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Motivation
 •  Dislocation patterns are closely coupled to 
macroscopic response. 

 •   Stochastic models of stage 
II/III  transition:

•  Noise induced transition.
•  Structures that minimize the energy.

 •   Characterization of self similar structures:
•  Dislocation density fluctuation.
•  Fractal dimension.

•   Intermittent plastic flow. 

•  Avalanches of dislocations
 follow a power law behavior.

•  Self organized criticality.



•Phase-field theory of dislocations.
•Cyclic loading.
•Dislocation networks in twist boundaries.
•We are able to describe the microstructure evolution and the 
macroscopic response during stage I, II and III.
•The dislocation density fluctuation exhibits a maximum 
corresponding to the stage II to III transition which is observed 
in X-ray diffraction experiments (Szekely, Groma, Lendavi, 2002).
•We obtain a stress dependent fractal exponent (Hahner, Bay, 
Zaiser, 1998).   
•Plastic flow is intermittent: avalanches of dislocation motion.
(Miguel, 2001, Weiss, 2003)

Overview



 Microstructural evolution in single crystals

Blow up of loops

As seen looking down on the slip plane.

We approximate 3D by considering 
dislocations that cross slip plane as 
obstacles and then model only the 
2D expanding loops.



Phase-field model of dislocations

Effective Dislocation Energy 

 Core Energy

 Dislocation Interaction

Irreversible Obstacle Interaction

Macroscopic Averages 

Equilibrium configurations 

 Closed form solution at zero 
temperature.

g∼< x > r∼< |—x| >

Koslowski, Cuitino, Ortiz, 2002



Effective energy
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Phase-field energy
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Irreversible process and kinetics

Irreversible process and kinetics
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Irreversible dislocation-obstacle interaction may be built into a variational 
framework, we introduce the incremental work function:

Primary and forest dislocations  react to form a jog:

Updated phase-field follows from:

Short range obstacles:



Kuhn-Tucker optimality conditions zn+1(x)−zn(x) = l+(x)−l−(x)

gn+1(x)− f (x)≤ 0 -gn+1(x)− f (x)≤ 0
l+(x)≥ 0, l−(x)≥ 0

Irreversible process and kinetics
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Equilibrium condition: Fredholm alternative



Macroscopic averages
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Single-slip

Stress-strain curve.
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Evolution of dislocation 
density with strain.



Cyclic loading

Stress-strain curve. Evolution of dislocation 
density with strain.



Dislocation networks in twist boundaries

S. Amelinckx, 1958
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When the rotation axis is 
the [111] the grain 
boundary is a hexagonal 
grid of screw dislocations 
with Burgers vectors:

A twist boundary having a [100] 
rotation axis consists of a 
square grid of screw 
dislocations with Burgers 
vectors:



Structure and response are closely coupled.

Mughrabi, Phil. Mag. 23, 869 (1971)

Hardening regimes 
show very different 
microstructures.

Szekely, Groma, Lendvai, Mat. Sci. 
Engin. A 324, 179 (2002)

Mughrabi, Phil. Mag. 23, 869 (1971)All micrographs from
a Cu single crystal



 •   At the onset of stage 
II other slip systems 
become active.

•   The number of forest 
dislocations in the slip 
plane follows Taylor’s 
hardening law:

 

Forest hardening 

t∼ µb
√

r
Forest dislocations piercing 
the slip plane.
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Model predictions of structure and response

Hardening regimes show very 
different microstructures.

 

Stage I

Stage II

Stage III



2D obstacle model shows correct behavior of 
dislocation density across the stages

Szekely, Groma, Lendvai, Mat. Sci. 
Engin. A 324, 179 (2002)
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Dislocation density 
fluctuation has a maximum 
at stage II-III transition.
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Characterization of self-similar cell structures
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The cell size distribution has an 
hyperbolic frequency:

n(A) = CA−D

2 < D < 3

D = 2.6±0.1

t = 1.1 · 10−3µapplied stress:

Formation of cell structures 
corresponds to the regimen
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Dislocation patterning is fractal
   •  first discussed by Gil Sevillano and shown in Cu by Hahner
   •  probability of cells of size A                       
      - D is the fractal dimension.  

Self-similar structures

n(A)∼ A−D

The 2D model shows excellent agreement with experiment, from 
stress-strain to density to fractal dimension of structures.

First calculation to show this range of behavior.

Cu: Hahner et al., PRL 81, 2470 
(1998)

Stage I:  D ~ 1.9

simulation



Acoustic emission during plastic flow in ductile 
single crystals
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Stress and acoustic emission 
in aluminum alloy.

Predictions of stress and acoustic 
emission during stage I.

• The motion of great number of dislocations are 'events' that can be detected by 
acoustic emission (AE) with suitable transducers. 

• In single loading experiments on copper single crystals the AE signal rise during the 
onset of easy glide and decreases after the material yields.  

• Even when the dislocation density increases the AE decreases, this reduction is 
attributed to a the decrease in the dislocation free path.



• The AE signal accompanying  the plastic deformation consists of many 
overlapping pulses as observed experimentally in metallic single crystals 
(Vinogradov, 2001) and ice single crystals (Weiss, 1997).
 • The instantaneous dissipation shows burst of activity that can be 
considered as dislocation avalanches. 
• The cumulated activity is a measure of the strain and  and also shows 
the burst character observed in plastic deformation.(Pond,1973 and 
Neuhauser, 1983) 

Intermittent dislocation flow in plastic deformation

Instantaneous and cumulated acoustic 
activity during a loading step in a 
compression test (Weiss, 1997)
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Predicted acoustic activity 
during a loading step.



• Recently, acoustic emission experiments on single crystals of ice 
showed an intermittent and heterogeneous plastic flow. 
• The probability density function of the energy, follows a power law 
distribution 

Scale-free dislocation avalanches
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Statistical properties of acoustic 
energy bursts under constant stress 

(Miguel, 2001)

Simulated acoustic energy bursts 
under constant stress. 

P(E)∼ E−tE

tE = 1.8±0.1



Summary
•  The phase-field theory of dislocations allows to investigate the 
whole range of deformation in ductile single crystals.
• The theory is exactly solvable.
•  The model is capable to reproduce experiments:

• Recovery at the onset of stage III
• Maximum on the fluctuation of dislocation density during the 
stage II/III transition.
• Stress dependent fractal exponent.
• Properties related to AE experiments. 

• The change between stage II and stage III arises from the 
transition between random and ordered structures. Annihilation is 
the primary process that drives this transition. 
• Characteristics of SOC:

• Structures are marginally-stable . 
• Slow external driving (creep).
• Power law distributions.
• Very large number of interacting entities.
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