, we analyze the effect of asperity radius, strength,
and depth in a dynamic model with fixed rupture velocity. We gradually add complexity to
the model, eventually approaching the behavior of a spontaneous dynamic rupture, to
determine the origin of each feature in the ground motion. A barrier initially resists
rupture, which induces rupture front curvature. These effects focus energy on and off
the fault, leading to a concentrated pulse from the barrier region and higher velocities at
the surface. Finally, we investigate the scaling laws in a spontaneous dynamic model. We
find that dynamic stress drop determines fault-parallel static offset, while the time it takes
the barrier to break is a measure of fracture energy. Thus, given sufficiently strong
heterogeneity, the prestress and yield stress (relative to sliding friction) of the barrier can
both be determined from ground motion measurements. In addition, we find that models
with constraints on rupture velocity have less ground motion than constraint-free
spontaneous dynamic models with equivalent stress drops. This suggests that kinematic
models with such constraints overestimate the actual stress heterogeneity of earthquakes.
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1. Introduction

[2] Heterogeneity plays an important role in earthquake
rupture propagation. Stored stress, strength, and frictional
properties on the fault plane conspire to yield a complex
rupture process. Numerous kinematic inversions of wave-
form data indicate that earthquake ruptures follow complex
paths and have heterogeneous slip distributions [Hartzell
and Heaton, 1983; Archuleta, 1984; Beroza and Spudich,
1988; Wald and Heaton, 1994; Cotton and Campillo, 1995].
The purpose of this paper is to examine aspects of ground
motion in the context of simple but heterogeneous ruptures.
[3] Kinematic inversions employ the dislocation model,

which describes the earthquake as propagating slip along a
fault plane. The displacement u recorded by a seismograph
on the surface can then be written as

ui x; tð Þ ¼
Z t

0

Z
S
Duj X; tð ÞGij x� X; t � tð ÞdXdt; ð1Þ

where Du is the slip on the fault surface S and G is the
Green’s function for a point dislocation and a given fault
and crustal structure. Note that matching u(x, t) on the
surface does not guarantee that the slip propagation is
physical. For example, simple dislocation models can

produce infinite accelerations and infinite stress drops
[Madariaga, 1978]. In addition, this is an underdetermined
problem, as Du on the fault is not unique for a given u on
the surface. The displacement u is only known at a limited
number of stations, and their proximity to the fault limits the
frequency resolution of Du. In the far field, the inverse
problem is unstable, as slip distributions with arbitrarily
different L2 norms can produce identical radiation [Kostrov
and Das, 1988]. Constraints must be introduced into the
inverse problem to overcome this instability. Consequently,
most kinematic inversions that use the dislocation model
assume constant rupture velocity or constrain the rupture
velocity to be slowly varying [Olson and Apsel, 1982;
Hartzell and Heaton, 1983].
[4] While the kinematic approach specifies slip every-

where on the fault, dynamic modeling of an earthquake is
formulated as a mixed boundary value problem, with slip
and stress specified on different parts of the fault. In the case
of a highly nonuniform rupture velocity, this mixing of
boundary conditions prevents the linearization of the dy-
namic inverse problem. While nonlinear dynamic inversions
have been attempted [Peyrat et al., 2004], they require
extensive computational resources and currently have poor
resolution. Thus kinematic modeling remains the most
widely used tool with which to match observed waveforms.
[5] As dynamic inversions are not yet practical, it is

extremely important to understand the dynamic effects
associated with heterogeneities. Do kinematic inversions
capture heterogeneity in a way that is compatible with what
we know about dynamic, physically realistic rupture prop-
agation? What type of radiation do we expect to see from
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inhomogeneities in dynamic rupture? Since kinematic inver-
sions are poorly constrained, forward modeling is needed to
ensure that dynamic effects are captured in a physically
consistent way.
[6] In this paper, we analyze the radiation produced by

circular barriers and asperities in an otherwise homogeneous
rupture. The terms ‘‘barrier’’ and ‘‘asperity’’ are widely
used in a variety of contexts, but in this paper we define
them as by Madariaga [1983], in reference to the dynamic
parameters on the fault. We define a barrier as a region that
has a higher frictional strength (yield stress) than the
surrounding fault. Real life barriers can be regions with
different material properties or changes in the fault geom-
etry that hinder rupture propagation. An asperity is a region
with a higher prestress than the surrounding fault, while an
antiasperity has a lower prestress. Note that the term
‘‘asperity’’ is used in the kinematic modeling community
to denote a region with high slip, but here we use it to refer
to stress level. Asperities may be regions that remained
unbroken during a previous earthquake and thus are closer
to failure. Asperities and barriers produce different ground
motion, as barriers delay rupture but asperities do not. A
region can, of course, have both an increased prestress and
yield stress, and be both an asperity and a barrier in this
sense.
[7] Das and Kostrov [1983] first studied the breaking of a

single circular asperity and found that rupture initially
circled the edges of the asperity before collapsing inward.
Later, Fukuyama and Madariaga [2000] also analyzed the
single asperity with higher resolution. In recent work,
Dunham et al. [2003] studied the spontaneous, dynamic
propagation of rupture around a barrier and an antiasperity.
While both of these obstacles delay rupture, they interact
quite differently with the rupture front. In the case of the
barrier, this region initially resists rupture, slowing down the
rupture front. The rupture front surrounds the region,
focusing waves into the barrier. This phenomena, in which
a curved rupture front focuses waves, is termed rupture front
focusing [Fukuyama and Madariaga, 2000]. This focusing
can eventually cause the barrier region to rupture. In some
cases the barrier failure can initiate supershear rupture, in
which the rupture velocity exceeds the shear wave speed
[Dunham et al., 2003]. This is an important test case
because it isolates the interactions between heterogeneities
and the rupture front that lead to phenomena that would not
be captured without a complete, dynamic description. While
the work of Dunham et al. [2003] focused on the propaga-
tion of the rupture on the fault, in this paper we will
primarily be investigating the ground motion produced by
these heterogeneities.

[8] In order to better understand the radiation associated
with the dynamic breaking of a barrier or asperity, we
develop a series of models with increasing levels of com-
plexity. These models have various assumptions, designed
to capture and separate the key phenomena observed in
fully dynamic simulations. In this way, the effects of rupture
velocity, rupture front curvature, and time to break the
barrier, all of which arise in the fully spontaneous, dynamic,
inhomogeneous rupture, can be separated and studied. The
models are summarized in Table 1 and are of two varieties:
reduced and spontaneous, as described below. The medium
surrounding the fault is isotropic and linear elastic, with
identical material properties on each side. The shear mod-
ulus is m = 30 GPa, the S wave speed is cs = 3.46 km/s, and
Poisson’s ratio is 1/4. We constrain slip to be horizontal,
which renders the frictional dynamics insensitive to the
absolute level of stress. This allows us to measure all
stresses with respect to sliding friction. This convention is
used hereafter; for example, the terms prestress and yield
stress refer to the difference between these values and
sliding friction. The fault is 20 km long and extends from
the free surface to 10 km depth. The heterogeneity is located
10 km along strike.
[9] We initially analyze several reduced models in terms

of their effects on ground motion. These models are reduced
in the sense that the rupture velocity is constrained, so that
they are not spontaneous. They are, however, dynamic, as
we specify shear traction on the slipping part of the fault.
The first model, model A, constrains the rupture velocity to
be constant everywhere, even in the zone of heterogeneity.
The only heterogeneity in this model is the extra stress drop
in the circular zone. Also, the rupture front is straight, as
shown in Figure 1. In the second reduced model, model B,
the breaking of the heterogeneity is delayed, as is seen in
spontaneous, dynamic models [Das and Aki, 1977]. The
circular zone, which is now more like a barrier, ruptures in
the same manner as in model A (with a straight rupture front
within the heterogeneity), but at a later time. In model C, we
better approximate the way in which the barrier fails by
adding curvature to the rupture front, which enhances
rupture front focusing. Finally, we analyze the spontaneous,
fully dynamic model, complete with the effects of variable
rupture velocity and rupture front focusing. In this model,
model D, we find that with sufficient resolution of only two
parameters in the ground motion, the prestress and fracture
energy of the heterogeneity can be determined. This is in
contrast to the general case in real, fully heterogeneous
ruptures, where due to nonuniqueness we can invert for
prestress or fracture energy, but not both independently
everywhere [Peyrat et al., 2001; Guatteri and Spudich,

Table 1. Models at Various Stages of Complexity

Model Description Effects

A dynamic model with fixed rupture velocity throughout, even in barrier additional displacement proportional to R2tb
B dynamic model with fixed rupture velocity; barrier ruptures at a

later time but in identical manner to model A
stopping phases from barrier lead to initial arrest of ground motion,

followed by larger peak velocities on surface when barrier
finally breaks

C dynamic model with fixed rupture velocity and barrier time delay;
barrier ruptures with curved rupture front

curved rupture front focuses energy and leads to more well defined
barrier pulse

D spontaneous dynamic model (rupture velocity is no longer fixed); can
now vary prestress and yield stress independently

similar to model C but with increased focusing effect; also,
unconstrained rupture velocity leads to more
radiation than with nonspontaneous models
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2000]. In addition, we find that model D, free of constraints
on the rupture velocity, produces larger pulses in the ground
motion than the reduced models with an equivalent stress
drop. This is explained further in section 3.

2. Reduced Models

[10] In models A, B, and C, we follow the method of
Andrews [1985] to constrain rupture velocity to be constant
in the context of a dynamic source representation. We want
to keep the fault locked ahead of the rupture front, specify
dynamic stress drop behind the rupture front, and solve for
slip. We numerically regularize this singular problem by
specifying frictional strength for each point on the fault as a
function of time and position. This is similar to the cohesive
zone model of Palmer and Rice [1973]. Frictional strength
for a given point at horizontal distance x from the nucleation
zone and at time t is given by

ty ¼
0 xj j < tvr;
t0
2Dx

xj j � vrtð Þ xj j > tvr;

(
ð2Þ

where vr is the rupture velocity, t0 is prestress, and Dx =
100 m is the grid spacing. The slip time function is not
constrained as in a kinematic model. Rather, this is a
dynamic (though not spontaneous) model that constrains
rupture velocity, specifies stress, and solves for slip. Note
that in this formulation stress drops linearly with distance
on the fault, not with displacement, as with a slip-
weakening friction law.
[11] We parameterize the problem as follows: We specify

the background prestress t0 = 5 MPa, barrier prestress
t0 + tb, barrier radius R, and barrier depth d, as shown in
Figure 1. We specify a rupture velocity of 0.8 times the
Rayleigh wave speed, which is a typical rupture velocity seen
in real earthquakes [Geller, 1976; Somerville et al., 1999].
Rupture begins along a vertical patch at one side of the fault.
[12] In the first reduced model, model A, the rupture

velocity is constant everywhere on the fault, including in the
circular heterogeneity itself. The heterogeneity in model A
is similar to an asperity rather than a barrier, as it does not
delay the rupture front. Synthetic seismograms for this

model with various values of tb, R, and d are shown in
Figure 2, along with the seismograms for a homogeneous
rupture (no asperity) for comparison. The default parameters
for the asperity in Figure 2 are tb = 35 MPa, R = 1 km, and
d = 5 km, unless otherwise stated. After subtracting off the
displacements from the homogeneous rupture, this model
cleanly shows that all components of additional displacement
are proportional to R2 and tb, for all points on the surface, at
all times. This is to be expected as model A is linear in the
displacement and stress fields. Since the rupture front is
always in the same location as in a homogeneous rupture,
we can superpose the displacement from the homogeneous
rupture with the displacement from the additional stress drop
in the asperity region to give us the ground motion for model
A. Thus R2tb is the effective force of the asperity [Kostrov
and Das, 1988]. The scaling relationship for depth is
more complicated, but this parameter has the most influ-
ence on surface displacement directly above the asperity.
In addition, this model shows that velocity pulse width is
independent of tb. The width of the asperity velocity pulse
does increase with R and d, most notably in the forward
direction from the asperity.
[13] The pulses from the asperity are most easily seen in

the fault-parallel and vertical records, as the background
radiation in the fault-perpendicular records obscures them.
One can use the height of the pulse to constrain R and tb,
and the width of the pulse to constrain d and R. In addition,
the polarity of the fault-perpendicular asperity pulses gives
the location of the heterogeneity, as the first motion is
toward the fault in the backward direction from the
asperity and away from the fault in the forward direction
from the asperity on the right moving block. Directly
above the asperity, asymmetry of the fault-normal com-
ponent in the fault-parallel direction causes this pulse to
vanish. The vertical records also show a reversal of
polarity. If the asperity is large enough to resolve in
the perpendicular or vertical component and there are
enough near-field stations, the horizontal location of the
heterogeneity can be determined by looking at the polar-
ity of the asperity pulse relative to station location, as
well as the pulse’s absence in stations above the asperity.
[14] In our second reduced model, model B, we include

an effect seen in spontaneous, dynamic models: a barrier
time delay. Before we discuss the results of model B, we
first motivate this model by discussing results from spon-
taneous dynamic models, in which we find that the barrier
breaks only after a time delay that increases with the
additional resistance of the barrier. To quantify this effect,
we first study the problem in the simple whole-space
geometry (to remove the effects of the finite fault width
and free surface) using a slip-weakening fracture criterion
[Ida, 1972; Palmer and Rice, 1973; Andrews, 1976]. The
initial rupture is bilaterally expanding with a straight front
under mode II conditions (numerically accomplished by
placing periodic boundary conditions in the vertical direc-
tion, as by Dunham et al. [2003]), and is perturbed into
mixed mode conditions as it encounters the barrier. We
define the break time tb as the difference between the time at
which the rupture arrives at the closest point on the edge of
the barrier and the time at which the last point within the
barrier breaks. To quantify the resistance of the barrier, we
take the fracture energy of the barrier Gb = ty

bdc and scale it

Figure 1. Reduced model parameters. Rupture is initiated
on a vertical patch at the left side of the right-lateral strike-
slip fault plane. The rupture front travels to the right with a
fixed rupture velocity of vr, eventually reaching a circular
heterogeneity of radius R at a depth d. Most of the fault has
a prestress of t0, while the circular region in the center of
the fault has a prestress of t0 + tb.
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by the energy release rate of a static mode II crack having
half length L (measured to the center of the barrier) G0 =
(p/2)t0

2L/m. The break time is scaled by the time it takes
a shear wave to cross the barrier 2R/cs. In these expres-
sions, cs is the shear wave speed, dc is the slip-weakening
displacement, t0 is the prestress (which is constant
everywhere), and ty

b is the yield stress of the barrier.
[15] Figure 3 shows the results of 150 numerical

experiments, revealing that the break timescales linearly with
Gb/G0. This result arises from a balance between the energy
driving the rupture (proportional to G0) and that resisting it
(proportional to Gb). This balance of energies has been
discussed by Madariaga and Olsen [2000] and Gb/G0 is, up
to a constant, equal to the inverse of their parameter k, which
has been shown to determine the rupture dynamics of homo-
geneous faults. A linear fit between the nondimensionalized
break time and resistance of the barrier yields

tb ¼
2R

cs
1þ 0:6

Gb

G0

� �
: ð3Þ

Figure 2. Effect of asperity prestress, radius, and depth for a model with fixed rupture velocity and no
barrier time delay (model A) at three stations. The asperity pulses are most cleanly seen on the fault-
parallel and vertical components, as the fault-normal components of the homogeneous rupture are larger,
tending to drown out the barrier signal. Model A is linear, so the additional displacement due to the
asperity scales with tb and R2. In addition, the velocity pulse width increases with R and d. Note that the
polarity of the fault-perpendicular and vertical asperity pulses give the location of the asperity: for
example, in the fault-perpendicular record the first motion is toward the fault in the backward direction
from the asperity and away from the fault in the forward direction of the asperity on the right moving
block.

Figure 3. Scaling for barrier break time for a spontaneous,
dynamic model with periodic boundary conditions in the
vertical direction (no free surface) and constant prestress
everywhere on the fault.
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In section 3, we extend this analysis to the case of a finite
fault bounded on top by a free surface.
[16] Returning to model B, we specify that the heteroge-

neity, now more like a barrier, again fails with a straight
rupture front, but at a later time. This delay time makes the
ground motion more dramatic: As the rupture front passes
around the unbroken barrier, the stress within it increases,
particularly at the edges of the unbroken region. As the
barrier rupture delay approaches infinity, the stress buildup
in the barrier approaches the initial conditions of the Das-
Kostrov asperity model, in which the rest of the fault is
broken [Das and Kostrov, 1983]. Because of the additional
stored stress, the barrier in this model breaks more violently
than in the first model without the time delay.
[17] Figure 4 shows the changes in ground motion

introduced by a time delay of 0.28 s. Unlike in model A,
the barrier in model B, which is initially locked as the
rupture front surrounds it, first arrests the ground motion,
producing a stopping phase visible in the second panel.
When the barrier does fail, it produces a pulse that reaches
the surface at a later time than in model A. The peak
velocity in this pulse is higher than in model A as well.
Thus the time delay leads to larger velocities in the seismo-
grams, not because the initial conditions of the models are
different (they are not; the prestress is the same in model A
and model B) but because of the additional stress stored in
the barrier region as the rupture front surrounds it.
[18] In model C, the final reduced model, we attempt to

more closely match the spontaneous breaking of the barrier.
Because of the increased stress around the edge of the
barrier, in the spontaneous case the barrier collapses inward
with a curved rupture front [Das and Kostrov, 1983]. The
curved rupture front focuses the energy to a point, so that
the barrier breaks with a well-defined pulse. To mimic this,
we specify the rupture front as an arc with the same radius
of curvature as the barrier itself, moving in the forward
direction across the barrier with a fixed rupture velocity vr.
This model also has a barrier time delay. In comparison to

model D, we find that the motion on the fault is similar,
although in the spontaneous dynamic case the radius of
curvature of the rupture front decreases as the barrier
breaks. Thus in the spontaneous dynamic case there is even
more focusing, leading to a very well defined pulse as the
last area of the barrier fails. The spontaneous dynamic
results are discussed more completely in section 3.

3. Spontaneous Dynamic Model

[19] Finally, we consider model D, a fully spontaneous,
dynamic model governed by a linear slip-weakening friction
law [Ida, 1972; Palmer and Rice, 1973; Andrews, 1976].
We specify a slip-weakening displacement of dc = 0.47 m.
A circular heterogeneity with radius 1 km is located 10 km
along strike and at a depth of 5 km. In this model, the
rupture velocity is allowed to vary. The dynamic model also
allows a different degree of freedom, for both the yield
stress and prestress are specified at each point. Outside the
heterogeneity, we choose a background prestress of 5 MPa
and a yield stress of 10 MPa. Rupture is initiated by raising
the prestress along a vertical patch at one side of the fault.
[20] The dynamic parameters in the heterogeneity can be

tuned to make an asperity-like model (high prestress) or a
barrier-like model (high yield stress). For the ‘‘representa-
tive’’ asperity rupture in the following figures we choose an
asperity prestress of 35 MPa and an asperity yield stress of
40 MPa. The examples plotted of a barrier rupture use a
barrier prestress of 5 MPa and yield stress of 50 MPa.
[21] For asperity-like models, the ground motion is very

similar initially to the reduced models without a time delay.
However, a sufficiently large prestress can initiate super-
shear rupture, forming a second pulse on the free surface.
Barrier-like models have a similar rupture history to the
reduced models with time delay. However, we find that in
both cases, the dynamic models produce more ground
motion than the reduced models with similar rupture history
and equivalent stress drop. The change in ground motion

Figure 4. Fault-parallel velocity on the surface at 0.56 s intervals for several models with constant
rupture velocity. The homogeneous rupture (Figure 4a) has no stress heterogeneity and is shown as a
reference. The additional burst of radiation due to the heterogeneity can be seen in model A (Figure 4b).
The barrier time delay of 0.28 s in model B (Figure 4c) initially arrests the ground motion, producing
arrest waves visible in the second panel, followed by a more dramatic pulse when the barrier fails. These
features are most easily seen in the fault-parallel components. In the fault-perpendicular records, the
homogeneous pulses dominate the motion, as seen in Figure 2. In these plots, tb = 35 MPa, R = 1 km, and
d = 5 km. Note that the color scale is clipped for points close to the fault.
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introduced by constraining rupture velocity can be seen in
Figure 5. The black seismograms in Figure 5 show the fault-
parallel velocity from a fully dynamic, spontaneous rupture
(model D). To understand the remaining seismograms in
Figure 5, first consider a point on the fault a horizontal
distance x from the nucleation zone in model D that has a
rupture time of t0. In a fully constrained model with constant
rupture velocity (model A), this point has a rupture time of
x/vr. Therefore x/vr � t is the time perturbation necessary to
force the point in the constrained model to rupture at the
same time as it does in the spontaneous rupture. We can
approximate the spontaneous rupture with a constrained
model by considering t in Equation 2 a function of position.
If we make the substitution t ! t + g(x/vr � t0) for each
point on the fault, when g = 1 we have a constrained rupture
that approximates the rupture history of the fully dynamic,
spontaneous rupture. As we decrease g, the rupture velocity
is more and more constrained, until g = 0, giving a constant
rupture velocity and a straight rupture front (model A,
shown in red). Note that the red seismograms for the
asperity and barrier ruptures are different due to the differ-
ence in prestress within the heterogeneities between the two

models. Figure 5 shows that in both the asperity and barrier
cases, the more constrained the rupture velocity, the smaller
the pulses from the heterogeneity, even though for a given
case (asperity rupture or barrier rupture), the prestress is the
same in both the constrained and in the spontaneous
models. This is true even though the perturbation to the
rupture time x/vr � t0 is positive in the asperity region and
negative in the barrier region. The result is the same;
constraints in rupture velocity (in this case, limits on both
rupture front curvature and variations in rupture velocity)
lead to less ground motion. This suggests that a kinematic
model that introduces such a constraint would give an upper
limit on tb. Smoothing about a particular rupture velocity in
an inversion, in effect, sets a scale for stress. This leads to an
overestimation of stress heterogeneity on the fault.
[22] Figure 6 shows fault-parallel particle velocity (half of

the slip rate) on the fault plane as well as fault-parallel
velocities on the free surface for two model D ruptures. The
first panel is shown 3.75 s after nucleation, and subsequent
panels are plotted at 0.69 s intervals. The rupture with an
asperity has a very different rupture history than the rupture
with a barrier, and this causes differences in the ground
motion as well. The asperity rupture produces a large
supershear pulse traveling ahead of the (original) rupture
front. This happens in the barrier case as well, but the
supershear pulse is much smaller and dies out quickly. In
the asperity rupture, the supershear rupture leads to a Mach
front that is visible on the surface further down the fault.
The breaking of the barrier produces a very well defined
interface wave that travels unhindered along the previously
broken regions of the fault. In the asperity rupture, there is
less rupture front focusing, and thus the asperity pulse is
less well defined than the barrier pulse. The main differ-
ences in the ground motion can be seen in the wave arrival
times and the stopping phase from the initial delay in
rupture of the barrier region. In particular, a large asperity
can produce extremely high fault-parallel velocities. The
signature of a barrier is most clearly seen in the rupture
history on the fault and thus in wave arrival times on the
surface.
[23] Sample seismograms and their corresponding S wave

isochrones for model D are shown in Figures 7 and 8. The
isochrones show which parts of the fault are contributing to
the ground motion seen at various times for a given station
[Bernard and Madariaga, 1984; Spudich and Frazer,
1984]. Radiation is quite different for the asperity and
barrier ruptures. In the barrier rupture, the barrier initially
resists rupture, and this can be seen in the isochrones and in
stopping phases visible in the seismograms. The highly
loaded asperity, however, generates supershear rupture
velocities, which dramatically alter the isochrones in the
forward direction from the asperity. Also, the asperity pulse
width is much greater than the barrier pulse width due to
rupture front focusing in the barrier rupture.
[24] One can invert for the prestress and yield stress of the

heterogeneity, relative to friction, from only two parameters:
the break time of the heterogeneity and the final fault-
parallel offset on the surface. The break time, which can be
found from a kinematic inversion or simple timing of wave
arrivals, increases with fracture energy. The fault-parallel
static offset at all points on the surface is a monotonically
increasing function of dynamic stress drop. Contours for

Figure 5. Effect of a rupture velocity constraint at a
station 0.5 km off fault from the surface point directly above
the heterogeneity. The nondimensional parameter g is a
measure of the amount of variation in rupture velocity that
is allowed. (A complete description is given in the text.) The
black lines are velocity seismograms for a spontaneous,
dynamic rupture (model D) with no rupture velocity
constraint for a rupture with an asperity (Figure 5a) and a
barrier (Figure 5b). The rupture history of these runs can be
approximated by a constrained model shown in gray. As we
constrain the rupture velocity to be more constant (and
decrease g), the barrier and asperity pulses shrink, until we
reach the red line, which shows a fully constrained model
where rupture velocity is constant everywhere and the
rupture front is straight (model A).
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each of these parameters for different levels of prestress and
yield stress in the barrier are shown in Figure 9. This plot
shows the results of 45 numerical experiments, each with a
different prestress and yield stress for the barrier. Note that

the static offset contours are drawn for a particular point on
the surface, 0.5 km off fault from the point directly above the
barrier center. However, the contours were found to be
similar for all near-field points. Any one station is sufficient

Figure 6. Comparison of fault-parallel velocity for two spontaneous, dynamic models (model D). The
horizontal black line in each diagram represents the fault trace on the surface. Above this line, fault-
parallel velocity is plotted on the free surface. Below this line, fault-parallel particle velocity on the fault
plane is shown. (These planes are perpendicular to each other as shown in Figure 1.) Note that the color
scale is logarithmic.
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for this constraint, for all stations have offsets that are
increasing functions of prestress alone.
[25] Note that in Figure 9, displacement is no longer a

linear function of prestress (that is, the contours for prestress
are not spaced evenly), as in the reduced models. Also,
barrier time delay is no longer proportional to fracture
energy, as found in the simpler case with periodic boundary
conditions and constant prestress (Figure 3). However, since
final displacement is independent of yield stress (as the
vertical contours in Figure 9b show), these two parameters
can be used together to determine both dynamic parameters.
Furthermore, the monotonicity of each parameter gives the
direction to search, and guarantees that the solution found
will be unique. Given enough stations to resolve barrier
break time, the dynamic parameters of a simple barrier are
fully constrained. In these models, we have left the slip-
weakening displacement, dc, constant. Because of the trade-
off between dc and strength excess [Guatteri and Spudich,
2000], we cannot constrain dc as well.
[26] As the barrier size decreases, the dynamic scaling

relations become linear. When the radius of the barrier is
small compared to the fault depth, fault-parallel static offset
is linear in prestress and the time delay is a linear function
of strength excess. Also, in the small barrier limit, the final

offset again scales with R2, as was the case in the original
model with fixed rupture velocity. For a smaller barrier,
however, the change in static offset may not be resolvable.
A barrier with R = 1 km and a prestress of 40 MPa increases
the fault-parallel static offset by 17% for a point close to the
fault (Figure 9b). If the radius is instead 0.35 km, the static
offset change becomes negligible at 2%. This is the main
limitation of our result: a strong heterogeneity is required to
provide the resolution to determine both the prestress and
yield stress of the barrier.

4. Conclusion

[27] With a series of increasingly complex models, we
have analyzed the radiation produced by barriers and
asperities. We found that a delayed barrier break time
initially arrests the rupture, leading to stronger ground
motion when the barrier eventually fails. In addition,
rupture front focusing leads to a sharper barrier pulse on
the surface, which is even more pronounced in spontaneous
models. We found that the pulses generated by heterogene-
ities were most clearly seen in the fault-parallel component.
Here, the heights of the velocity pulses help to constrain the
size and strength of the heterogeneity, while the width of the

Figure 7. (a and b) Seismograms and isochrones for two spontaneous, dynamic models. The blue
seismograms show the radiation produced for a point 2 km off fault from the point directly above the
center of the heterogeneity. The red seismograms are from a homogeneous rupture with the same
background prestress and yield stress as the heterogeneous ruptures and are shown as a reference.
(bottom) S wave isochrones for the heterogeneous ruptures at this particular station. The contours are
plotted at 0.5 s intervals. The vertical blue line shows the projection of the station location onto the fault,
and the gray circle shows the location of the heterogeneity.
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pulses constrain size and depth. If the fault-perpendicular
asperity or barrier pulses can be resolved, their polarity
gives the location of the heterogeneity.
[28] We also investigated the scaling in a fully spontane-

ous, dynamic model. The static offset and barrier break time
allow both dynamic parameters, prestress and strength, to be
constrained for the case of a circular barrier on an otherwise
homogeneous fault. This is primarily because prestress

controls static offset, while strength excess controls the
break time of the barrier.
[29] In this paper, we have studied simplified rupture

scenarios in order to derive general results. Real earth-
quakes are likely to be considerably more heterogeneous
than our models. However, these results could be used to
help guide kinematic inversions for earthquakes that are
relatively homogeneous with the exception of a large stress

Figure 8. Seismograms and isochrones for two spontaneous, dynamic models in the format of Figure 7.
Here the seismograms and isochrones are shown for a point 2 km from the fault and 5 km in the forward
direction from the heterogeneity. The vertical blue line in Figure 8 (bottom) shows the projection of the
station location onto the fault.

Figure 9. (a) Contours of barrier break time and (b) final fault-parallel offset for spontaneous, dynamic
models (model D). The contours for static offset are plotted 0.5 km off fault from the point directly above
the barrier center. The lowest data point in these plots represents a homogeneous rupture, where the
barrier region has the same prestress and yield stress as the background. The vertical contours for the
static offset show that offset is a function of prestress alone. Also, since the contours for the break time
have a different slope, break time and static offset can be used together to constrain prestress and yield
stress.
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drop in a concentrated region. One possible candidate is the
1984 Morgan Hill earthquake. A kinematic inversion by
Beroza and Spudich [1988] found a barrier region 13 km
southeast of the hypocenter. This region initially resisted
rupture, and produced high slip when it failed. This barrier,
however, may have failed in the opposite direction as the
rest of the earthquake, as a large late pulse at a station in the
backward direction suggests that the directivity from this
region was to the back [Beroza and Spudich, 1988]. This is
somewhat more complicated than the type of rupture
considered in this paper.
[30] Also, we found that constraints on rupture velocity

significantly affect ground motion. Restrictions that lead to
less rupture velocity variation and less rupture front curva-
ture dampen the pulses seen in ground motion. This
suggests that kinematic inversions with rupture velocity
constraints will overestimate the actual stress heterogeneity.
The unconventional approach in this paper (starting with a
highly simplified, constrained model, and adding back in
the elements of a fully dynamic, spontaneous rupture, as
opposed to the conventional, kinematic approach of approx-
imating a fully dynamic rupture with a complex, but fully
constrained rupture) allows the effects of these constraints
and simplifications to be clearly seen. This is important
because kinematic inversions are by far the most computa-
tionally practical way to invert for the earthquake source. At
the same time, they are underdetermined and can be
unphysical. We must be aware of the effects of constraints
that are (of course, must be) imposed in kinematic inver-
sions. Ideally, these constraints will lead to ruptures that are
physical and consistent with dynamic ruptures as well.
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