Multiscale Modeling of High Energetic Materials under Impact Loads

J. J. Rimoli, E. Gürses and M. Ortiz

California Institute of Technology

Graduate Aeronautical Laboratories

USNCCM X – July 16-19, 2009

Initiation of High Energy Materials

- HE materials initiate for an energy input much less than to heat bulk explosive
- Localized hot-spots are considered to cause detonation in HE materials
- Microscopic defects are thought to be a prime source for hot-spots
- Initiation of defect-free HE crystals are not very clear

Cracks in pressed PBX 9501, *Borne et al.* [05]

 Inhomogeneous nature of plastic deformation at sub-grain level (microstructures with localized deformation) and heterogeneity of polycrystals could cause initiation

Multiscale Model of Initiation in HE Polycrystals

The proposed multiscale model consists of three levels

- (i) Macroscale: direct resolution of 3-D polycrystalline structure with a barycentric subdivision algorithm and finite elements
- (ii) Mesoscale: relaxation of a non-convex single crystal plasticity model that allows microstructure formation
- (iii) Microscale: analytical construction of subgrain microstructures with localized slips and hot-spots

Multiscale Model of Initiation in HE Polycrystals

Chemical decomposition in hot-spots

Optimal subgrain microsturctures (relaxation) Single crystal plasticity of individual grains

Direct numerical simulation of polycrystal

Plate impact test of explosive polycrystal

Modeling at Polycrystal Level

Barycentric Subdivision

Coarse mesh

Bisection

Refined mesh

Subdivision mesh

Subdivision dual

Grain Boundary Area Minimization

]

Polycrystal Evolution

ullet Additive decomposition of displacement gradient $oldsymbol{eta} =
abla oldsymbol{u}$

$$\boldsymbol{\beta} = \boldsymbol{\beta}^e + \boldsymbol{\beta}^p$$

• Due to crystallographic nature of crystals

$$\boldsymbol{\beta}^p(\gamma) = \sum_{\alpha=1}^N \gamma^{\alpha} \mathbf{s}^{\alpha} \otimes \boldsymbol{m}^{\alpha} \quad \text{where} \quad \gamma^{\alpha} = b/L$$

in terms of the slip directions s^{α} , the slip plane normals m^{α}

Slip Systems of body centered tetragonal PETN Single Crystals

Slip System	I	II	III	IV	V	VI
Slip Direction	±[111]	$\pm[1\bar{1}\bar{1}]$	±[111]	$\pm [11\bar{1}]$	$\pm[1\bar{1}0]$	$\pm[\bar{1}\bar{1}0]$
Plane Normal	(110)	(110)	$(1\bar{1}0)$	$(1\bar{1}0)$	(110)	$(1\bar{1}0)$

Lattice parameters: a = b = 9.380Å c = 6.710Å

Variational Formulation of Single Crystal Plasticity

The energy density has additive structure of elastic and plastic parts

$$A(\boldsymbol{\beta}, \boldsymbol{\gamma}) = W^e(\boldsymbol{\beta} - \boldsymbol{\beta}^p(\boldsymbol{\gamma})) + W^p(\boldsymbol{\gamma}) \text{ with } \boldsymbol{\gamma} = \{\gamma^1, \gamma^2 \dots \gamma^N\}$$

Plastic parameters can be condensed out by a local minimization

$$W(oldsymbol{eta}) = \min_{oldsymbol{\gamma} \in \mathbb{R}^N} A(oldsymbol{eta}, oldsymbol{\gamma})$$

- $W(\beta)$ is non-convex and ill-posed for FEM
- Relaxation of $W(\beta)$ gives well-behaved softest average response

$$QW(\boldsymbol{\beta}) = \inf_{\boldsymbol{w}} \frac{1}{|\omega|} \int_{\omega} W(\boldsymbol{\beta} + \nabla \boldsymbol{w}) dx$$

Relaxation and Microstructures

- Relaxation of $W(\beta)$ is not straightforward in general.
- $QW(\beta)$ is given for our problem in *Conti & Ortiz* [05]
- In addition to average response local variations of fields are important
- Heterogeneous microstructures can be generated from relaxed solution

• Microstructures allow highly localized slip lines ⇒ Hot-Spots

Construction of Optimal Microstructure

Conti & Ortiz [05]

- Macroscopic deformation β decomposes into phases
- The first order laminates

$$m{eta}_1 = m{eta}^e + \sum_{lpha=1}^{I-1} \gamma^{lpha} \mathbf{s}^{lpha} \otimes m{m}^{lpha} \quad ext{and} \quad m{eta}_2 = m{eta}_1 + rac{1}{\epsilon} \gamma^I \mathbf{s}^I \otimes m{m}^I$$

satisfying the rank one connectivity condition $(1 - \epsilon)\beta_1 + \epsilon \beta_2 = \beta$

• The second order laminates

$$\boldsymbol{\beta}_3 = \boldsymbol{\beta}^e + \sum_{\alpha=2}^{I-1} \gamma^{\alpha} \mathbf{s}^{\alpha} \otimes \boldsymbol{m}^{\alpha} + \frac{1}{\epsilon} \gamma^I \mathbf{s}^I \otimes \boldsymbol{m}^I \quad \text{and} \quad \boldsymbol{\beta}_4 = \boldsymbol{\beta}_3 + \frac{1}{\epsilon} \gamma^1 \mathbf{s}^1 \otimes \boldsymbol{m}^1$$

satisfying the rank one connectivity condition $(1-\epsilon)\beta_3 + \epsilon\beta_4 = \beta_2$

• Second order laminate microstructure for double slip cases $\alpha = I, II$

• Fourth order laminate microstructure for multi-slip cases

Thermal Softening of Elastic Constants and CRSS

• Elastic constants \mathbb{C}_{ij} are assumed to depend on temperature and vanish at melting temperature θ_{melt}

$$\mathbb{C}_{ij}(\theta) = \mathbb{C}_{ij}(\theta_0) \frac{\theta - \theta_{melt}}{\theta_0 - \theta_{melt}}$$

• CRSS values τ_c^{α} depend on temperature, *Stainier et al.* [02]

$$au_c^{lpha}(heta) = au_{c0}^{lpha} rac{k_B heta}{G^{lpha}} \mathrm{asinh}\left(\xi^{lpha} \exp\left(rac{G^{lpha}}{k_B heta}
ight)
ight)$$

where k_B Boltzmann constant, and G^{α} and ξ^{α} additional parameters

Chemical Decomposition Model

• Temperature of hot-spot is computed assuming adiabatic heating

$$\Delta\theta_{hs} = \frac{\tau^{\alpha} \Delta \gamma^{\alpha}}{\rho c_{v}}$$

• Chemical reaction is modeled by an Arrhenius type depletion law *Caspar et al.*[98]

$$\frac{d\lambda}{dt} = Z(1 - \lambda) \exp\left(-\frac{E}{R\theta_{hs}}\right)$$

where Z, E, R are parameters and $\lambda \in [0, 1]$ reaction progress variable

• Extent of reaction is obtained by integrating depletion law $\frac{d\lambda}{dt}$

- 817 grains with maximum grain size of 0.1 mm
- Impact velocities in the range of 500 800 m/s
- Simulation of total 0.3μ s with $\Delta t = 1 \times 10^{-4}\mu$ sec

• Simulation results for v = 700 m/s

Axial Velocity

Temperature Threshold

Surface Temperature

Temperature MRI

Microstructure Evolution

Temperature and Chemical Reaction in a Hot-Spot

• Hot-spots based on minimum temperature criterion

Surface temperature for different impact velocities

• Hot-spots based on minimum pressure

• Hot-spots based on minimum chemical decomposition

• Comparison with experiments, impact pressure vs. distance to detonation

Pop-plots for several HE materials, Sheffield and Engelke [09]

Number of hot-spots vs impact velocity

Conclusion

- Multiscale framework bridges
 - Polycrystal structure at macroscale
 - Single crystal structure at mesoscale
 - Subgrain microstructures with localized plastic slip at microscale
- No need to introduce a priori defects for the generation of hot-spots
 Defective crystals can be generated easily as well
 - (i) Voids (ii) Temperature (iii) Temperature Contour
- Heterogeneous nature of plastic deformation (microstructure formation) allows nucleation of hot-spots
- Proposed method allows to study hot-spot statistic, e.g. number, spatial distribution of hot-spots
- Macroscopic scale applications can be simulated for μ s

Acknowledgment: W. A. Goddard, S. Dasgupta, S. Zybin and P. Xu

Pressure Dependence of Melting Temperature

- Melting temperature θ_{melt} depends on pressure (volume)
- The form proposed by Menikoff and Sewell [02] is assumed

$$\theta_{melt}(P) = \theta_{melt}(P_0)(1 + a\frac{\Delta V}{V_0})$$

where $a = 2(\Gamma - 1/3)$ and $\Gamma \approx 1.2$ is Grüneisen coefficient

• Volumetric compression of 20% gives $\sim 35\%$ increase in θ_{melt}