Optimal scaling laws in ductile fracture

M. Ortiz
California Institute of Technology

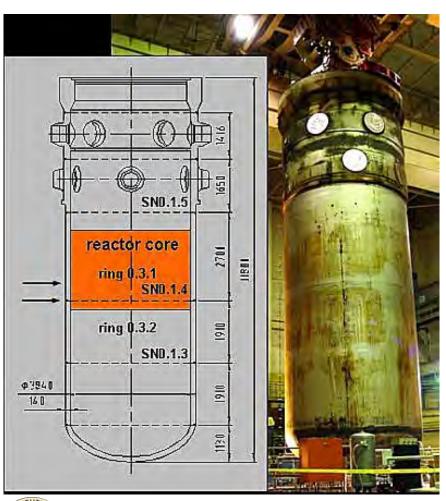
Symposium on New Developments in Defects Mechanics

Chair: Xanthippi Markenscoff, UCSD

University of California, San Diego La Jolla, CA, January 18-19, 2014

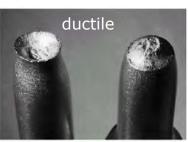
Outline

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

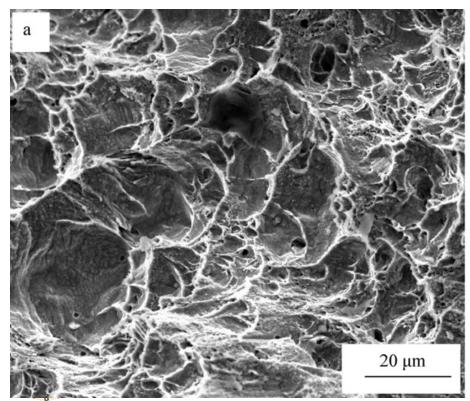


 Linear-elastic fracture mechanics proved inadequate for assessing, e.g., safety of mild-steel pressure vessels in nuclear power plants, which spurred the development of elastic-plastic fracture mechanics (with focus on Rice's J-integral formalism)

Reactor Pressure Vessel (RPV) from Greifswald Nuclear Power Plant (courtesy Viehrig, H.W. and Houska, M., Helmholtz Zentrum, Dresden-Rossendorf, https://www.hzdr.de/db/Cms?pNid=2698)



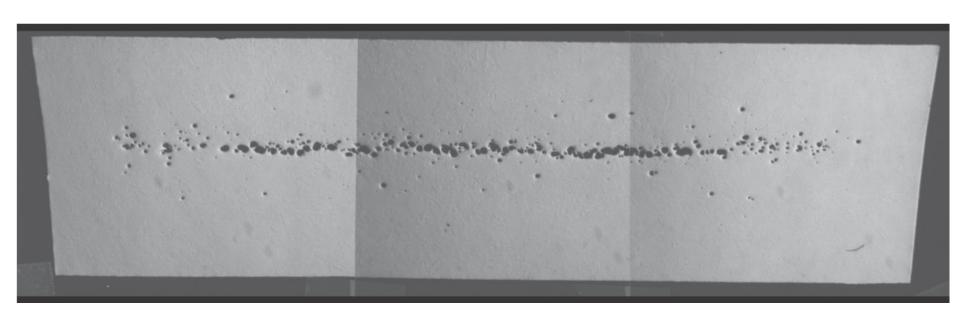
(Courtesy NSW HSC online)



- Ductile fracture in metals occurs by void nucleation, growth and coalescence
- Fractography of ductilefracture surfaces exhibits profuse dimpling, vestige of microvoids
- Ductile fracture entails large amounts of plastic deformation (vs. surface energy) and dissipation.

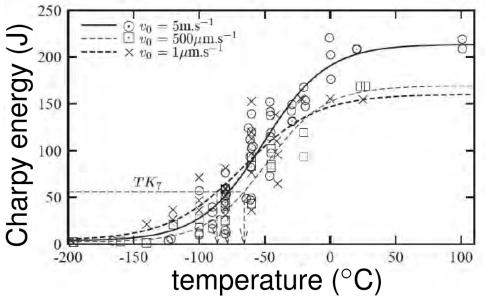
Fracture surface in SA333 steel, room temp., $d\epsilon/dt=3\times10^{-3}s^{-1}$ (S.V. Kamata, M. Srinivasa and P.R. Rao, Mater. Sci. Engr. A, **528** (2011) 4141–4146) Michael Ortiz

UCSD 01/14

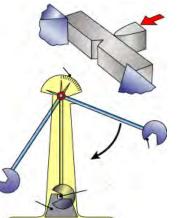


Photomicrograph of a copper disk tested in a gas-gun experiment showing the formation of voids and their coalescence into a fracture plane

Heller, A., How Metals Fail, Science & Technology Review Magazine, Lawrence Livermore National Laboratory, pp. 13-20, July/August, 2002



Charpy energy of A508 steel (Tanguy et al., Eng. Frac. Mechanics, 2005)

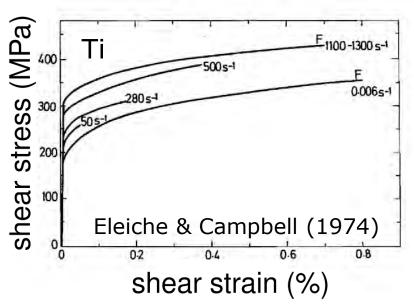


- A number of ASTM
 engineering standards are
 in place to characterize
 ductile fracture properties
 (J-testing, Charpy test)
- The Charpy test data reveals a brittle-to-ductile transition temperature
- In general, the specific fracture energy for ductile fracture is greatly in excess of that required for brittle fracture...

Outline/work plan

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

Naïve model: Local plasticity

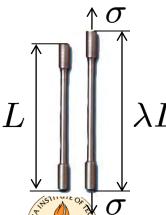


Deformation theory: Minimize

$$E(y) = \int_{\Omega} W(Dy(x)) dx$$

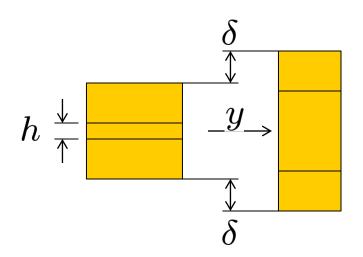
- Growth of W(F)?
- Asume power-law hardening:

$$\sigma \sim K\epsilon^n = K(\lambda - 1)^n$$



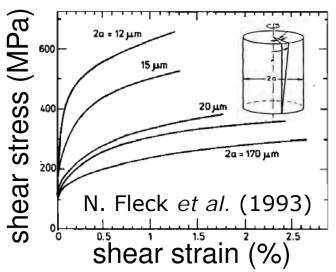
- Nominal stress: $\partial_{\lambda}W = \sigma/\lambda = K(\lambda-1)^{n}/\lambda$
- For large λ : $\partial_{\lambda}W \sim K\lambda^{n-1} \Rightarrow W \sim K\lambda^n$ In general: $W(F) \sim |F|^p, \ p=n \in (0,1)$
 - ⇒ Sublinear growth!

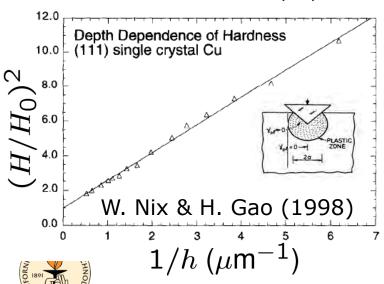
Naïve model: Local plasticity



- Example: Uniaxial extension
- Energy: $E_h \sim h \left(\frac{2\delta}{h}\right)^p$
- For p < 1: $\lim_{h \to 0} E_h = 0$
- Energies with sublinear growth relax to 0.
- For hardening exponents in the range of experimental observation, local plasticity yields no useful information regarding ductile fracture properties of materials!
- Need additional physics, structure...

Strain-gradient plasticity





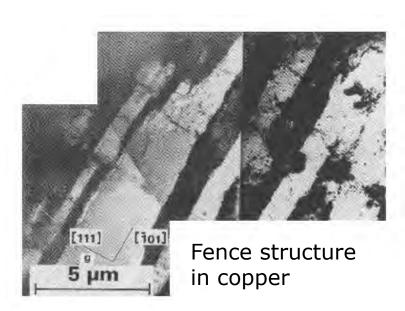
- The yield stress of metals is observed to increase in the presence of strain gradients
- Deformation theory of straingradient plasticity:

$$E(y) = \int_{\Omega} W(Dy(x), D^2y(x)) dx$$

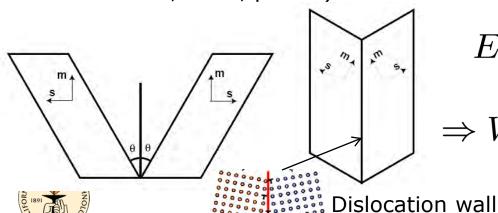
 $y:\Omega\to\mathbb{R}^n$, volume preserving

- Strain-gradient effects may be expected to oppose localization
- Growth of W with respect to the second deformation gradient?

Strain-gradient plasticity



(J.W. Steeds, *Proc. Roy. Soc. London*, **A292**, 1966, p. 343)



- Growth of $W(F, \cdot)$?
- For fence structure:

$$F^{\pm} = R^{\pm}(I \pm \tan \theta \, s \otimes m)$$

Across jump planes:

$$|[F]| = 2 \sin \theta$$

Dislocation-wall energy:

$$E = \frac{T}{b} 2 \sin \theta = \frac{T}{b} | \llbracket F \rrbracket |$$

 $\Rightarrow W(F, \cdot)$ has linear growth!

Strain-gradient plasticity

Mathematical model: Minimize

$$E(y) = \int_{\Omega} W(Dy(x), D^2y(x)) dx$$

 $y: \Omega \to \mathbb{R}^n$, volume preserving

- For metals, local plasticity exhibits sub-linear growth, which favors localization of deformations
- Strain-gradient plasticity may be expected to exhibit linear growth, which opposes localization
- Question: Can ductile fracture be understood as the result of a competition between sublinear growth and strain-gradient plasticity?

Outline

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

Scaling laws in science

- A broad variety of physical phenomena obey power laws over wide ranges of parameters
- Scale invariance: If $y = C x^a$, then (x,y) iff $(\lambda x, \lambda^a y)$, law of corresponding states
- Universality: Systems displaying identical scaling behavior are likely to obey the same fundamental dynamics
- Experimental master curves, data collapse
- Examples:
 - Critical phenomena (second-order transitions)
 - Materials science (Taylor, Hall-Petch, creep laws...)
 - Continuum mechanics (hydrodynamic, fracture...)

Optimal scaling

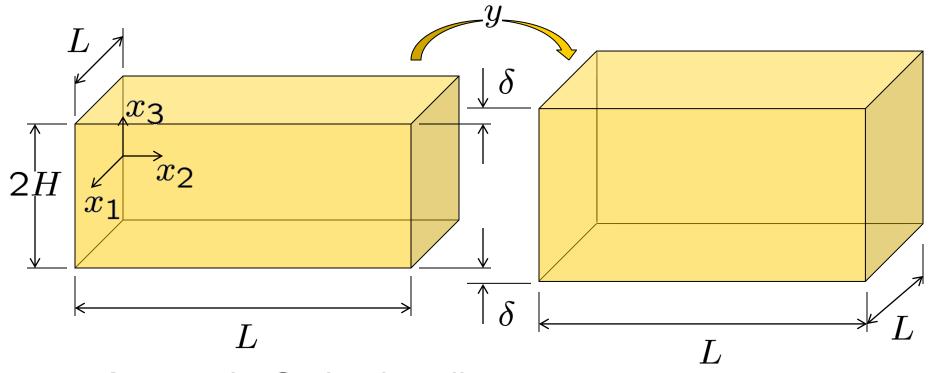
- Suppose: Energy = $E(u, \epsilon_1, \dots, \epsilon_N)$
- Optimal (matching) upper and lower bounds:

$$C_L \epsilon_1^{\alpha_1} \dots \epsilon_N^{\alpha_N} \le \inf E(\cdot, \epsilon_1, \dots, \epsilon_N) \le C_U \epsilon_1^{\alpha_1} \dots \epsilon_N^{\alpha_N}$$

- The exponents $\alpha_1, \ldots, \alpha_N$ are *sharp*, *universal*
- ullet The constants C_L and C_U are often lax, imprecise...
- Upper bound by construction, ansatz-free lower bound
- Originally applied to branched microstructures in martensite (Kohn-Müller 92, 94; Conti 00)
- Applications to micromagnetics (Choksi-Kohn-Otto 99), thin films (Belgacem et al 00)...

Michael Ortiz UCSD 01/14

Optimal scaling – Ductile fracture



- Approach: Optimal scaling
- Slab: $\Omega = [0, L]^2 \times [-H, H]$, periodic
- Uniaxial extension: $y_3(x_1, x_2, \pm H) = x_3 \pm \delta$

Optimal scaling – Ductile fracture

- $y: \Omega \to \mathbb{R}^3$, $[0, L]^2$ -periodic, volume preserving
- $y \in W^{1,1}(\Omega; \mathbb{R}^3)$, $Dy \in BV(\Omega; \mathbb{R}^{3\times 3})$
- ullet Growth: For $0 < K_L < K_U$, intrinsic length $\ell > 0$,

$$E(y) \ge K_L \left(\int_{\Omega} (|Dy|^p - 3^{p/2}) \, dx + \ell \int_{\Omega} |D^2 y| \, dx \right)$$

$$E(y) \le K_U \left(\int_{\Omega} (|Dy|^p - 3^{p/2}) \, dx + \ell \int_{\Omega} |D^2 y| \, dx \right)$$

Theorem [Fokoua, Conti & MO, ARMA, 2013]. For ℓ sufficiently small, $p \in (0, 1), 0 < C_L(p) < C_U(p)$,

$$C_L(p) L^2 \ell^{rac{1-p}{2-p}} \delta^{rac{1}{2-p}} \leq \inf E \leq C_U(p) L^2 \ell^{rac{1-p}{2-p}} \delta^{rac{1}{2-p}}$$
 Mich

Optimal scaling – Ductile fracture

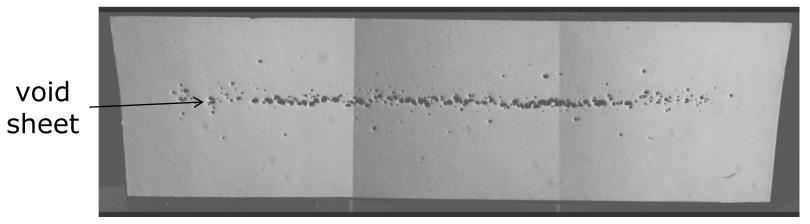
Optimal (matching) upper and lower bounds:

$$C_L(p)L^2\ell^{\frac{1-p}{2-p}}\delta^{\frac{1}{2-p}} \le \inf E \le C_U(p)L^2\ell^{\frac{1-p}{2-p}}\delta^{\frac{1}{2-p}}$$

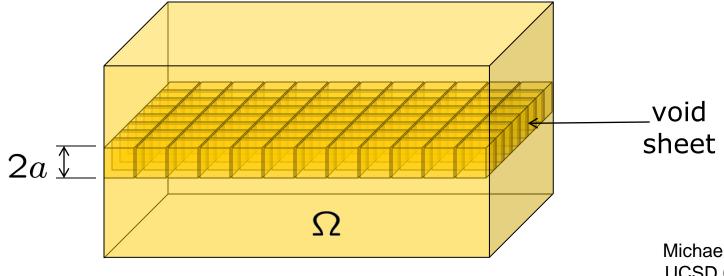
- Bounds apply to classes of materials having the same growth, specific model details immaterial
- Energy scales with area (L²): Fracture scaling!
- Energy scales with power of *opening* displacement (δ): Cohesive behavior!
- Lower bound degenerates to 0 when the intrinsic length (ℓ) decreases to zero...
- Bounds on specific fracture energy:

$$C_L(p)\ell^{\frac{1-p}{2-p}}\delta_c^{\frac{1}{2-p}} \le J_c \le C_U(p)\ell^{\frac{1-p}{2-p}}\delta_c^{\frac{1}{2-p}}$$

Sketch of proof – Upper bound



Heller, A., Science & Technology Review Magazine, LLNL, pp. 13-20, July/August, 2002



Michael Ortiz UCSD 01/14

Sketch of proof — Upper bound



• Calculate, estimate: $E \leq CL^2\left(a^{1-p}\delta^p + \ell\delta/a\right)$

Optimize: $a=(\ell\delta^{1-p})^{1/(2-p)}\Rightarrow E\leq C_UL^2\ell^{\frac{1-p}{2-p}}\delta^{\frac{1}{2-p}}$ Michael Ortiz void growth!

UCSD 01/14

Sketch of proof – Lower bound

- Lower bound: 1D arguments in x_3 -direction
- For fixed (x_1, x_2) : $f(x_3) \equiv |D_3y(x_1, x_2, x_3)|$
- Then: $|D^2y| \ge |D_3^2y| \ge |D_3|D_3y| = |Df|$

$$\bar{f} \equiv \frac{1}{2H} \int_{-H}^{H} f(x_3) dx_3 \ge \frac{1}{2H} \int_{-H}^{H} \frac{\partial u_3}{\partial x_3} dx_3 = 1 + \frac{\delta}{H}$$

• Define reduced energy density:

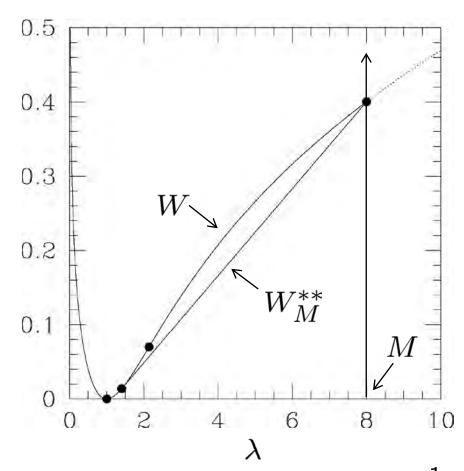
$$W(\lambda) = \min\{|F|^p - 3^{p/2}, \det F = 1, |Fe_3| = \lambda\}$$

• Then:
$$\int_{-H}^{H} (|Dy|^p - 3^{p/2} + \ell |D^2y|) dx_3 \ge$$

$$\int_{-H}^{H} (W(f(x_3)) + \ell |Df(x_3)|) dx_3$$

Sketch of proof – Lower bound

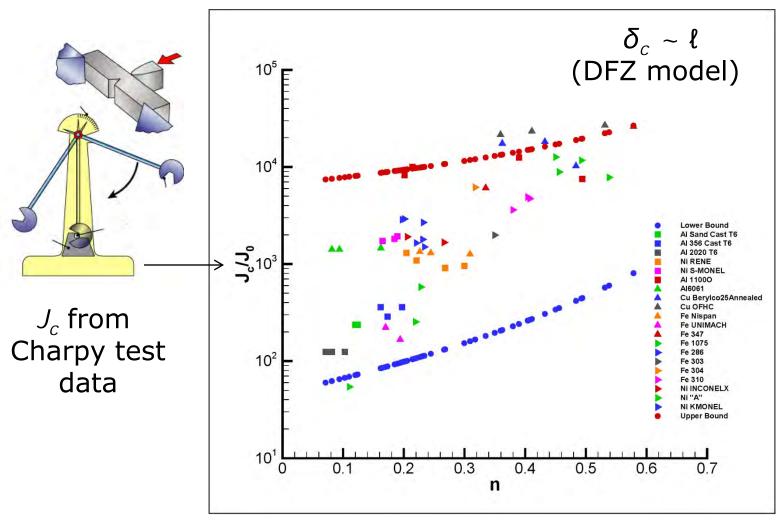
Graph of reduced energy density *W* and dual *W***



• Duality + Jensen + estimates: $E \geq C_L L^2 \ell^{\frac{1-p}{2-p}} \delta^{\frac{1}{2-p}}$

q. e. d.

Comparison with experiment

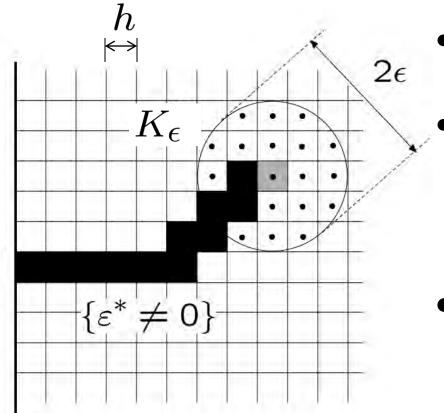


L. Fokoua, S. Conti & MO, J. Mech. Phys. Solids, **62** (2014) 295–311

Outline

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

Numerical implementation Material-point erosion



schematic of ε-neighborhood construction

- ϵ -neighborhood construction: Choose h $<<\epsilon<$ L
- Erode material point if

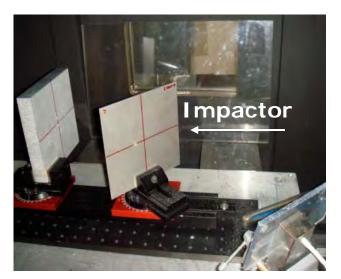
$$\frac{h^2}{|K_{\epsilon}|} \int_{K_{\epsilon}} W(\nabla u) \, dx \ge J_c$$

- For linear elasticity, proof of Γconvergence to Griffith fracture:
 - Schmidt, B., Fraternali, F. &
 MO, SIAM J. Multiscale Model.
 Simul., 7(3):1237-1366, 2009.

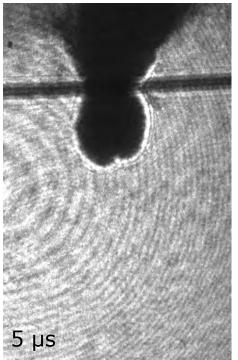
Outline

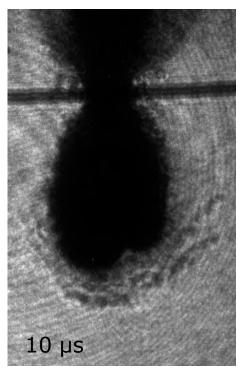
- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

Application to hypervelocity impact



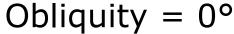
Caltech's hypervelocity
Impact facility

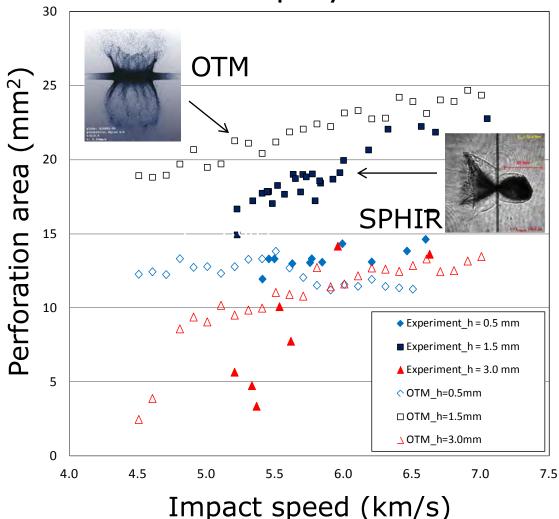


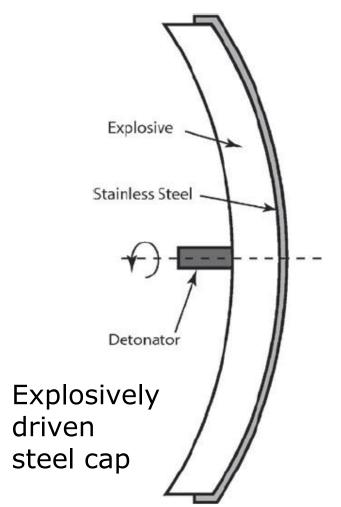


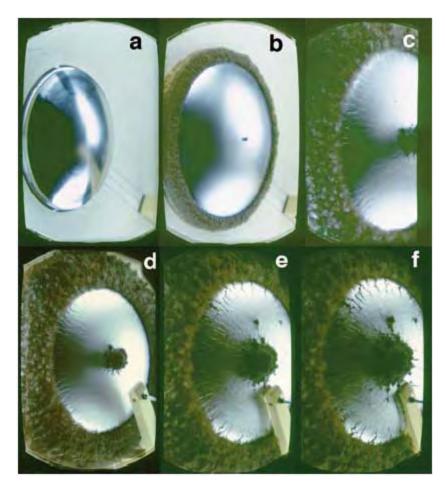
Hypervelocity impact (5.7 Km/s) of 0.96 mm thick aluminum plates by 5.5 mg nylon 6/6 cylinders (Caltech)

Application to hypervelocity impact

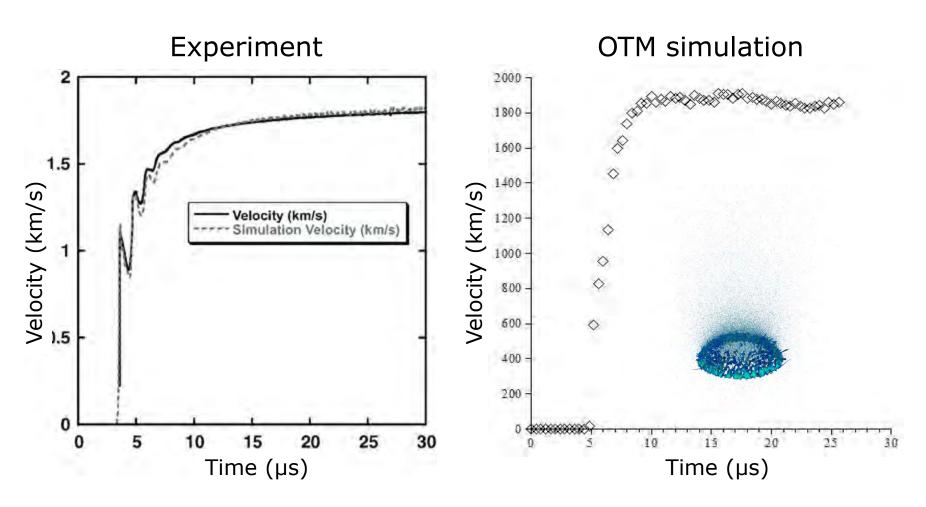




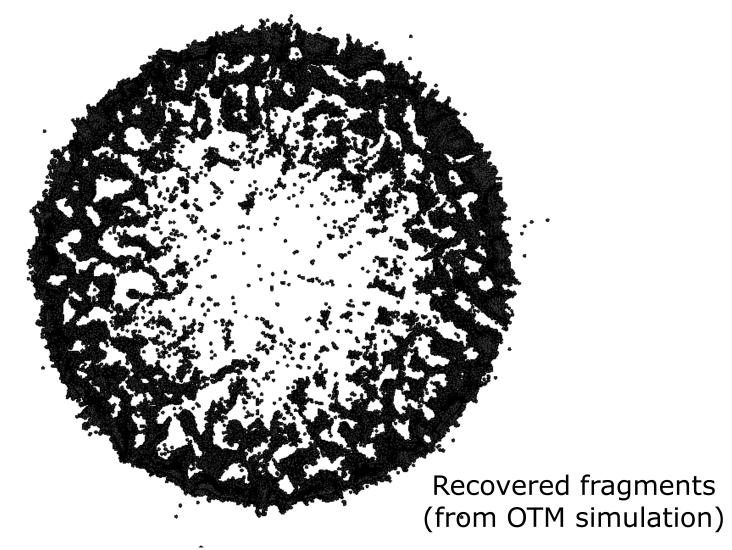


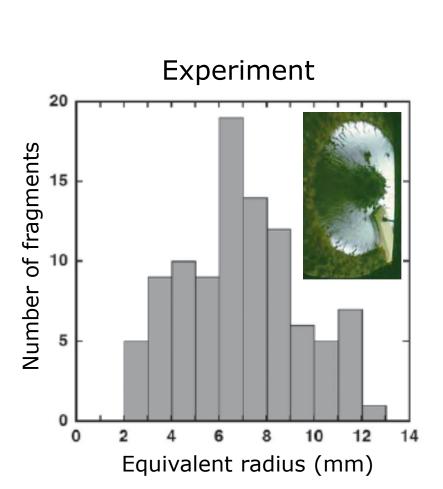


Optical framing camera records

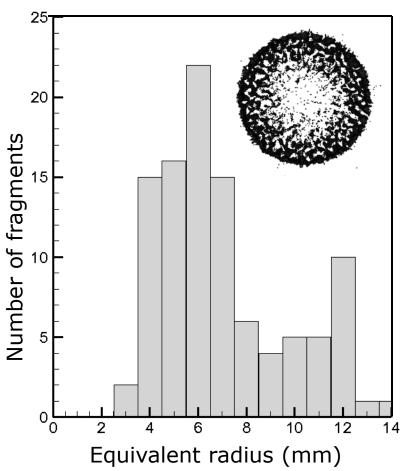


Surface velocity for spot midway between pole and edge





OTM simulation



Histograms of equivalent fragment radii

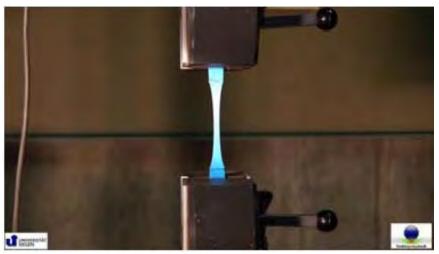
G.H. Campbell, G. C. Archbold, O. A. Hurricane and P. L. Miller, *JAP*, **101**:033540, 2007

Michael Ortiz UCSD 01/14

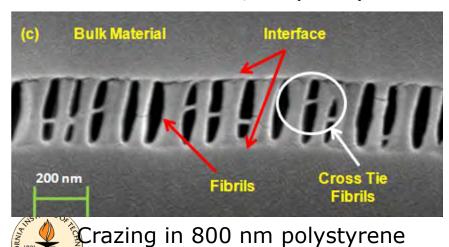
Outline

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

Fracture of polymers



T. Reppel, T. Dally, T. and K. Weinberg, Technische Mechanik, 33 (2012) 19-33.



film (C. K. Desai et al., 2011)

 Polymers undergo entropic elasticity and damage due to chain stretching and failure

- Polymers fracture by means of the crazing mechanism consisting of fibril nucleation, stretching and failure
- The free energy density of polymers saturates in tension once the majority of chains are failed: p=0!
- Crazing mechanism is incompatible with straingradient elasticity...

Michael Ortiz UCSD 01/14

Fracture of polymers

• Suppose: For $K_U > 0$, intrinsic length $\ell > 0$,

$$E(y) \le K_U \left(\int_{\Omega} (|Dy|^p - 3^{p/2}) dx + \ell \int_{\Omega} |D^2y| dx \right)$$

- If $E(y) < +\infty \Rightarrow y$ continuous on a.e. plane!
- Crazing is precluded by the continuity of y!
- Instead suppose: For $\sigma \in (0, 1)$,

$$E(y) \le K_U \left(\int_{\Omega} (|Dy|^p - 3^{p/2}) dx + \ell^{\sigma} |y|_{W^{1+\sigma,1}(\Omega)} \right)$$

Theorem [Conti, Heyden & MO]. For ℓ sufficiently small,

$$p = 0, \ \sigma \in (0,1), \ 0 < C_L < C_U,$$

$$C_L L^2 \ell^{\frac{\sigma}{1+\sigma}} \delta^{\frac{1}{1+\sigma}} \leq \inf E \leq C_U L^2 \ell^{\frac{\sigma}{1+\sigma}} \delta^{\frac{1}{1+\sigma}} \delta^{\frac$$

Optimal scaling - Crazing

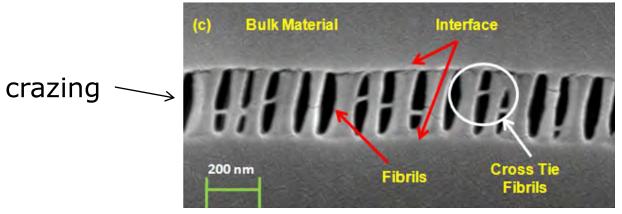
Optimal (matching) upper and lower bounds:

$$C_L L^2 \ell^{\frac{\sigma}{1+\sigma}} \delta^{\frac{1}{1+\sigma}} \leq \inf E \leq C_U L^2 \ell^{\frac{\sigma}{1+\sigma}} \delta^{\frac{1}{1+\sigma}}$$

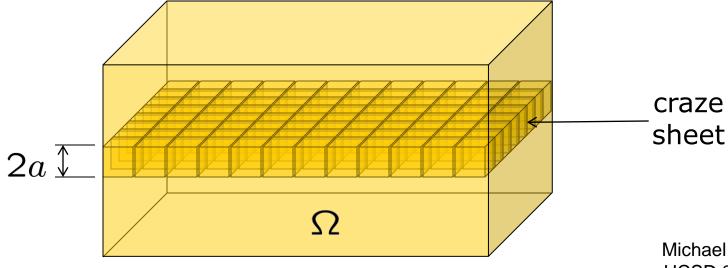
- Fractional strain-gradient elasticity supplies bounded energies for crazing mechanism
- Energy scales with area (L²): Fracture scaling!
- Energy scales with power of opening displacement (δ): Cohesive behavior!
- Lower bound degenerates to 0 when the intrinsic length (ℓ) decreases to zero...
- Bounds on specific fracture energy:

$$C_L \ell^{\frac{\sigma}{1+\sigma}} \delta_c^{\frac{1}{1+\sigma}} \le G_c \le C_U \ell^{\frac{\sigma}{1+\sigma}} \delta_c^{\frac{1}{1+\sigma}}$$

Sketch of proof – Upper bound

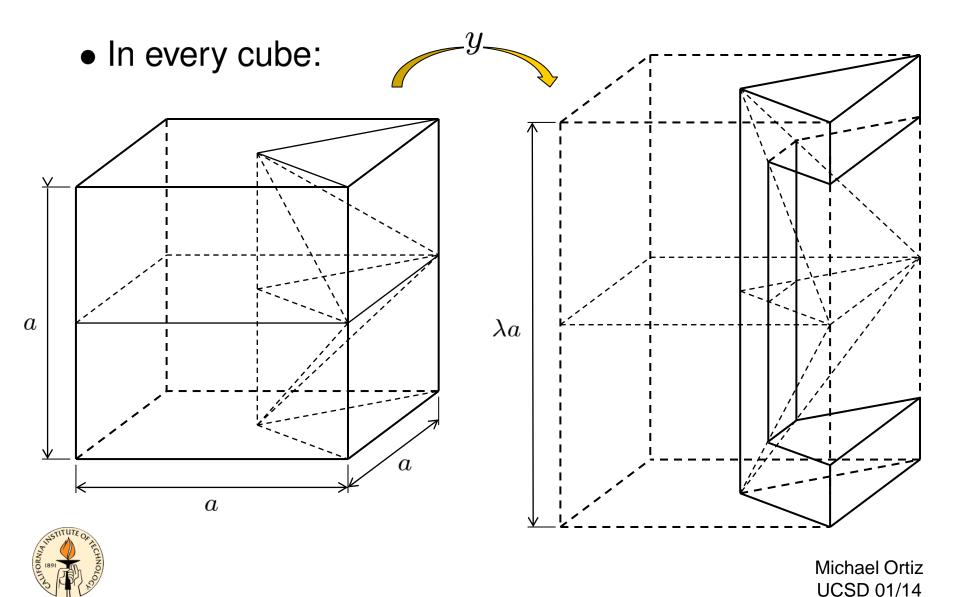


Crazing in 800 nm polystyrene thin film (C. K. Desai *et al.*, 2011)



Michael Ortiz UCSD 01/14

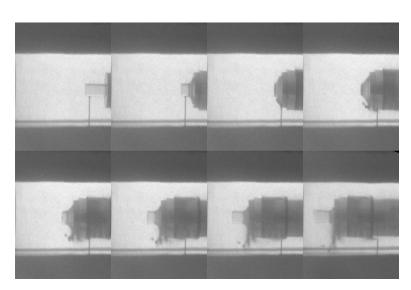
Sketch of proof – Upper bound



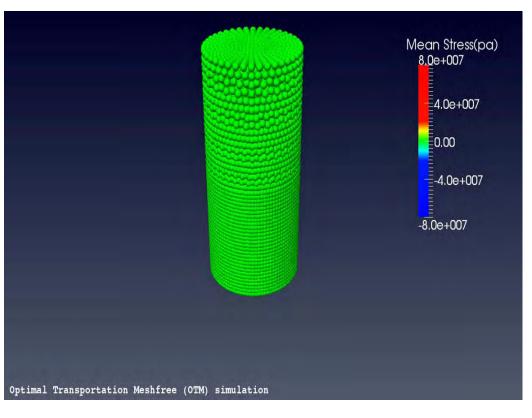
Outline

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

Taylor-anvil tests on polyurea



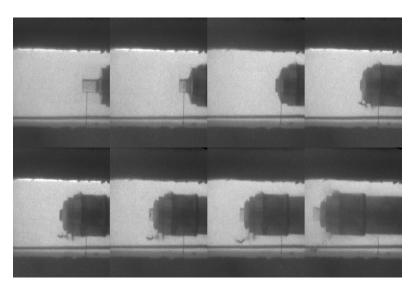
Shot #854: R0 = 6.3075 mm, L0 = 27.6897 mm, v = 332 m/s



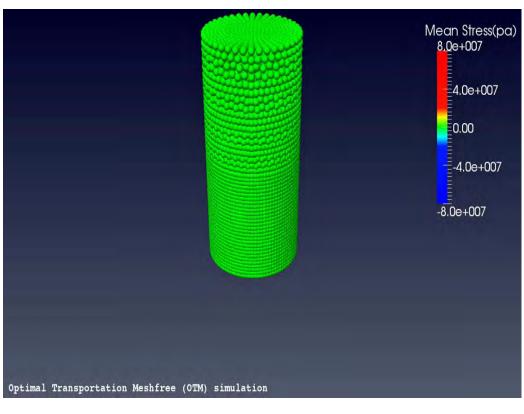
Experiments conducted by W. Mock, Jr. and J. Drotar, at the Naval Surface Warfare Center (Dahlgren Division) Research Gas Gun Facility, Dahlgren, VA 22448-5100, USA

S. Heyden el al., JMPS (submitted)

Experiments and simulations

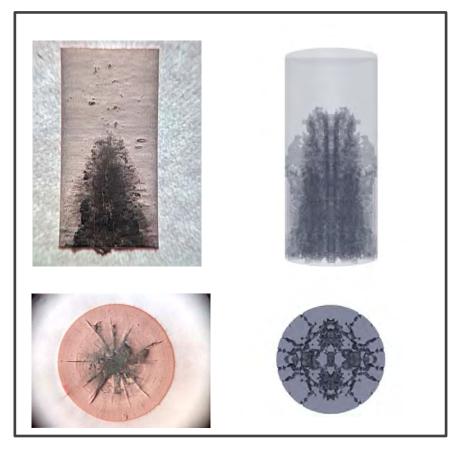


Shot #861: R0 = 6.3039 mm, L0 = 27.1698 mm, v = 424 m/s



Experiments conducted by W. Mock, Jr. and J. Drotar, at the Naval Surface Warfare Center (Dahlgren Division) Research Gas Gun Facility, Dahlgren, VA 22448-5100, USA

Taylor-anvil tests on polyurea



Shot #854 Shot #861

Comparison of damage and fracture patterns in recovered specimens and simulations

Michael Ortiz UCSD 01/14

Concluding remarks

- Ductile fracture can indeed be understood as the result of the competition between sublinear growth and (possibly fractional) strain-gradient effects
- Optimal scaling laws are indicative of a well-defined specific fracture energy, cohesive behavior, and provide a (multiscale) link between macroscopic fracture properties and micromechanics (intrinsic micromechanical length scale, void-sheet and crazing mechanisms...)
- Ductile fracture can be efficiently implemented through material-point erosion schemes

Concluding remarks

Thanks!

(This program has been made possible by generous contributions from family, mentors, alumni, institutions, funding agencies and viewers like you!)

