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Concentration of Measure PoF bounds

Paul Pierre Levy (1886-1971)

• CoM (Levy, 1951): 
Functions over high-
dimensional spaces with 
small local oscillations in 
each variable are almost 
constant

• Example of CoM: Law of 
large numbers

• Blessing of dimensionality!
• CoM gives rise to a class 

of probability-of-failure 
inequalities that can be 
used for rigorous UQ and 
conservative design
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McDiarmid’s inequality

McDiarmid, C. (1989) “On the method of bounded differences”. In J. Simmons (ed.), Surveys in
Combinatorics: London Math. Soc. Lecture Note Series 141. Cambridge University Press.
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McDiarmid’s inequality

• Bound does not require distribution of inputs
• Bound depends on two numbers: Function

mean and function diameter!
McDiarmid, C. (1989) “On the method of bounded differences”. London Math. 

Soc. Lecture Note Series 141. Cambridge University Press.
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McDiarmid’s inequality and safe design

Probability of failure Upper bound Failure tolerance

• Equivalent statement (confidence factor CF):

• Rigorous definition of design margin (M)
• Rigorous definition of uncertainty (U = D)

Lucas, L., Owhadi, H. and Ortiz, M., CMAME, 197 (2008) 4591–4609.
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Extension to empirical mean

• Equivalent statement (confidence factor CF):

• Use of empirical mean results in margin hit! (𝛼𝛼)
• Uncertainty remains unchanged (U = D)

Lucas, L., Owhadi, H. and Ortiz, M., CMAME, 197 (2008) 4591–4609.
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Application: Ballistic impact of Mg plates 

LS-Dyna simulation of spherical 8 gram Pb projectile 
striking a 10cm x 10cm x 0.35 cm Mg plate at 150 m/s
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Application: Ballistic impact of Mg plates 

• Objective: Safe design of 
protective Mg plates against 
(sub)ballistic threats

• Material model: Johnson-Cook,

• Design criterion: Indentation < allowable
• Assumption: Material behavior is the main 

source of uncertainty, all other parameters are 
deterministic (projectile mass, impact velocity…)

• Uncertain parameters: A, B, n, C, m (at all 
material points in the plate)

• Solvers: LS-Dyna, Dakota 4.0 (Sandia)
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Application: Ballistic impact of Mg plates 
• Johnson-Cook inputs 𝑋𝑋 = 𝐴𝐴,𝐵𝐵,𝑛𝑛,𝐶𝐶,𝑚𝑚 ∈ 𝐸𝐸
• Find parameter ranges that include a given 

percentile 1 − 𝜖𝜖𝜖𝜖 of the experimental data 

Experimental
data
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Application: Ballistic impact of Mg plates 
• Johnson-Cook inputs 𝑋𝑋 = 𝐴𝐴,𝐵𝐵,𝑛𝑛,𝐶𝐶,𝑚𝑚 ∈ 𝐸𝐸
• Find parameter ranges that include a given 

percentile 1 − 𝜖𝜖𝜖𝜖 of the experimental data 

D. Hasenpouth, 2010, 
Tensile High Strain Rate Behavior of AZ31B Mg Alloy Sheet, 

MS thesis, University of Waterloo.

𝜖𝜖′′ = 0.05
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Application: Ballistic impact of Mg plates 

Sample size (m) 300
Empirical mean (<Y>) 0.72761 cm
Total diameter (D) 0.81912 mm
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Application: Ballistic impact of Mg plates 
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• Margin requirement increases (decreases) with 
uncertainty, sampling confidence (sample size)

• CoM does indeed supply an upper bound on PoF,
conservative safe-design criterion
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Concluding remarks
• Concentration of Measure (CoM) bounds supply 

computable, practical, rigorous upper bounds on 
probability of failure (PoF) of complex systems

• CoM PoF bounds result in conservative designs
• CoM Uncertainty Quantification (UQ) is non-

intrusive, can be implemented as a wrapper
around standard solvers (e.g., LS-Dyna…)

• Uncertainties in material behavior can be 
managed effectively and safely through UQ

• Outlook: Going forward,  
– Parametric studies (velocity, mass, thickness…)
– Tighter PoF bounds: Optimal UQ1 (best bounds)
– Machine learning of data sets, optimal ranges

1Owhadi, H. et al., “Optimal UQ”, SIAM Review, 55(2) (2013) 271-345.
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Concluding remarks

Thank you!
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