
Multiscale Modeling of High Energetic Materials under
Impact Loads

J. J. Rimoli, E. Gürses and M. Ortiz
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Initiation of High Energy Materials

HE materials initiate for an energy input
much less than to heat bulk explosive

Localized hot-spots are considered to
cause detonation in HE materials

Microscopic defects are thought to be a
prime source for hot-spots

Initiation of defect-free HE crystals are
not very clear

Cracks in pressed PBX
9501, Borne et al. [05]

Inhomogeneous nature of plastic deformation at sub-grain level
(microstructures with localized deformation) and heterogeneity of
polycrystals could cause initiation
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Multiscale Model of Initiation in HE Polycrystals

The proposed multiscale model consists of three levels

(i) Macroscale: direct resolution of 3-D polycrystalline structure with a
barycentric subdivision algorithm and finite elements

(ii) Mesoscale: relaxation of a non-convex single crystal plasticity model
that allows microstructure formation

(iii) Microscale: analytical construction of subgrain microstructures with
localized slips and hot-spots
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Multiscale Model of Initiation in HE Polycrystals

Chemical
decomposition

in hot-spots

Optimal subgrain
microsturctures

(relaxation)

Single crystal
plasticity of

individual grains

Direct numerical
simulation

of polycrystal

Plate impact test
of explosive
polycrystal
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Modeling at Polycrystal Level

Barycentric Subdivision

Grain Boundary Area Minimization Polycrystal Evolution

E. Gürses (Caltech) Modeling of High Energetic Materials July 16-19, 2009 5 / 24



Modeling at Single Crystal Level

Additive decomposition of displacement gradient β = ∇u

β = βe + βp

Due to crystallographic nature of crystals

βp(γ) =
N∑
α=1

γαsα ⊗mα where γα = b/L

in terms of the slip directions sα, the slip plane normals mα
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Modeling at Single Crystal Level

Slip Systems of body centered tetragonal PETN Single Crystals

Slip System I II III IV V VI

Slip Direction ±[11̄1] ±[11̄1̄] ±[111] ±[111̄] ±[11̄0] ±[1̄1̄0]

Plane Normal (110) (110) (11̄0) (11̄0) (110) (11̄0)

I–II III–IV V–VI

Lattice parameters: a = b = 9.380Å c = 6.710Å
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Modeling at Single Crystal Level

Variational Formulation of Single Crystal Plasticity

The energy density has additive structure of elastic and plastic parts

A(β,γ) = We(β − βp(γ)) + Wp(γ) with γ = {γ1, γ2 . . . γN}

Plastic parameters can be condensed out by a local minimization

W(β) = min
γ∈RN

A(β,γ)

W(β) is non-convex and ill-posed for FEM

Relaxation of W(β) gives well-behaved softest average response

QW(β) = inf
w

1
|ω|

∫
ω

W(β +∇w)dx
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Modeling at Single Crystal Level

Relaxation and Microstructures

Relaxation of W(β) is not straightforward in general.

QW(β) is given for our problem in Conti & Ortiz [05]

In addition to average response local variations of fields are important

Heterogeneous microstructures can be generated from relaxed solution

Microstructures allow highly localized slip lines =⇒ Hot-Spots
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Modeling at Microstructure Level

Construction of Optimal Microstructure Conti & Ortiz [05]

Macroscopic deformation β decomposes into phases

The first order laminates

β1 = βe +
I−1∑
α=1

γαsα ⊗mα and β2 = β1 +
1
ε
γIsI ⊗mI

satisfying the rank one connectivity condition (1− ε)β1 + εβ2 = β

The second order laminates

β3 = βe +
I−1∑
α=2

γαsα⊗mα +
1
ε
γIsI ⊗mI and β4 = β3 +

1
ε
γ1s1⊗m1

satisfying the rank one connectivity condition (1− ε)β3 + εβ4 = β2
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Modeling at Microstructure Level

Second order laminate microstructure for double slip cases α = I, II

ε
1−

ε

ε
1−

ε

β3 β4

β2β1

β4

β1

β3

β

β = (1− ε)β1 + εβ2 β2 = (1− ε)β3 + εβ4

β2 − β1 =
1
ε
γIIsII ⊗mII β4 − β3 =

1
ε
γIsI ⊗mI
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Modeling at Microstructure Level

Fourth order laminate microstructure for multi-slip cases

β11 β12

β9 β10β7 β8

β5 β6 β3 β4

β1 β2

1−
ε ε
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ε ε
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β = (1− ε)β1 + εβ2 β2 = (1− ε)β3 + εβ4

β1 = (1− ε)β5 + εβ6 β6 = (1− ε)β7 + εβ8 . . .
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Modeling at Microstructure Level

Thermal Softening of Elastic Constants and CRSS

Elastic constants Cij are assumed to depend on temperature and vanish at
melting temperature θmelt

Cij(θ) = Cij(θ0)
θ − θmelt

θ0 − θmelt

CRSS values ταc depend on temperature, Stainier et al. [02]

ταc (θ) = ταc0
kBθ

Gα
asinh

(
ξα exp

(
Gα

kBθ

))
where kB Boltzmann constant, and Gα and ξα additional parameters
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Modeling at Microstructure Level

Chemical Decomposition Model

Temperature of hot-spot is computed assuming adiabatic heating

∆θhs =
τα∆γα

ρcv

Chemical reaction is modeled by an Arrhenius type depletion law
Caspar et al.[98]

dλ
dt

= Z(1− λ) exp
(
− E

Rθhs

)
where Z, E, R are parameters and λ ∈ [0, 1] reaction progress variable

Extent of reaction is obtained by integrating depletion law dλ
dt
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Plate Impact Test of PETN Polycrystal

Flyer and PETN Plate Computational
Model Polycrystal Model:

Discretization and Grains

817 grains with maximum grain size of 0.1 mm

Impact velocities in the range of 500 - 800 m/s

Simulation of total 0.3µs with ∆t = 1× 10−4µ sec
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Plate Impact Test of PETN Polycrystal

Simulation results for v = 700m/s

Axial Velocity

Temperature Threshold

Surface Temperature

Temperature MRI
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Plate Impact Test of PETN Polycrystal

Microstructure Evolution

Temperature and Chemical
Reaction in a Hot-Spot
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Plate Impact Test of PETN Polycrystal

Hot-spots based on minimum temperature criterion

 0

 10

 20

 30

 40

 50

 400  600  800  1000  1200  1400

N
u

m
b

e
r 

o
f 

H
o

t 
S

p
o

ts

Minimum Temperature [K]

500m/s
600m/s
700m/s
800m/s

Surface temperature for different impact velocities
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Plate Impact Test of PETN Polycrystal

Hot-spots based on minimum pressure
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Plate Impact Test of PETN Polycrystal

Hot-spots based on minimum chemical decomposition
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E. Gürses (Caltech) Modeling of High Energetic Materials July 16-19, 2009 20 / 24



Plate Impact Test of PETN Polycrystal

Comparison with experiments, impact pressure vs. distance to detonation

Pop-plots for several HE materials,
Sheffield and Engelke [09] Number of hot-spots vs impact

velocity
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Conclusion

Multiscale framework bridges

Polycrystal structure at macroscale
Single crystal structure at mesoscale
Subgrain microstructures with localized plastic slip at microscale

No need to introduce a priori defects for the generation of hot-spots
Defective crystals can be generated easily as well

(i) Voids (ii) Temperature (iii) Temperature Contour

Heterogeneous nature of plastic deformation (microstructure formation)
allows nucleation of hot-spots

Proposed method allows to study hot-spot statistic, e.g. number, spatial
distribution of hot-spots

Macroscopic scale applications can be simulated for µs

Acknowledgment: W. A. Goddard, S. Dasgupta, S. Zybin and P. Xu
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Modeling at Microstructure Level

Pressure Dependence of Melting Temperature

Melting temperature θmelt depends on pressure (volume)

The form proposed by Menikoff and Sewell [02] is assumed

θmelt(P) = θmelt(P0)(1 + a
∆V
V0

)

where a = 2(Γ− 1/3) and Γ ≈ 1.2 is Grüneisen coefficient

Volumetric compression of 20% gives ∼ 35% increase in θmelt
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