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Introduction – Defective crystals

“Crystals are like people.  It is 
the defects in them that make 
them interesting.”

-- Sir F. Charles Frank
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Introduction – Defective crystals
• The accurate calculation of many fundamental 

properties of crystal defects requires careful 
consideration of their electronic structure…

• Example: Ab initio screw 
dislocation cores in bcc 
metals. (a) Ta easy, (b) Ta 
hard; and (c) Mo easy (S. 
Ismail-Beigi and T.A. Arias, 
1999)

• But: Finnis-Sinclair predicts 
‘easy core’ structure only! 
(A. Ramasubramanian, 
M.P. Ariza and M. Ortiz, 
JMPS, 2007)
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Introduction – Defective crystals

Empirical interatomic potentials 
do not afford sufficient accuracy 
in calculations of defect-core 
structure: Need quantum-
mechanical accuracy! 
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Introduction – Defective crystals

Ab initio study of screw 
dislocations in Mo and 
Ta (S. Ismail-Beigi and 

T. Arias, Phys. Rev. 
Let. 84 (2000) 1499).  dislocation

quadrupole
arrangement

periodic 
boundary 
conditions
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Introduction – Defective crystals

The elastic fields of lattice 
defects are extremely long 
ranged. Need large cell sizes to 
represent physically relevant 
defect concentrations! 
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Introduction (QM2CM)
• Problems arising in the study of defective crystals are 

inherently multiscale
• Need to resolve simultaneously:

– Electronic structure of defect cores
– Long-range elastic field at physically relevant defect 

concentrations
• Typical defect concentrations, cell-size requirements:

– Vacancies: cell size ~ 100 nm
– Dislocation cores: cell size ~ 100 nm
– Domain walls: cell size ~ 1 μm
– Grain boundaries: cell size ~ 20 μm

• Physically relevant cell sizes are far larger than can be 
analyzed by conventional computational chemistry
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Introduction (QM2CM)

Fundamental challenge: Quantum 
mechanical calculations at 

macroscopic scales! 
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Introduction (QM2CM)

Density Functional  
Theory

(real-space non-
periodic) 

Homogenization
(two-scale asymptotics) 

Coarse-graining
(Quasi-continuum)
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Introduction (QM2CM)

Million-atom 
electronic structure 

calculations!  
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Density Functional Theory
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Orbital-Free Density Functional Theory
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pseudopotentials

nonlocal!finely oscillatory!

Orbital-Free Density Functional Theory
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Orbital-Free Density Functional Theory

‘Garden-variety’ functionals 
amenable to standard finite-

element discretization! 
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OFDFT – Fully resolved FE
• Positivity constraint: ρ = u2

• 4-node tetrahedral finite-elements
• Second-order 4-point quadrature
• Optimal mesh gradation (a priori)
• Dirichlet boundary conditions on electrostatic potential 

and electron-density 
• Penalty method to enforce number constraint: ∫ρdx = N
• Nested conjugate gradients for solving for: 

– The electrostatic potential  φ
– The electron-density ρ
– The atomic positions R (configurational-force equilibrium)

• Parallel implementation with domain decomposition
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Convergence test – Hydrogen atom 

Energy of hydrogen atom as a function of number of 
subdivisions of initial mesh
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Example – Aluminum nanoclusters

Contours of electron density in 
5x5x5 aluminum cluster (mid plane)
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Example – Aluminum nanoclusters

Property DFT-FE KS-LDAa Experimentsb

Lattice parameter (a.u.) 7.42 7.48 7.67
Cohesive energy (eV) 3.69 3.67 3.4
Bulk modulus (Gpa) 83.1 79.0 74.0

a/  Goodwin et al. (1990), Gaudion et al. (2002)
b/  Brewer (1997), Gschneider (1964)
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OFDFT – Coarse-graining

• Real-space formulation and finite-element approximation 
→ Nonperiodic, unstructured, OFDFT calculations

• However, calculations are still expensive: 
9x9x9 cluster = 3730 atoms required 10,000 CPU hours!

Need to homogenize, 
coarse-grain → Multiscale 

analysis! 
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Introduction (QM2CM)

Density Functional  
Theory

(real-space non-
periodic) 

Homogenization
(two-scale asymptotics) 

Coarse-graining
(Quasi-continuum)
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Defective crystals – The bridge

• Away from defects, 
atoms ‘see’ the 
electron density of a 
uniformly distorted 
periodic lattice: 
Cauchy-Born electron 
density + slowly 
varying modulation 
(Blanc, Le Bris and 
Lions, ARMA, 2002) 

• Only near defect cores the electron density and the 
electrostatic potential deviate significantly from those 
of a periodic lattice

Mendis et al. (2005)
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Defective crystals – The bridge
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QC/OFDFT – Multiscale hierarchy

nuclei

coarse resolution, nuclei in 
interpolated positions

atomic resolution, nuclei in 
arbitrary positions

relaxed
nuclei
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QC/OFDFT – Multiscale hierarchy

QC mesh,  nuclei in 
interpolated positions

unit cell calculation, 
affinely deformed lattice

nucleus

fine grid

Cauchy-Born
predictor
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QC/OFDFT – Multiscale hierarchy

fine mesh
subatomic resolution

nuclei

coarse mesh
macroscopic resolution

localized 
correction
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QC/OFDFT – Attributes

• The overall complexity of the method is set by the 
size of the intermediate mesh (interpolation of ρc, φc)

• All approximations are numerical: interpolation of 
fields, numerical quadrature

• No spurious physics is introduced: OFDFT is the sole 
input to the model

• A converged solution obtained by this scheme is a 
solution of OFDFT

• Coarse graining is seamless, unstructured, adaptive: 
no periodicity, no interfaces

• Fully-resolved OFDFT and continuum finite elasticity 
are obtained as extreme limits 
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QC/OFDFT – Attributes

Million-atom OFDFT 
calculations possible at 
no significant loss of 

accuracy!  
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QC/OFDFT convergence – Al vacancy

(100) plane

Convergence of multiscale scheme

4% of nuclei
accounted for 
in calculation 
at no loss of
accuracy!
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Cell-size dependence – Al vacancy

(100) plane

Convergence with material sample size

1,000,000 
atoms 
required to 
approach bulk 
conditions!Ef = 0.66 eV

Triftshauser, Phys Rev, B12 (1975) 4634
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QC/OFDFT convergence – Al vacancy

• QC reduction converges rapidly: 
– 16,384-atom sample: ~200 representative atoms required for 

ostensibly converged vacancy formation energy.
– 1,000,000-atom sample: ~1,017 representative atoms and ~

450,000 electron-density nodes give vacancy formation energy 
within ~0.01 eV of converged value

• Vacancies have long-range elastic field and 
convergence with respect to sample size is slow: 
~1,000,000 atom sample required to attain single-
vacancy formation energy!

• What can we learn from large cell sizes?
– Case study 1: Di-vacancies in aluminum
– Case studey 2: Prismatic loops in aluminum
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Case study 1 – Di-vacancies in Al
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Chao and Shepherd (2004)

Quasicontinuum 
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Case study 1 – Di-vacancies in Al

Di-vacancy along <100> Di-vacancy along <110>

Core electronic structure



Michael Ortiz
WCCM  07/01/08

Case study 1 – Di-vacancies in Al

attractive

repulsive

Binding energy vs. material sample size

Ef = 
-0.2 to
-0.3 eV

Ehrhart et al., 1991
Hehenkamp, 1994
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Case study 1 – Vacancies in Al

Migration energy vs. volumeBinding energy vs. volume

Vacancies in shocked aluminum
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Case study 1 – Vacancies in Al

Nanovoid nucleation in shocked aluminum

Time evolution of number 
of voids of different sizes

Density of nanovoids (1nm) 
nucleated in 10-8 s
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Case study 1 – Di-vacancies in Al
• Strong cell-size effect: binding energy changes from 

repulsive at large concentrations to attractive at bulk 
concentrations 

• Sample sizes containing > 1,000,000 atoms must be 
used in order to approach bulk conditions

• Di-vacancy binding energies are computed to be:
-0.19 eV for <110> di-vacancy; -0.23 eV for <100> di-vacancy 

• Agreement with experimental values:  -0.2 to -0.3 eV
(Ehrhart et al., 1991; Hehenkamp, 1994)

• Small-cell size values consistent with previous DFT 
calculations (Carling et al., 2000; Uesugi et. al, 2003) :
+0.05 eV for <110> di-vacancy; -0.04 eV for <100> di-vacancy

• No discrepancy between theory and experiment, only 
strong vacancy-concentration effect!
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Case study 2 – Prismatic loops in Al

Prismatic dislocation loops formed by
condensation of vacancies in 

quenched aluminum
Kulhmann-Wilsdorff and Kuhlmann, 

J. Appl. Phys., 31 (1960) 516.

Prismatic dislocation loops formed by
condensation of vacancies in 

quenched Al-05%Mg
Takamura and Greensfield, 

J. Appl. Phys., 33 (1961) 247.

• Prismatic dislocation loops also in irradiated materials
• Loops smaller than 50 nm undetectable: Nucleation 

mechanism? Vacancy condensation?
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Case study 2 – Prismatic loops in Al

(100) plane

Quad-vacancy binding energy vs. material sample size

unstable

stable
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Case study 2 – Prismatic loops in Al

Binding energy = -0.88 eV
Non-collapsed configuration

Binding energy = -1.57 eV
1/2<110> prismatic loop

Stability of hepta-vacancy

(111) (001)
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Case study 2 – Prismatic loops in Al

• Growth of planar vacancy clusters is predicted to be 
energetically favorable for sufficiently small 
concentrations

• Elucidation of relevant conditions requires large cell-size 
calculations 

• Vacancy clustering and subsequent collapse is a 
possible mechanism for formation of prismatic 
dislocation loops

• Prismatic loops as small as those formed from hepta-
vacancies are stable!
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Concluding remarks
• Behavior of material samples may change radically 

with size (concentration): Small samples may not be 
representative of bulk behavior

• Need electronic structure calculations at macroscopic 
scales: Quasi-continuum OFDFT (QC/OFDFT)

• Outlook: Application to general materials requires 
extension to Kohn-Sham DFT…
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Concluding remarks

Quantum Mechanics 
(QM)

Computational Chemistry

(Csányi, et al., 1998)

Continuum Mechanics 
(CM)

Computational Mechanics

(Chu and James)

Multiscale Analysis

QC
OFDFT
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TeraGrid Usage

Molecular Biosciences

Physics

Astronomical Sciences

Chemistry

Materials Research

Thermal Systems

Atmospheric Sciences

Scientific Computing

Mechanical and 
Structural Systems
Others

TeraGrid Usage (NSF 2006)

Concluding remarks
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Concluding remarks
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Concluding remarks

Thank you!
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