

Rigorous Uncertainty Quantification with Focus on Material Uncertainty

Michael Ortiz
California Institute of Technology
With: X. Sun (Caltech) and T. Kirchdoerfer (LLNL)
Work supported by ARL through MEDE/CRA

USACM Specialty Conference on Uncertainty Quantification in Computational Solid and Structural Materials Modeling
Johns Hopkins University
Baltimore, MD, January 17-18, 2019

Michael Ortiz USACM 01/19

UQ and safe design

Safe design: PoF of the system below tolerance,

$$\mathbb{P}[\text{failure}] = \mathbb{P}[Y \not\in A] \leq \epsilon$$

Exact probability of failure:

$$\mathbb{P}[\text{failure}] = \int \left\{ \begin{array}{l} 0, & \text{if } f(x) \in A \\ 1, & \text{if } f(x) \not\in A \end{array} \right\}^{\nu} d\mu(x) \text{ Michael Ortiz USACM 01/19}$$

UQ and safe design

 Conservative design: Upper bound on the PoF of the system below tolerance,

 $\mathbb{P}[\text{failure}] = \mathbb{P}[Y \not\in A] \leq \text{upper bound} \leq \epsilon$

Objective: Obtain tight (optimal?) PoF upper bounds
 from all known information about the system... Michael Ortiz USACM 01/19

Concentration of Measure PoF bounds

Paul Pierre Levy (1886-1971)

- CoM (Levy, 1951):

 Functions over high-dimensional spaces with small local oscillations in each variable are almost constant
- Example of CoM: Law of large numbers
- Blessing of dimensionality!
- CoM gives rise to a class of probability-of-failure inequalities that can be used for rigorous UQ and conservative design

McDiarmid's inequality

ON THE METHOD OF BOUNDED DIFFERENCES

Colin McDiarmid

(1.2) Lemma: Let $X_1,...,X_n$ be independent random variables, with X_k taking values in a set A_k for each k. Suppose that the (measurable) function $f: \Pi A_k \to \mathbb{R}$ satisfies $D_k = \min c_k$

satisfies
$$D_k = \min c_k$$
(1.3)
$$|f(\underline{\mathbf{x}}) - f(\underline{\mathbf{x}}')| \leq c_k \qquad (x_k \text{-diameter})$$

whenever the vectors $\underline{\mathbf{x}}$ and $\underline{\mathbf{x}}'$ differ only in the kth co-ordinate. Let Y be the

$$\begin{aligned} \text{random variable } f\big[X_1, &..., X_n\big]. & \text{ Then for any } t > 0, \\ P\big(\,|\, Y - E(Y)\,|\, \geq t\big) \leq 2 exp\Big[-2t^2 / \Sigma c_k^2\Big]. \end{aligned}$$

$$D^2 = \sum D_k^2$$
 (total diameter)

McDiarmid, C. (1989) "On the method of bounded differences". In J. Simmons (ed.), Surveys in Combinatorics: *London Math. Soc. Lecture Note Series* **141**. Cambridge University Press.

McDiarmid's inequality

Theorem [McDiarmid] Suppose that:

- i) $\{X_1, \ldots, X_N\}$ are independent random variables,
- ii) $f: E \subset \mathbb{R}^N \to \mathbb{R}$ integrable, $Y = f(X_1, \dots, X_N)$.

Then, for every $r \geq 0$

$$\mathbb{P}[|Y - \mathbb{E}[Y]| \ge r] \le \exp\left(-2\frac{r^2}{D^2}\right),$$

where D is the diameter of f over E.

- Bound does not require distribution of inputs
- Bound depends on two numbers: Function mean and function diameter!

McDiarmid's inequality and safe design

Corollary A conservative safe-design criterion is:

$$\mathbb{P}[Y \ge a] \le \exp\left(-2\frac{(a - \mathbb{E}[Y])_+^2}{D^2}\right) \le \epsilon,$$

Probability of failure Upper bound Failure tolerance

• Equivalent statement (confidence factor CF):

$$\mathsf{CF} \equiv \frac{M}{U} \equiv \frac{(a - \mathbb{E}[Y])_+}{D} \geq \sqrt{\log \sqrt{\frac{1}{\epsilon}}} \Rightarrow \mathsf{safe \ design!}$$

- Rigorous definition of design margin (M)
- Rigorous definition of uncertainty (U = D)

Michael Ortiz USACM 01/19

Extension to empirical mean

Theorem [Lucas, Owhadi, MO] With probability $1 - \epsilon'$,

$$\mathbb{P}[Y \ge a] \le \exp\left(-2\frac{(a - \langle Y \rangle - \alpha)_+^2}{D^2}\right),\,$$

where
$$\langle Y \rangle = \frac{1}{m} \sum_{i=1}^{m} Y_i$$
 and $\alpha = D m^{-\frac{1}{2}} (-\log \epsilon')^{\frac{1}{2}}$.

• Equivalent statement (confidence factor CF):

$$\mathsf{CF} \equiv \frac{M}{U} \equiv \frac{(a - \langle Y \rangle - \alpha)_{+}}{D} \geq \sqrt{\log \sqrt{\frac{1}{\epsilon}}} \Rightarrow \mathsf{safe!}$$

- Use of empirical mean results in margin hit! (α)
- Uncertainty remains unchanged (U=D)

 Lucas, L., Owhadi, H. and Ortiz, M., *CMAME*, **197** (2008) 4591–4609. USACM 01/19

LS-Dyna simulation of spherical 8 gram Pb projectile striking a 10cm x 10cm x 0.35 cm Mg plate at 150 m/s

Ma

- Objective: Safe design of *protective Mg plates* against (sub)ballistic threats
- Material model: Johnson-Cook,

$$\sigma = (A + B \varepsilon_p^n)(1 + C \ln \dot{\varepsilon}^*)(1 - T^{*m})$$

- Design criterion: Indentation < allowable
- Assumption: Material behavior is the main source of uncertainty, all other parameters are deterministic (projectile mass, impact velocity...)
- Uncertain parameters: A, B, n, C, m (at all material points in the plate)
- Solvers: LS-Dyna, Dakota 4.0 (Sandia)

- Johnson-Cook inputs $X = (A, B, n, C, m) \in E$
- Find parameter ranges that include a given percentile $1 \epsilon''$ of the experimental data

- Johnson-Cook inputs $X = (A, B, n, C, m) \in E$
- Find parameter ranges that include a given percentile $1 \epsilon''$ of the experimental data

Parameter	Estimate	Lower 95%	Upper 95%	Uncertainty
A [MPa]	225.171	200.372	249.970	+/- 11.01 %
B [MPa]	168.346	150.682	186.010	+/- 10.49 %
n	0.242	0.160	0.324	+/- 33.88 %
С	0.013	0.012	0.014	+/- 7.69 %
m	1.550	1.523	1.577	+/- 1.74 %
	R²	0.896	$\epsilon^{\prime\prime}=0.05$	

D. Hasenpouth, 2010,
Tensile High Strain Rate Behavior of AZ31B Mg Alloy Sheet,
MS thesis, University of Waterloo.

Michael Ortiz
USACM 01/19

$$\sigma = (A + B \varepsilon_p^n)(1 + C \ln \dot{\varepsilon}^*)(1 - T^{*m})$$

Sample size (m)	300	
Empirical mean (<y>)</y>	0.72761 cm	
Total diameter (D)	0.81912 mm	

Michael Ortiz USACM 01/19

$$\sigma = (A + B \varepsilon_p^n)(1 + C \ln \dot{\varepsilon}^*)(1 - T^{*m})$$

- Margin requirement increases (decreases) with uncertainty, sampling confidence (sample size)

Concluding remarks

- Concentration of Measure (CoM) bounds supply computable, practical, rigorous upper bounds on probability of failure (PoF) of complex systems
- CoM PoF bounds result in conservative designs
- CoM Uncertainty Quantification (UQ) is nonintrusive, can be implemented as a wrapper around standard solvers (e.g., LS-Dyna...)
- Uncertainties in material behavior can be managed effectively and safely through UQ
- Outlook: Going forward,
 - Parametric studies (velocity, mass, thickness...)
 - Tighter PoF bounds: Optimal UQ1 (best bounds)
 - Machine learning of data sets, optimal ranges

Concluding remarks

Thank you!