

universität**bonn**

(Model-Free) Data-Driven Computing

Michael Ortiz California Institute of Technology and Rheinische Friedrich-Wilhelms Universität Bonn

Collaborators: T. Kirchdoerfer (Caltech); L. Stainier (Central Nantes); S. Conti, S. Müller (Bonn); R. Eggersmann, S. Reese (RWTH Aachen)

13th World Congress on Computational Mechanics New York City, July 25, 2018

Materials data through the ages...

Traditionally, mechanics of materials has been data starved...

Material data through the ages...

At present, mechanics of materials is data rich!

(E. Munch, 1893)

NOMAD https://www.nomad-coe.eu/

Data Science, Big Data...

Data Science, Big Data...

- Data Science is the extraction of 'knowledge' from large volumes of unstructured data¹
- Data science requires sorting through big-data sets and extracting 'insights' from these data
- Data science uses data management, statistics and machine learning to derive mathematical models for subsequent use in decision making
- Data science influences (non-STEM) fields such as marketing, advertising, finance, social sciences, security, policy, medical informatics...
- But... What's in it for us? (STEM folk)

Where does Data Science intersect with (computational) mechanics?

Anatomy of a field-theoretical STEM problem:

i) Kinematics + Dirichlet:

$$egin{aligned} \epsilon(oldsymbol{u}) &= 1/2(
abla oldsymbol{u} +
abla oldsymbol{u}^T) \ oldsymbol{u} &= ar{oldsymbol{u}}, \quad ext{on } \partial \Omega_D \end{aligned}$$

ii) Equilibrium + Neumann:

$$\begin{array}{l} \operatorname{div} \sigma + f = 0 \\ \sigma n = \overline{t}, \ \ \operatorname{on} \partial \Omega_N \end{array} \Big]$$

iii) Material law:
$$\sigma(x) = \sigmaig(\epsilon(x)ig)$$

Where does Data Science intersect with (computational) mechanics?

Anatomy of a field-theoretical STEM problem:

Universal laws!
(Newton's laws,
Schrodinger's eq.,
Maxwell's eqs.,
Einstein's eqs...)
Exactly known!
Uncertainty-free!
(epistemic)

i) Kinematics + Dirichlet:

$$egin{aligned} \epsilon(oldsymbol{u}) &= 1/2(
abla oldsymbol{u} +
abla oldsymbol{u}^T) \ oldsymbol{u} &= ar{oldsymbol{u}}, \quad ext{on } \partial \Omega_D \end{aligned}$$

ii) Equilibrium + Neumann:

$$\begin{array}{l} \operatorname{div} \boldsymbol{\sigma} + \boldsymbol{f} = \boldsymbol{0} \\ \boldsymbol{\sigma} \boldsymbol{n} = \overline{\boldsymbol{t}}, \quad \operatorname{on} \partial \Omega_N \end{array} \right]$$

iii) Material law:
$$\sigma(x) = \sigmaig(\epsilon(x)ig)$$

Where does Data Science intersect with (computational) mechanics?

Anatomy of a field-theoretical STEM problem:

i) Kinematics + Dirichlet:

$$egin{aligned} \epsilon(oldsymbol{u}) &= 1/2(
abla oldsymbol{u} +
abla oldsymbol{u}^T) \ oldsymbol{u} &= ar{oldsymbol{u}}, \quad ext{on } \partial \Omega_D \end{aligned}$$

ii) Equilibrium + Neumann:

$$egin{aligned} \operatorname{div} oldsymbol{\sigma} + f &= 0 \ oldsymbol{\sigma} n &= ar{t}, & \operatorname{on} \partial \Omega_N \end{aligned}$$

iii) Material law:
$$\sigma(x) = \sigmaig(\epsilon(x)ig)$$

Unknown! Epistemic uncertainty!

Classical Modeling & Simulation

- Need to generate (epistemic) 'knowledge' about material behavior to close BV problems...
- Traditional modeling paradigm: Fit data (a.k.a. regression, machine learning, model reduction, central manifolds...), use calibrated empirical models in BV problems

Classical Modeling & Simulation

$$\sigma = \mathbb{C}\epsilon$$

Material data

Modeling funnel

Material model

funnel Simulation

Manufactured data

Data-Driven (model-free) mechanics

- Need to generate (epistemic) 'knowledge' about material behavior to close BV problems...
- Traditional modeling paradigm: Fit data (a.k.a. regression, machine learning, model reduction, central manifolds...), use calibrated empirical models in BV problems
- But: We live in a data-rich world (full-field diagnostics, data mining from first principles...)
- Extreme Data-Driven paradigm (model-free!):
 Use material data directly in BVP (no fitting by any name, no loss of information, no broken pipe between material and manufactured data)
- How?

Elementary example: Bar and spring

Compatibility + equilibrium:

$$\sigma A = k(u_0 - \epsilon L)$$

Constraint set:

$$E = \{ \sigma A = k(u_0 - \epsilon L) \}$$

- Material data set: $D \subset Z$
- Classical solution set: $D \cap E$

Elementary example: Bar and spring

No classical solutions!

$$D \cap E = \emptyset$$

The general Data-Driven (DD) problem

- The Data-Driven paradigm¹: Given,
 - $-D = \{fundamental material data\},$
 - $-E = \{compatibility + equilibrium\},$
 - Find: argmin $\{d(z,D), z \in E\}$
- The aim of Data-Driven analysis is to find the compatible strain field and the equilibrated stress field closest to the material data set
- No material modeling, no data fitting, no V&V...
- Raw fundamental (stress vs strain) material data is used (unprocessed) in calculations
- No assumptions, artifacts, loss of information...

Data-Driven Computing: Issues

- Data-driven (model-free!) computing: Use material data sets directly in calculations!
- Is the Data-Driven reformulation of classical BVPs (possibly off of noisy data) well-posed?
- Implementation of *Data-Driven solvers*?
- Numerical convergence (iterative solvers, mesh size, time step...)
- Convergence with respect to material data set
- Extension to time-dependent problems
- Extension to history-dependent materials
- Phase-space sampling in high dimension
- Data management, repositories, outlook...

Data-Driven elasticity – Well-posedness

Definition (Constraint set)

i) Compatibility,

$$\epsilon = 1/2(\nabla u + \nabla u^T),$$
 $u = g, \text{ on } \Gamma_D.$

ii) Equilibrium,

$$\operatorname{div}\sigma + f = 0,$$
 $\sigma \nu = h, \quad \text{on } \Gamma_N.$

Definition (Material data set) -

Hooke's law (linear) $D = \{ \sigma = \mathbb{C}\epsilon \}.$

Hooke's law (monotone) $D = {\sigma = \sigma(\epsilon)}.$

$$\min\{d(z,D),\ z\in E\}$$

Michael Ortiz WCCM 2018

Data-Driven elasticity – Δ-convergence

Theorem

Suppose D monotone graph, $\rho_h \downarrow 0$ and $t_h \downarrow 0$ such that:

- i) Fine approximation: $d(\xi, D_h) \leq \rho_h$, $\forall \xi \in D$.
- ii) Uniform approximation: $d(\xi, D) \leq t_h$, $\forall \xi \in D_h$.

Then, $(\epsilon_h, \sigma_h) \to (\epsilon, \sigma)$.

- Data-driven problems represent a reformulation of the classical problems of mechanics, in which compatibility and equilibrium are enforced as differential constraints, and the aim is to minimize discrepancy with a material data set
- Material data sets can be graphs (classical), point sets, fat sets... Data-Driven problems subsume and extend the classical problems
- Data-driven problems are well-posed (existence) and solutions depend continuously on data sets (in the sense of Δ-convergence)
- Variational character provides strong basis for approximation (numerical, data reduction...)

Data-Driven Computing: Issues

- Data-driven (model-free!) computing: Use material data sets directly in calculations!
- Is the Data-Driven reformulation of classical BVPs (possibly off of noisy data) well-posed?
- Implementation of *Data-Driven solvers*?
- Numerical convergence (iterative solvers, mesh size, time step...)
- Convergence with respect to material data set?
- Extension to time-dependent problems
- Extension to history-dependent materials
- Phase-space sampling in high dimension
- Data management, repositories, outlook...

DD solvers: Fixed-point iteration

- Find: $argmin\{d(z,D), z \in E\}$
- Fixed-point iteration¹: $z^{(k+1)} = P_D P_E z^{(k)}$

¹T. Kirchdoerfer and M. Ortiz (2015) arXiv:1510.04232. ¹T. Kirchdoerfer and M. Ortiz, *CMAME*, **304** (2016) 81–101

Michael Ortiz WCCM 2018

Test case: 3D Truss

Truss test: Convergence of solver

Material-data sets of increasing size and decreasing scatter

Convergence, local data assignment iteration

> Michael Ortiz WCCM 2018

Truss test: Convergence wrt data

Material-data sets of increasing size and decreasing scatter

Convergence with respect to sample size (with initial Gaussian noise)

Michael Ortiz WCCM 2018

Distance-based DD solvers

- Distance-based DD solvers exhibit good convergence wrt to material-data association
- Distance-based DD solvers exhibit good convergence wrt uniformly converging data
- Data search structures are a form of machine learning (supervised classification)
- But distance-based DD solvers can be overly sensitive to *outliers* in the data (non-uniform data convergence)
- If outliers cannot be ruled out, distance-based DD solvers can be generalized and extended (cluster analysis, k-means, max-ent inference)

Data-Driven Computing: Issues

- Data-driven (model-free!) computing: Use material data sets directly in calculations!
- Is the Data-Driven reformulation of classical BVPs (possibly off of noisy data) well-posed?
- Implementation of *Data-Driven solvers*?
- Numerical convergence (iterative solvers, mesh size, time step...)
- Convergence with respect to material data set?
- Extension to time-dependent problems
- Extension to history-dependent materials
- Phase-space sampling in high dimension
- Data management, repositories, outlook...

Time-dependent problems: Dynamics

- Time discretization: $t_0, \ldots, t_{k+1} = t_k + \Delta t, \ldots$
- Constraint set (time dependent): $E_{k+1} =$

$$\begin{cases} \epsilon_{e,k+1} = B_e u_{k+1}, & \sum_{e=1}^m w_e B_e^T \sigma_{e,k+1} = f_{k+1}^{\text{ext}} - M a_{k+1} \end{cases}$$
 compatibility dynamic equilibrium

Newmark algorithm (3-point multistep scheme):

$$u_{k+1} = u_k + \Delta t \, v_k + \Delta t^2 \left((1/2 - \beta) a_k + \beta a_{k+1} \right)$$

$$v_{k+1} = v_k + \Delta t \left((1 - \gamma) a_k + \gamma a_{k+1} \right)$$

T. Kirchdoerfer and M. Ortiz, *IJNME*, **113**(11) (2018) 1697-1710.

Michael Ortiz WCCM 2018

Time-dependent problems: Dynamics

- Time discretization: $t_0, \ldots, t_{k+1} = t_k + \Delta t, \ldots$
- Constraint set (time dependent): $E_{k+1} =$

$$\left\{ \epsilon_{e,k+1} = B_e u_{k+1}, \quad \sum_{e=1}^{m} w_e B_e^T \sigma_{e,k+1} = f_{k+1}^{\text{ext}} - M a_{k+1} \right\}$$

Constraint set representation (3-point scheme):

$$E_{k+1} = \{ (\epsilon_{k+1}, \sigma_{k+1}) : (u_k, f_k), (u_{k-1}, f_{k-1}) \}$$
causality

• Data-driven problem:

$$\min_{(\epsilon^*,\sigma^*)\in D} \left(\min_{(\epsilon_{k+1},\sigma_{k+1})\notin E_{k+1}} |(\epsilon_{k+1}-\epsilon^*,\sigma_{k+1}-\sigma^*)|^2 \right)$$

T. Kirchdoerfer and M. Ortiz, *IJNME*, **113**(11) (2018) 1697-1710.

Michael Ortiz WCCM 2018

Time-dependent problems: Dynamics

Michael Ortiz WCCM 2018

Test case: Truss dynamics

Data-Driven dynamics solution and data coverage

WCCM 2018

Michael Ortiz

Test case: Truss dynamics

Data-Driven solution vs. direct Newmark solution

T. Kirchdoerfer and M. Ortiz, *IJNME*, **113**(11) (2018) 1697-1710.

Michael Ortiz WCCM 2018

Data-Driven Dynamics

- Distance-based DD solvers carry over to timedependent problems, in particular dynamics
- Convergence properties of solvers (fixed-point iteration, convergence with respect to timestep, convergence with respect to data...) are identical to the static case
- Essential difference: For time-dependent problems the constraint set is time-dependent due to dependence on initial conditions

Data-Driven Computing: Issues

- Data-driven (model-free!) computing: Use material data sets directly in calculations!
- Is the Data-Driven reformulation of classical BVPs (possibly off of noisy data) well-posed?
- Implementation of Data-Driven solvers?
- Numerical convergence (iterative solvers, mesh size, time step...)
- Convergence with respect to material data set?
- Extension to time-dependent problems
- Extension to history-dependent materials
- Phase-space sampling in high dimension
- Data management, repositories, outlook...

Inelasticity and history dependence

- Inelastic materials have memory^{1,2,3}:
 - "The characteristic property of inelastic solids which distinguishes them from elastic solids is the fact that the stress measured at time t depends not only on the instantaneous value of the deformation but also on the entire history of deformation."
- Data-Driven interpretation: Time-dependent, evolving material data set:

$$D(t) = \{(\epsilon(t), \sigma(t)) : \text{ past material history}\}$$

¹A.E. Green and R.S. Rivlin, *ARMA*, **1** (1957) 1.

²A.E. Green, R.S. Rivlin and A.J.M. Spencer, *ARMA*, **3** (1959) 82 Michael Ortiz 3A.E. Green and R.S. Rivlin, *ARMA*, **4** (1960) 387. WCCM 2018

Data-driven inelasticity

• Constraint set (time dependent): $E_{k+1} =$

$$\left\{ \epsilon_{e,k+1} = B_e u_{k+1}, \quad \sum_{e=1}^{m} w_e B_e^T \sigma_{e,k+1} = f_{k+1}^{\text{ext}} \right\}$$

History-dependent (local) material data sets:

$$D_{e,k+1} = \left\{ (\epsilon_{e,k+1}, \sigma_{e,k+1}) : \text{past material history} \right\}$$

Data-driven problem:

$$\min_{(\epsilon^*,\sigma^*)\notin D_{k+1}} \left(\min_{(\epsilon_{k+1},\sigma_{k+1})\notin E_{k+1}} |(\epsilon_{k+1}-\epsilon^*,\sigma_{k+1}-\sigma^*)|^2 \right)$$
• Fundamental question: Data representability!

Eggersmann, R., Kirchdoerfer, T., Stainier, L., Michael Ortiz Reese, S. and Ortiz, M., arXiv:1808.10859 [physics.comp-ph]WCCM 2018

Data representation paradigms

Hereditary representation (fading memory):

$$D_{e,k+1} = \{(\epsilon_{e,k+1}, \sigma_{e,k+1}) : \{\epsilon_{e,h}\}_{h \le k}\}$$

History-variable representation:

Keep:
$$q_{e,k} = \hat{q}_e(\{\epsilon_{e,h}, \sigma_{e,h}\}_{h \le k})$$
 (ad hoc)

Then:
$$D_{e,k+1} = \{ (\epsilon_{e,k+1}, \sigma_{e,k+1}) : q_{e,k} \}$$

• Differential representation: $D_{e,k+1} =$

$$\left\{f_e(\epsilon_{e,k+1},\epsilon_{e,k},\epsilon_{e,k-1}\ldots\sigma_{e,k+1},\sigma_{e,k},\sigma_{e,k-1}\ldots\right\}=0\right\}$$

Open question: Data convergence?

Data-driven viscoelasticity

- Smooth kinetics (linear or nonlinear)
- Allows for differential representation
- Example: Standard Linear Solid,

$$\sigma + \tau_1 \dot{\sigma} - E_0 \epsilon - (E_0 + E_1) \tau_1 \dot{\epsilon} = 0$$

• Time discretization: $D_{k+1} =$

$$\left\{\sigma_{k+1} + \tau_1 \frac{\sigma_{k+1} - \sigma_k}{t_{k+1} - t_k} - E_0 \epsilon_{k+1} - (E_0 + E_1) \tau_1 \frac{\epsilon_{k+1} - \epsilon_k}{t_{k+1} - t_k} = 0\right\}$$

General first-order differential materials:

$$D_{k+1} = \left\{ (\epsilon_{k+1}, \sigma_{k+1}) : (\epsilon_k, \sigma_k) \right\}$$

Data-Driven viscoelasticity

Data-Driven viscoelasticity

Data-Driven viscoelasticity

Convergence with respect to the data set

Eggersmann, R., Kirchdoerfer, T., Stainier, L., Michael Ortiz Reese, S. and Ortiz, M., <u>arXiv:1808.10859</u> [physics.comp-ph]WCCM 2018

Data-Driven viscoelasticity - FE

• Example: Isotropic/kinematic hardening

Material set representation (diff + history):

$$D_{k+1} = \left\{ (\epsilon_{k+1}, \sigma_{k+1}) : (\epsilon_k, \sigma_k), \epsilon_{0,k} \right\}_{\substack{\text{Michael Ortiz} \\ \text{WCCM 2018}}}$$

• Example: Isotropic/kinematic hardening

Material set representation (diff + history):

$$D_{k+1} = \left\{ (\epsilon_{k+1}, \sigma_{k+1}) : (\epsilon_k, \sigma_k), \epsilon_{0,k} \right\}_{\substack{\text{Michael Ortiz} \\ \text{WCCM 2018}}}$$

Convergence with respect to the data set

Eggersmann, R., Kirchdoerfer, T., Stainier, L., Michael Ortiz Reese, S. and Ortiz, M., <u>arXiv:1808.10859</u> [physics.comp-ph]WCCM 2018

Data-Driven plasticity - FE

Concluding remarks

- Data-driven computing is emerging as an alternative to model-based computing
- Data-Driven mechanics entails a comprehensive reformulation of classical problems of mechanics
- Data-driven computing can reliably supply model-free solutions from material data sets
- Data can be mined from lower-scale calculations, used in upper-scale calculations (DD upscaling)
- Data can also be extracted from full-field experimental data (TEM, SEM, DIC, EBSD...)
- High-dimensional phase spaces: Self-consistent importance sampling¹ (problem specific)
 - J. Rethore, HAL Id: hal-01454432, Feb. 2017.

Concluding remarks

- Reliance on fundamental data (stress and strain only, no model-dependent data) makes material data fungible, mergeable, interchangeable...
- Publicly editable material data repository?
 (Wikimat, a material data Wikipedia...)
- Data-driven computing is likely to be a growth area in an increasingly data-rich world!

Thank you!