

Model-Based Rigorous Uncertainty Quantification in Complex Systems

Michael Ortiz
California Institute of Technology

Applied Mathematics Seminar Warwick Mathematics Institute, June 23, 2010

Work done in collaboration with: Marc Adams, Addis Kadani, Bo Li, Mike McKerns, Ali Lashgari, Jon Mihaly, Houman Owhadi, G. Ravichandran, Ares J. Rosakis, Tim Sullivan

ASC/PSAAP Centers

Michael Ortiz

PSAAP Peer Review, 10/23/2008- 2

Quantification of margins and uncertainties (QMU)

- Aim: Predict mean performance and uncertainty in the behavior of complex physical/engineered systems
- Example: Short-term weather prediction,
 - Old: Prediction that tomorrow will rain in Warwick...
 - New: Guarantee same with 99% confidence...
- QMU is important for achieving confidence in highconsequence decisions, designs
- Paradigm shift in experimental science, modeling and simulation, scientific computing (predictive science):
 - Deterministic → Non-deterministic systems
 - Mean performance → Mean performance + uncertainties
 - Tight integration of experiments, theory and simulation
 - Robust design: Design systems to minimize uncertainty
 - Resource allocation: Eliminate main uncertainty sources

Certification view of QMU

system inputs (X_1,\ldots,X_M)

response function

G

performance measures

$$(Y_1,\ldots,Y_N)$$

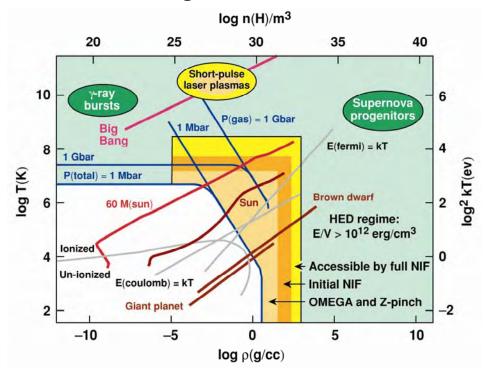
- Random variables
- Known or unknown pdfs
- Controllable, uncontrollable, unknownunknowns

System as black box

- Observables
- Subject to performance specs
- Random due to randomness of inputs or of system

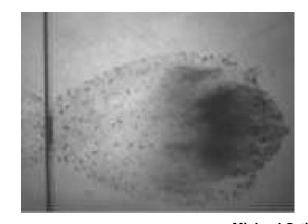
Hypervelocity impact as an example of a complex system

Challenge: Predict *hypervelocity impact* phenomena (10Km/s) with *quantified margins and uncertainties*



Hypervelocity impact test bumper shield (Ernst-Mach Institut, Freiburg Germany)

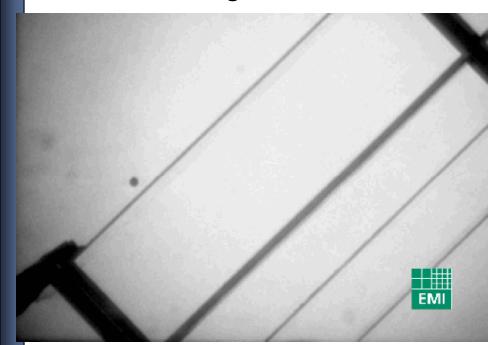
NASA Ames Research Center Energy flash from hypervelocity test at 7.9 Km/s



Michael Ortiz
Warwick 06/23/10- 5

Hypervelocity impact as an example of a complex system

 Hypervelocity impact is of interest to a broad scientific community: Micrometeorite shields, geological impact cratering...



Hypervelocity impact test of multi-layer micrometeorite shield

The International Space Station uses 200 different types of shield to protect it from impacts

Michael Ortiz

Warwick 06/23/10- 6

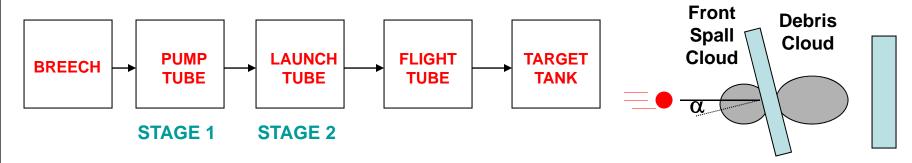
Hypervelocity impact at Caltech

Caltech's Small Particle Hypervelocity Impact Range facility (A.J. Rosakis, Director)

Michael Ortiz

Warwick 06/23/10-7

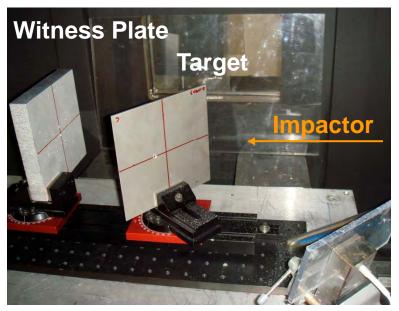
Hypervelocity impact at Caltech



aluminum witness plates replaced by capture media

Target Materials

- Steel
- •Aluminum
- Tantalum



- Impact Speeds: 2 to 10 km/s
- Impact Obliquities: 0 to 80 degrees
- Impactor Mass: 1 to 50 mg

Ø 71 mil (1x10⁻³ in) launch tube bore

Impactor Materials

- Steel
- Nylon

Hypervelocity impact as system

System inputs (X)

Projectile velocity

Projectile mass

Number of target plates

Plate thicknesses

Plate obliquities

Projectile/plate materials

System Outputs (Y)

Diagnostics

Conoscope

CGS

VISAR

Spectrophotometer

Capture media

Metrics

Profilometry Perforation area

Real-time, full-field back-surface deformation

Real-time back-surface velocimetry

Impact flash, debris and spall clouds, spectra over IR to UV range

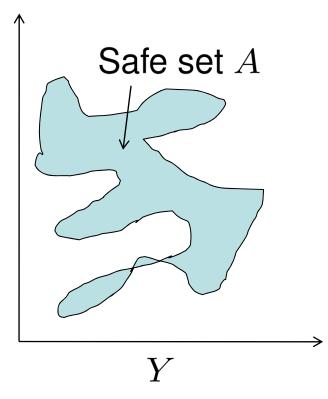
Debris & spall clouds, Particle consistency, size & velocity vector

Michael Ortiz

Warwick 06/23/10-9

Certification view of QMU

 Certification = Rigorous guarantee that complex system will perform safely and according to specifications



 Certification criterion: Probability of failure must be below tolerance,

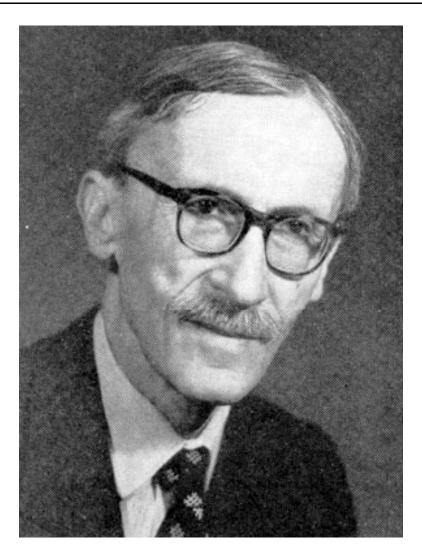
$$\mathbb{P}[Y \in A^c] \le \epsilon$$

Alternative (conservative)
 certification criterion: Rigorous
 upper bound of probability of failure
 must be below tolerance,

$$\mathbb{P}[Y \in A^c] \le \text{upper bound} \le \epsilon$$

 Challenge: Rigorous, measurable/computable upper bounds on the probability of failure of systems

Concentration of measure (CoM)



Paul Pierre Levy (1886-1971)

- CoM phenomenon (Levy, 1951): Functions over high-dimensional spaces with small local oscillations in each variable are almost constant
- CoM gives rise to a class of probability-of-failure inequalities that can be used for rigorous certification of complex systems

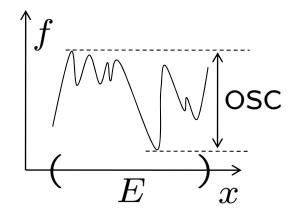
The *diameter* of a function

Oscillation of a function of one variable:

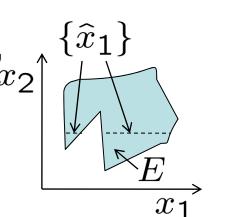
$$\operatorname{osc}(f, E) = \sup_{x \in E} f(x) - \inf_{x \in E} f(x)$$

$$= \sup_{x, x' \in E} |f(x) - f(x')|$$

$$= \sup_{x, x' \in E} |f(x) - f(x')|$$



Function subdiameters: $f: E \subset \mathbb{R}^N \to \mathbb{R}$, $x_2 \cap D_i(f, E) = \sup_{\widehat{x}_i \in \mathbb{R}^{N-1}} \operatorname{osc}(f, E \cap \{\widehat{x}_i\}),$ $\hat{x}_i = \{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_N\}$



Function diameter:

on diameter:
$$D(f,E) = \sqrt{\sum_{i=1}^{N} D_i^2(f,E)} \quad \begin{array}{l} \text{evaluation requires} \\ \text{global optimization!} \\ \text{Michael Ortiz} \end{array}$$

McDiarmid's inequality

ON THE METHOD OF BOUNDED DIFFERENCES

Colin McDiarmid

(1.2) <u>Lemma</u>: Let $X_1,...,X_n$ be independent random variables, with X_k taking values in a set A_k for each k. Suppose that the (measurable) function $f: \Pi A_k \to \mathbb{R}$ satisfies

$$|f(\underline{\mathbf{x}}) - f(\underline{\mathbf{x}}')| \leq c_{\mathbf{k}}$$

whenever the vectors $\underline{\mathbf{x}}$ and $\underline{\mathbf{x}}'$ differ only in the kth co-ordinate. Let Y be the random variable $f[X_1,...,X_n]$. Then for any t>0,

$$P(|Y - E(Y)| \ge t) \le 2exp\left[-2t^2/\Sigma c_k^2\right].$$

McDiarmid, C. (1989) "On the method of bounded differences". In J. Simmons (ed.), Surveys in Combinatorics: London Math. Soc. Lecture Note Series 141. Cambridge University Press.

McDiarmid's inequality

Theorem [McDiarmid] Suppose that:

i) $\{x_1, \ldots, x_N\}$ are independent random variables,

ii) $f:E\subset\mathbb{R}^N\to\mathbb{R}$ is integrable.

Then, for every $r \geq 0$

$$\mathbb{P}[|f - \mathbb{E}[f]| \ge r] \le \exp\left(-2\frac{r^2}{D^2(f, E)}\right),$$

where D(f, E) is the diameter of f over E.

- Bound does not require distribution of inputs
- Bound depends on two numbers: Function mean and function diameter!

McDiarmid's inequality and QMU

Corollary A conservative certification criterion is:

$$\mathbb{P}[G \le a] \le \exp\left(-2\frac{(\mathbb{E}[G] - a)_+^2}{D_G^2}\right) \le \epsilon,$$

Probability of failure

Upper bound Failure tolerance

Equivalent statement (confidence factor CF):

$$\mathsf{CF} \equiv \frac{M}{U} \equiv \frac{(\mathbb{E}[G] - a)_{+}}{D_{G}} \geq \sqrt{\log \sqrt{\frac{1}{\epsilon}}} \Rightarrow \mathsf{certification!}$$

- Rigorous definition of margin (M)
- Rigorous definition of uncertainty (*U*)

Extension to empirical mean

Theorem [Lucas, Owhadi, MO] With probability $1 - \epsilon'$,

$$\mathbb{P}[G \le a] \le \exp\left(-2\frac{(\langle Y \rangle - a - \alpha)_+^2}{D_G^2}\right),\,$$

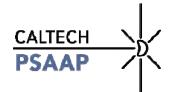
where
$$\langle Y \rangle = \frac{1}{m} \sum_{i=1}^{m} Y^i$$
 and $\alpha = D_G m^{-\frac{1}{2}} (-\log \epsilon')^{\frac{1}{2}}$.

Equivalent statement (confidence factor CF):

$$\mathrm{CF} \equiv \frac{M}{U} \equiv \frac{(\langle Y \rangle - a - \alpha)_+}{D_G} \geq \sqrt{\log \sqrt{\frac{1}{\epsilon}}} \Rightarrow \mathrm{certification!}$$

- Rigorous definition of margin (margin hit!)
- Rigorous definition of uncertainty $(U = D_G)$

Extension to multiple performance measures



Theorem [Lucas, Owhadi, MO] *A conservative certification criterion is*

$$\mathbb{P}[G_i \not\in \prod_{i=1}^N [a_i, \infty)] \le \sum_{i=1}^N \exp\left(-2\frac{(\mathbb{E}[G_i] - a_i)_+^2}{D_{G_i}^2}\right) \le \epsilon.$$

Equivalent statement (confidence factor CF):

$$\mathsf{CF} = \sqrt{-\log \sqrt{\sum_{i=1}^{N} \exp\left(-2(\mathsf{CF}_i)^2\right)}} \ge \sqrt{\log \sqrt{\frac{1}{\epsilon}}}$$

where:
$$\operatorname{CF}_i = \frac{M_i}{U_i} = \frac{\mathbb{E}[G_i] - a_i}{D_{G_i}}$$

Multiple performance measures and unknown mean performance

Theorem [Lucas, Owhadi, MO] With probability $1 - \epsilon'$,

$$\mathbb{P}[G_i \not\in \prod_{i=1}^N [a_i, \infty)] \le \sum_{i=1}^N \exp\left(-2\frac{(\langle Y_i \rangle - a_i - \alpha_i)_+^2}{D_{G_i}^2}\right),$$

where
$$\alpha_i = D_{G_i} \sqrt{\log(N/\epsilon')} / \sqrt{2m}$$
.

• Equivalent statement (confidence factor CF):

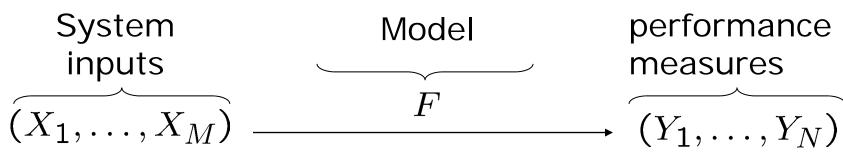
$$\mathsf{CF} = \sqrt{-\log\sqrt{\sum_{i=1}^{N}\exp\left(-2(\mathsf{CF}_i)^2\right)}} \ge \sqrt{\log\sqrt{\frac{1}{\epsilon}}}$$

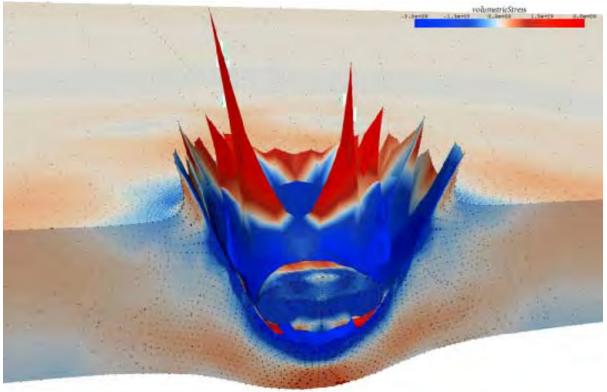
where:
$$\operatorname{CF}_i = \frac{M_i}{U_i} = \frac{\mathbb{E}[G_i] - a_i - \alpha_i}{D_{G_i}}$$
, margin hit!

McDiarmid's inequality and QMU

- Direct evaluation of McDiarmid's upper bound requires:
 - Determination of mean performance (e.g., by sampling)
 - Determination of system diameter by solving a sequence of global optimization problems
- Viable approach for systems that can be tested cheaply
- Prohibitively expensive or unfeasible in many cases!
 - Tests too costly, time-consuming
 - Operating conditions are not observable
 - Political/environmental constraints...
- Alternative: Model-based certification!
- Challenge: How can we use physics-based models to achieve rigorous certification with a minimum of testing?

Model-based QMU - The model





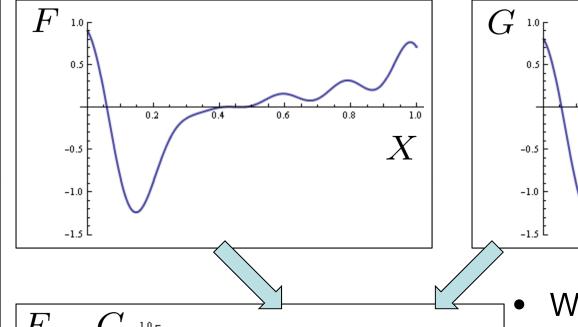
Model-based QMU - McDiarmid

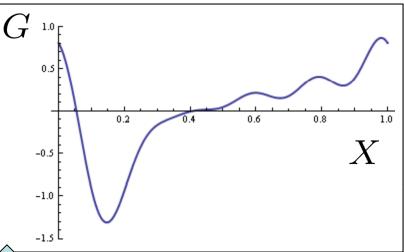
- Two functions that describe the system:
 - Experiment: G(X)- Model: F(X) = Modeling-error function
- Linearity: $\mathbb{E}[G] = \mathbb{E}[F] \mathbb{E}[F G]$
- Triangular inequality: $D_G \leq D_F + D_{F-G}$
- Corollary: A conservative certification criterion is:

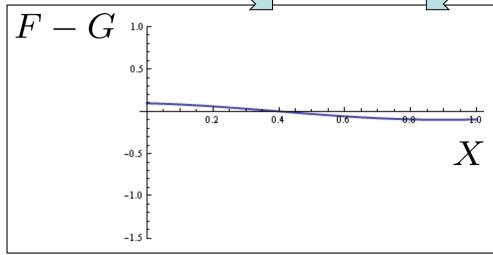
$$\mathbb{P}[G \le a] \le \exp\left(-2\frac{(\mathbb{E}[F] - \mathbb{E}[F - G] - a)_+^2}{(D_F + D_{F-G})^2}\right) \le \epsilon,$$

- E[F]: Model mean; E[F-G]: Model mean error
- D_F: Model diameter (variability of model)
- D_{F-G}: Modeling error (badness of model)

Model-based QMU - McDiarmid







Working assumptions:

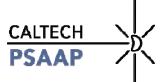
- F-G far more regular than F
 or G alone
- Global optimization for D_{F-G} converges fast
- Evaluation of D_{F-G} requires few experiments

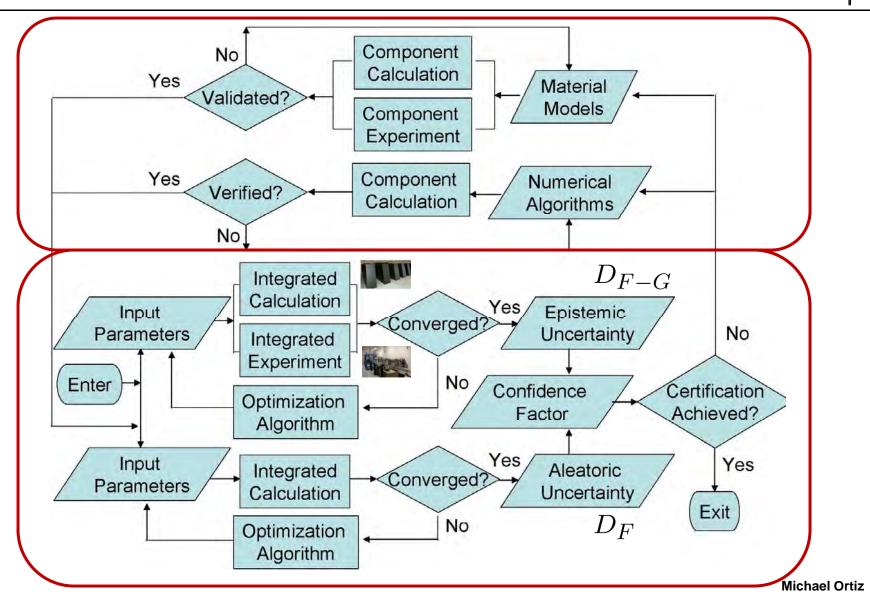
Model-based QMU - McDiarmid

- Calculation of D_F requires exercising model only
- Uncertainty Quantification burden mostly shifted to modeling and simulation!

- Evaluation of D_{F-G} requires (few) experiments
- Rigorous certification not achievable by modeling and simulation alone!

Model-based QMU – Implementation CALTECH PSAAP





Model-based QMU - Implementation CALTECH PSAAP

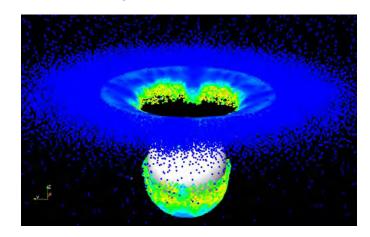


Michael Ortiz

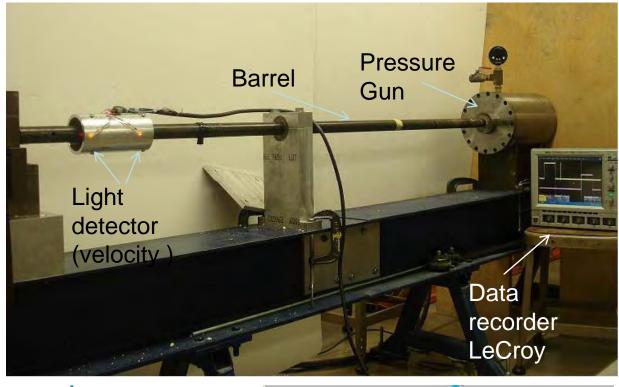
Warwick 06/23/10-31

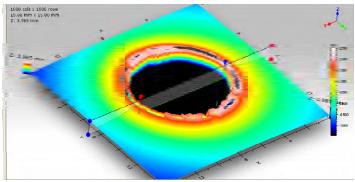
- Target/projectile materials:
 - Target: Al 6061-T6 plates (6"x 6")
 - Projectile: S2 Tool steel balls (5/16")
- Performance measure (output): Perforation area
- Admissible operation range: Perforation area > 0!
- Model parameters (inputs):
 - Plate thickness (0.032"-0.063")
 - Impact velocity (100-400 m/s)
- Optimal Transportation Meshfree (OTM) solver (sequential)
- Modifier adaption, BFGS; inhouse UQ pipeline (Mystic)

Target and projectile



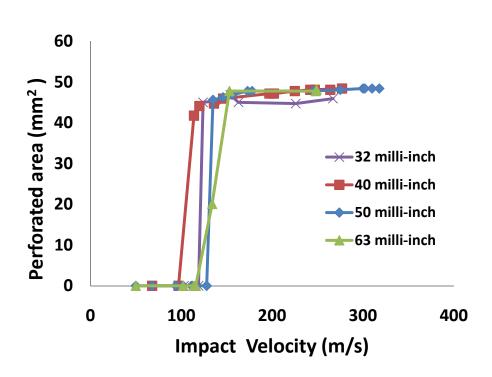
OTM simulation





Michael Ortiz 04/23/10 - 33

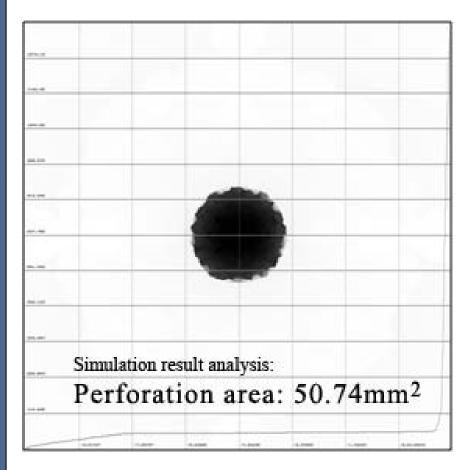
PSAAP: Predictive Science Academic Alliance Program



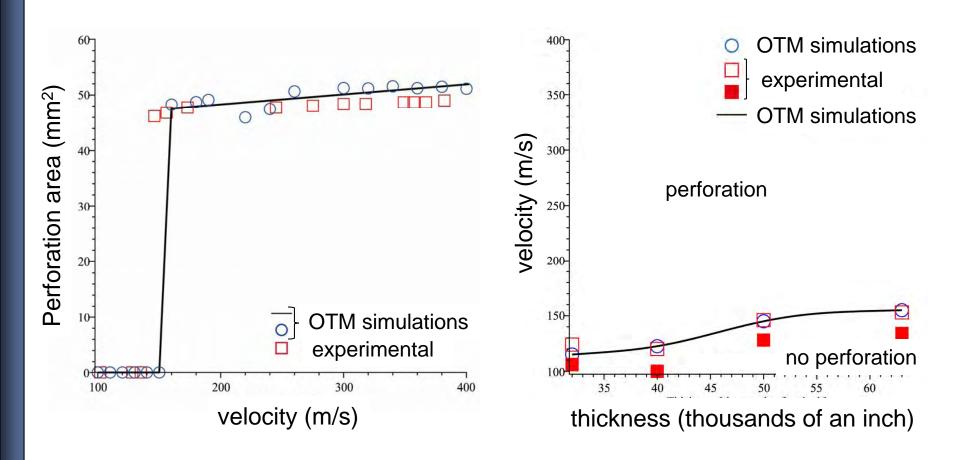
400 350 Projectile Velocity (m/s) 300 **x** not perforated 250 perforated 200 150 100 30 40 **50** 60 70 Plate thickness (milli-inch)

Perforation area vs. impact velocity (note small data scatter!)

Perforation/non-perforation boundary

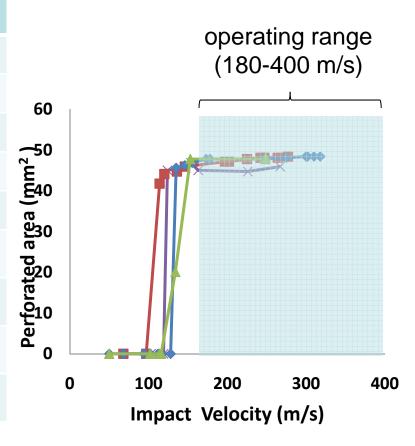


Computed vs. measured perforation area



Measured vs. computed perforation area

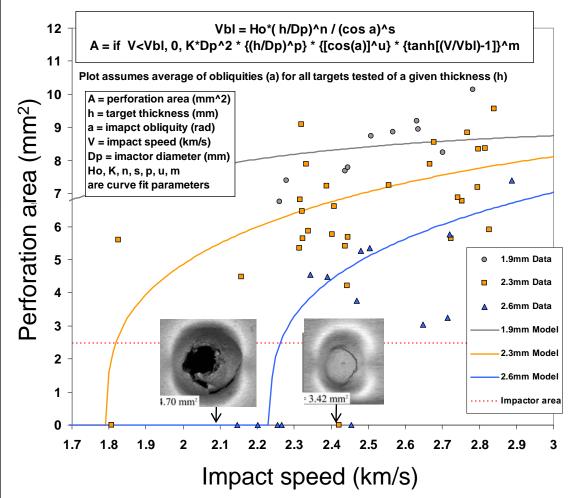
Model diameter <i>D_F</i>	thickness	4.33 mm ²
	velocity	4.49 mm ²
	total	6.24 mm ²
Modeling error <i>D_{F-G}</i>	thickness	4.96 mm ²
	velocity	2.16 mm^2
	total	5.41 mm ²
Uncertainty $D_F + D_{F-G}$		11.65 mm ²
Empirical mean <g></g>		47.77 mm ²
Margin hit α (ϵ '=0.1%)		4.17 mm ²
Confidence factor M/U		3.74



- Perforation can be certified with ~ 1-10⁻¹² confidence!
- Total number of tests ~ 50 → Approach feasible!

Beyond McDiarmid - Extensions

- A number of extensions of McDiarmid may be required in practice:
 - Some input parameters cannot be controlled
 - There are unknown input parameters (unknown unknowns)
 - There is experimental scatter (G defined in probability)
 - McDiarmid may not be tight enough (convergence?)
 - Model itself may be uncertain (epistemic uncertainty)
 - Data may not be available 'on demand' (legacy data)
- Extensions of McDiarmid that address these challenges include:
 - Martingale inequalities (unknown unknowns, scatter...)
 - Partitioned McDiarmid inequality (convergent upper bounds)
 - Optimal Uncertainty Quantification (OUQ)
 - Optimal models (least epistemic uncertainty)



Experimental ballistic curves (SPHIR) 440 C Steel spherical projectiles 304 Stainless Steel plate targets Added challenges:

- Experimental scatter!
- Impact velocity uncontrollable!

Measured speed distribution



known controllable inputs

$$(X_1,\ldots,X_M)$$

$$(Z_1,\ldots,Z_L)$$

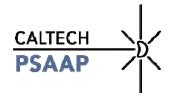
uncontrollable inputs &

unknown unknowns Response function

G

performance measures

$$(Y_1,\ldots,Y_N)$$



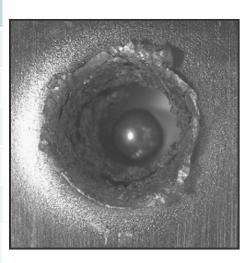
- Let $\langle f \rangle$ denote averaging with respect to uncontrollable variables and unknown unknowns
- Let $f' = f \langle f \rangle$ be the fluctuation
- Theorem [Lashgari, Owhadi, MO] A conservative certification criterion is:

$$\mathbb{P}[G \le a] \le \exp\left(-2\frac{(\mathbb{E}[\langle F \rangle] - \mathbb{E}[\langle F - G \rangle] - a)_{+}^{2}}{(D_{\langle F \rangle} + D_{\langle F - G \rangle} + D_{G'})^{2}}\right) \le \epsilon$$

measure of experimental scatter!

- Simulations and experiments must be averaged wrt uncontrolled variables and unknown unknowns
- Data scatter contributes to uncertainty!

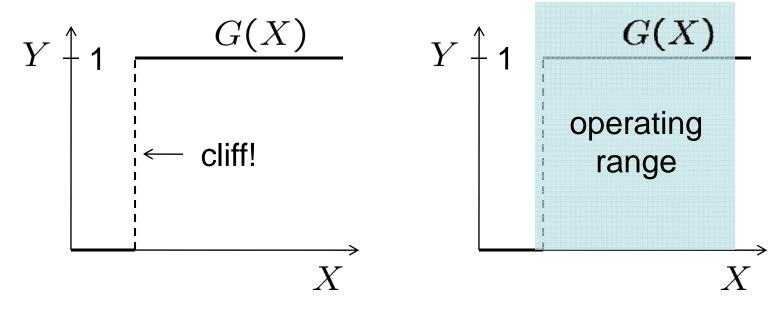
		thickness	1.82 mm ²
Diameters	Model D _{⟨F⟩}	obliquity	2.41 mm ²
		total	3.02 mm^2
	Modeling error D _(F-G)	thickness	1.80 mm ²
		obliquity	4.50 mm ²
		total	4.85 mm ²
	Experimental scatter D _G ,	total	7.78 mm ²
Mean values	Model E[F]	total	3.30 mm ²
	Modeling error E[F-G]	total	0.32 mm ²



Steel-on-steel, 2.6 km/s Perforation and impactor

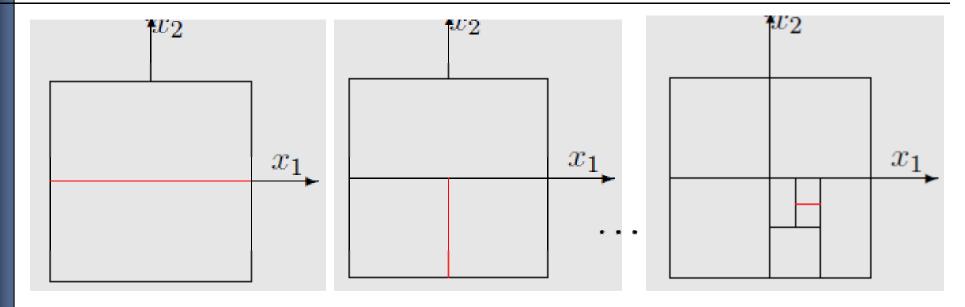
 Perforation cannot be certified with any reasonable confidence!

Beyond McDiarmid - Partitioning



- Mean performance: $\mathbb{E}[G] = 1$
- Function diameter: $D_G = 1$
- McDiarmid probability upper bound for no-perforation: = $e^{-2} \approx 0.135335$
- McDiarmid inequality too coarse for cliff behavior!

Beyond McDiarmid - Partitioning



Theorem [Sullivan et al.] If F continuous, the se-

$$\sum_{i=1}^{N} \operatorname{Prob}\left[A_{i}\right] \exp\left(-2\frac{\left(a - \mathbb{E}\left[F|A_{i}\right]\right)_{+}^{2}}{D_{F|A_{i}}^{2}}\right)$$

converges to $Prob[F \geq a]$.

Beyond McDiarmid – Optimal UQ

- What is the least probability of failure upper bound given what is known about the system?
- Best probability of failure upper bound given that probability μ of inputs and response function G are in a set A:

$$\sup_{(\mu,G)\in\mathcal{A}}\mu[G(X)\leq a]$$

- Can be reduced, to finite-dimensional optimization (Choquet theory, representation of linear functionals by measures on extreme points, moment problems...)
- Example: Mean performance and diameter known
- Explicit solutions for finite-dimensional inputs (Owhadi et al.), optimal McDiarmid-type inequalities!

Concluding remarks...

- QMU represents a paradigm shift in predictive science:
 - Emphasis on predictions with quantified uncertainties
 - Unprecedented integration between simulation and experiment
- QMU supplies a powerful organizational principle in predictive science: Theorems run entire centers!
- QMU raises theoretical and practical challenges:
 - Tight and measureable/computable probability-of-failure upper bounds (need theorems!)
 - Efficient global optimization methods for highly non-convex, high-dimensionality, noisy functions
 - Effective use of massively parallel computational platforms, heterogeneous and exascale computing
 - High-fidelity models (multiscale, effective behavior...)
 - Experimental science for UQ (diagnostics, rapid-fire testing...)...