Diamonds:

Finite Element/Discrete Mechanics schemes with guaranteed optimal convergence

M. Ortiz

California Institute of Technology
In collaboration with: **P. Hauret** and **E. Kuhl**

International Conference on Multifield Problems,

Stuttgart, Germany, October 5, 2006

Outline

- Overview of discrete mechanics for vector problems
- Discrete mechanics in the context of tensor problems
- Diamonds: Finite element/discrete mechanics approximation schemes with guaranteed optimal convergence

Outline

- Overview of discrete mechanics for vector problems
- Discrete mechanics in the context of tensor problems
- Diamonds: Finite element/discrete mechanics approximation schemes with guaranteed optimal convergence

Discrete mechanics

- Aka: Discrete Exterior Calculus (DEC)...
- Reformulation of the field equations of mechanics in which space (and possibly time) are discrete ab initio
- The field equations of mechanics retain their form, but:
 - Are defined on a discrete geometrical space (cell complex)
 - Are expressed in terms of discrete differential and integral operators
- Discrete mechanics enjoys a long tradition in problems of the 'vector type', e.g.:
 - Bossavit (electromagnetism)
 - Hipmair (electromagnetism)
 - Arnold (also 2d tensor problems such as elasticity)
 - Desbrun, Hirani, Kanso, Leok, Marsden, Schröder...

Geometric mechanics

• The de-Rham differential complex in \mathbb{R}^3 :

Differential complex property:

$$curl \circ grad = 0$$

 $div \circ curl = 0$

Integral identities (Stokes' theorem):

$$\int_{V} \operatorname{div} \alpha \, dV = \int_{\partial V} \alpha \cdot \nu \, dS$$

$$\int_{S}\operatorname{curl}\beta\,dS=\oint_{\partial S}\beta\cdot dx$$

Geometric mechanics

Helmholtz-Hodge decomposition:

$$\Omega^1(\mathbb{R}^3) \ni \beta = \operatorname{grad} \phi + \operatorname{curl} A + \gamma, \quad \Delta \gamma = 0$$
 and decomposition L^2 -orthogonal.

de Rham cohomology:

$$H^{1}(\mathbb{R}^{3}) = \ker(\operatorname{grad})$$

 $H^{2}(\mathbb{R}^{3}) = \ker(\operatorname{curl})/\operatorname{im}(\operatorname{grad})$
 $H^{3}(\mathbb{R}^{3}) = \ker(\operatorname{div})/\operatorname{im}(\operatorname{curl})$

Lemma. (Poincaré) $H^p(\mathbb{R}^3) = 0$.

Lemma. $\{\gamma, \Delta \gamma = 0\}$ isomorphic with $H^3(\mathbb{R}^3)$.

Model problem – Maxwell's equations

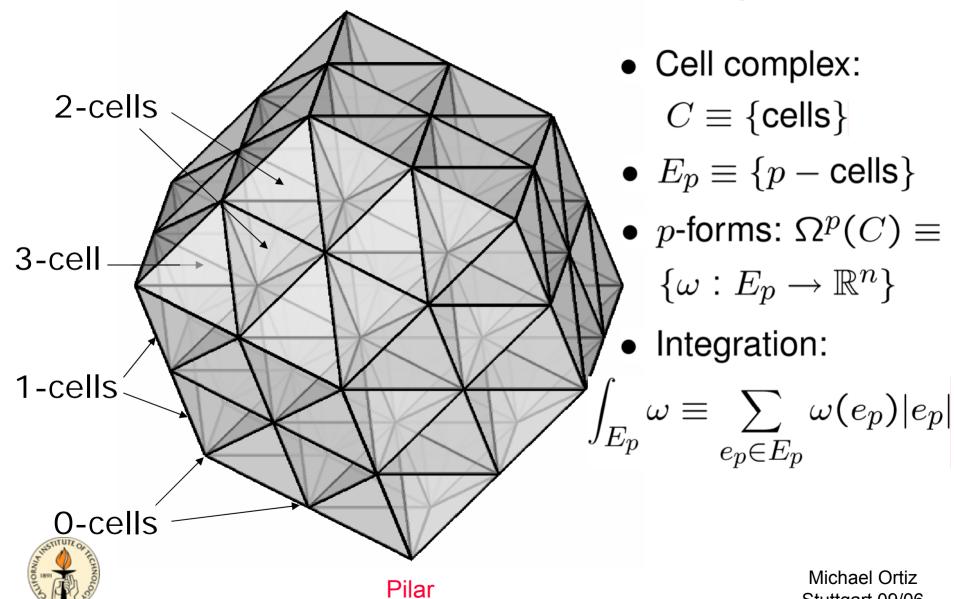
Maxwell's equations for linear materials:

$$\begin{array}{l} \operatorname{div}(\varepsilon E) = \rho \\ \operatorname{div}(\mu H) = 0 \\ \operatorname{curl} E = -\partial_t(\mu H) \\ \operatorname{curl} H = J + \partial_t(\varepsilon E) \end{array} \quad \text{(Gauss law)} \\ \text{(Gauss law for magnetism)} \\ \text{(Faraday's law of induction)} \\ \text{(Ampère's law)} \end{array}$$

 $E \equiv ext{electric field,}$ $ho \equiv ext{charge density,}$ $ho \equiv ext{electrical permitivity,}$

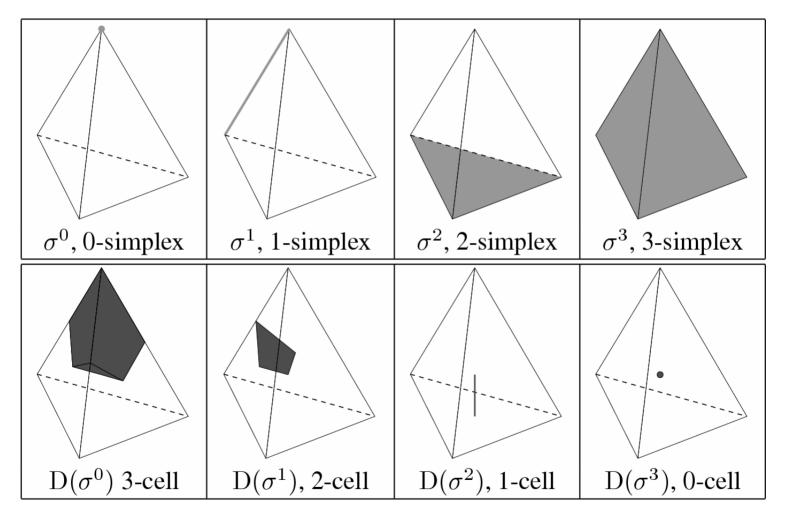
 $H\equiv$ magnetic field, $J\equiv$ current density. $\mu\equiv$ magnetic permeability.

Discrete mechanics - Cell complexes



Stuttgart 09/06

Cell complexes - Dual cell complex



Three-dimensional dual complex (A. Hirani, 2003)_{Michael Ortiz}

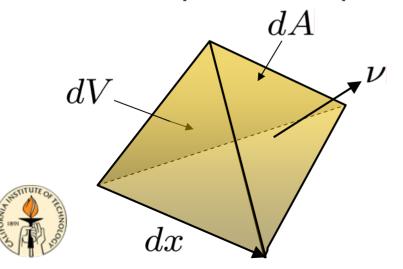
Stuttgart 09/06

Discrete differential complexes

Discrete de-Rham differential complex: Sequence

$$\int_{V} \operatorname{div} \alpha \, dV = \int_{\partial V} \alpha \cdot \nu \, dS, \quad \int_{S} \operatorname{curl} \beta \, dS = \oint_{\partial S} \beta \cdot dx$$

• Example: *C* simplicial,



$$\operatorname{grad} u \equiv \frac{du \otimes dx}{|dx|^2}$$

$$\operatorname{curl}\beta \equiv \frac{d(\beta \cdot dx)}{dA}\nu$$

$$\operatorname{div}\alpha \equiv \frac{d(\alpha \cdot \nu dA)}{dV}$$

Michael Ortiz Stuttgart 09/06

Discrete Maxwell's equations

• Continuum (in \mathbb{R}^3):

$$\begin{aligned} \operatorname{div}(\varepsilon E) &= \rho \\ \operatorname{div}(\mu H) &= 0 \\ \operatorname{curl}E &= -\partial_t(\mu H) \\ \operatorname{curl}H &= J + \partial_t(\varepsilon E) \end{aligned}$$

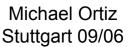
• Discrete (on C):

$$\begin{aligned} \operatorname{div}(\varepsilon E) &= \rho \\ \operatorname{div}(\mu H) &= 0 \\ \operatorname{curl} E &= -\partial_t (\mu H) \\ \operatorname{curl} H &= J + \partial_t (\varepsilon E) \end{aligned}$$

$$E \in \Omega^1(C), \quad (\varepsilon E) \in \Omega^2(C^*), \quad \rho \in \Omega^3(C^*),$$
 $H \in \Omega^1(C^*), \quad (\mu H) \in \Omega^2(C), \quad J \in \Omega^2(C^*),$
 $\varepsilon : \Omega^1(C) \to \Omega^2(C^*), \quad \mu : \Omega^1(C^*) \to \Omega^2(C).$

Discrete mechanics – Vector problems

- Continuum and discrete mechanics are identical, with the discrete field equations expressed on cell complexes in terms of discrete differential operators
- Discrete mechanics works with the field equations directly, bypasses the usual variational detour
- Discrete mechanics schemes satisfy conservation laws exactly (Stokes' theorem), possess a Helmholtz-Hodge decomposition
- Discrete mechanics schemes have been successfully applied to vector problems such as electromagnetism
- Are discrete mechanics schemes inherently superior?
- Do they work for solid mechanics (tensor problems)?



Outline

- Overview of discrete mechanics for vector problems
- Discrete mechanics in the context of tensor problems
- Diamonds: Finite element/discrete mechanics approximation schemes with guaranteed optimal convergence

Geometric linear elasticity

The Kröner differential complex:

Domain and range	'nabla' expression	Coordinate expression
Def: $\Omega^0(\mathbb{R}^3) o \Omega^3(\operatorname{sym} \mathbb{R}^{3 imes 3})$	$\nabla^S \equiv (\nabla + \nabla^T)/2$	$(\text{Def } u)_{ij} = (u_{i,j} + u_{j,i})/2$
Inc: $\Omega^3(\operatorname{sym}\mathbb{R}^{3\times 3}) \to \Omega^3(\operatorname{sym}\mathbb{R}^{3\times 3})$	abla imes(ullet imes abla)	$ \left(\operatorname{Inc}\epsilon ight)_{ij}=\epsilon_{kl,mn}e_{kmi}e_{lnj}$
Div : $\Omega^3(\operatorname{sym} \mathbb{R}^{3 imes 3}) o \Omega^0(\mathbb{R}^3)$	$ abla \cdot$	$(Div\sigma)_i = \sigma_{ij,j}$

- $Inc \circ Def = 0$, $Div \circ Inc = 0$
- The isotropic differential complex:

grad
$$p = Div(pg^{\sharp})$$
, $divu = g^{\sharp} \cdot Def u$

Geometric linear elasticity

Compressible linear elasticity:

$$-\text{Div}\left(2\mu\,\text{Def u}\right) - \text{div}\left(\lambda\,\text{grad u}\right) = \mathsf{f} + \mathsf{t}, \text{ in } \Omega \cup \Gamma_N$$

$$\mathsf{u} = \mathsf{0}, \qquad \text{on } \Gamma_D$$

• Incompressible linear elasticity ($\lambda \uparrow +\infty$):

$$-{\rm Div}\,(2\mu\,{\rm Def}\,{\rm u})-{\rm grad}\,{\rm p}={\rm f}+{\rm t},\quad {\rm in}\ \Omega\cup\Gamma_N$$

$${\rm div}\,{\rm u}=0,\qquad \qquad {\rm in}\ \Omega$$

$${\rm u}=0,\qquad \qquad {\rm on}\ \Gamma_D$$

Discrete linear elasticity

- Discrete linear elasticity schemes can be obtained by defining discrete counterparts to the continuum Kröner and isotropic differential complexes, keeping the field equations unchanged.
- Does discrete mechanics guarantee superior numerical schemes?
- Two counterexamples!

Counterexample I

- $C = S_h \equiv \text{simplicial complex of size } h$.
- Discrete Kröner differential complex:

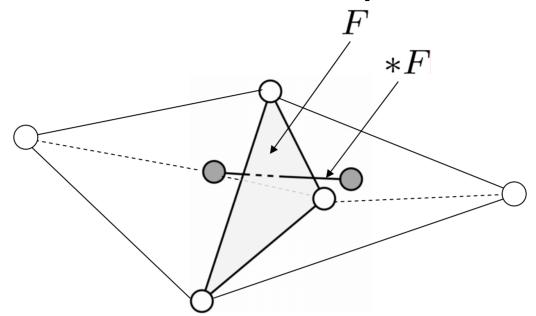
Domain and range	Definition
Def: $\Omega^0(\mathcal{S}_h;\mathbb{R}^3) o \Omega^3(\mathcal{S}_h;\operatorname{sym}\mathbb{R}^{3 imes3})$	$(Defu)(T) = \frac{1}{2 T } \sum_{F \prec T} F \left(\langle u \rangle \otimes n + \langle u \rangle \otimes n \right)$
Inc : $\Omega^3(\mathcal{S}_h;\operatorname{sym} \mathbb{R}^{3 imes 3}) o \Omega^3(\mathcal{S}_h;\operatorname{sym} \mathbb{R}^{3 imes 3})$	$(\operatorname{Inc}\epsilon)(T) = \frac{1}{ T } \sum_{F \prec T, \ F \not\subset \partial \Omega} (n \times \llbracket \epsilon \rrbracket) imes n$
$Div: \Omega^3(\mathcal{S}_h; sym\mathbb{R}^{3\times 3}) \to (\mathcal{S}_h; \Omega^0\mathbb{R}^3)$	$(\operatorname{Div}\sigma)(N) = \frac{1}{3} \sum_{F \succ N} F \ \llbracket \sigma rbracket \cdot n$

- Verify: $Inc \circ Def = 0$, $Div \circ Inc = 0$
- The isotropic differential complex:

Domain and range	Definition
grad : $\Omega^3(\mathcal{S}_h;\mathbb{R}) o \Omega^0(\mathcal{S}_h;\mathbb{R}^3)$	$(\operatorname{grad}\operatorname{u})(T) = rac{1}{ T } \sum_{F \prec T} F \left\langle \operatorname{u} ight angle \cdot \operatorname{n} = 0$
$\operatorname{div}:\Omega^0(\mathcal{S}_h;\mathbb{R}^3) o\Omega^3(\mathcal{S}_h;\mathbb{R})$	$(\operatorname{div}\sigma)(N) = \frac{1}{3} \stackrel{\cdot}{\sum}_{F \succ N} F \llbracket \sigma \rrbracket \cdot n$

Simplicial interpolation! Locking!

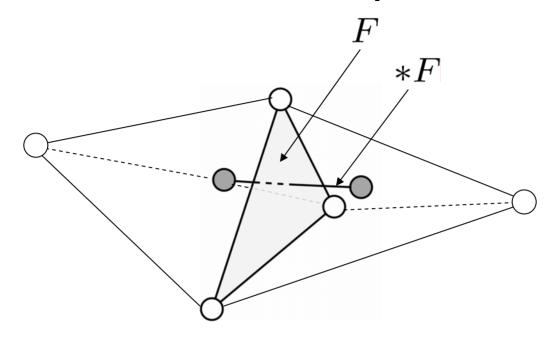
Counterexample II



- Grad : $\Omega^0(\mathcal{S}_h, \mathbb{R}^3) \times \Omega^0(\mathcal{S}_h^*, \mathbb{R}^3) \to \Omega^2(\mathcal{S}_h, \mathbb{R}^{3 \times 3})$: Two columns of Grad computed from F; third column of Grad computed from *F.
- Can complete differential complex $Def \rightarrow Inc \rightarrow Div$ such that $Inc \circ Def = 0$ and $Div \circ Inc = 0$.

Michael Ortiz Stuttgart 09/06

Counterexample II



- However: $(\operatorname{Grad} u)([F,*F]) = \int_{[F,*F]} \nabla u_h \, dx$, where $u_h \equiv \operatorname{interpolant}$ of u linear on faces of [F,*F].
- Same situation as $\mathbb{Q}_1/\mathbb{P}_0$: checkerboard modes!

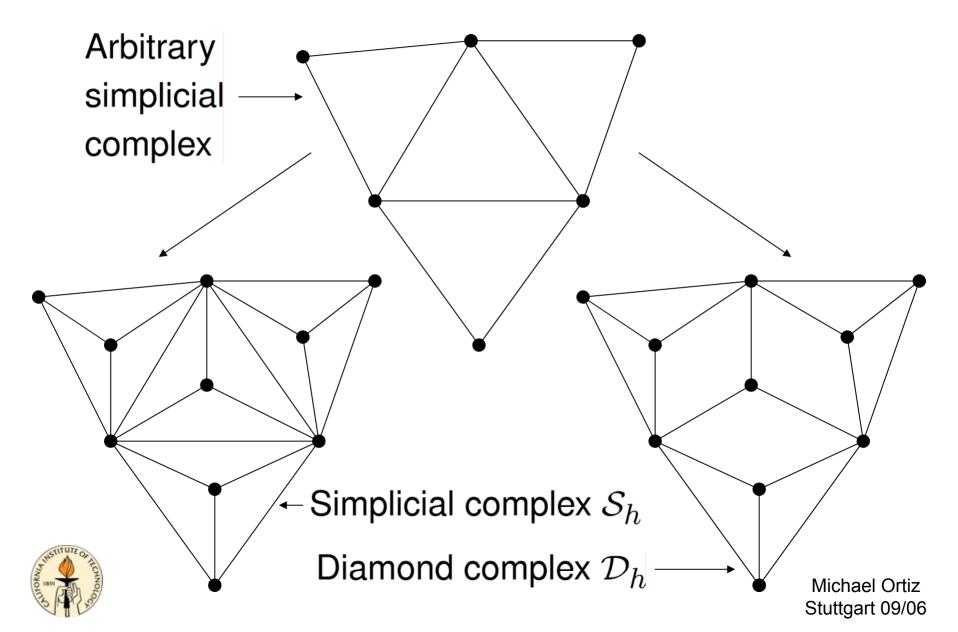
Discrete linear elasticity

- Discrete mechanics is no guarantee of superior performance in tensor problems
- Examples of non-convergent discrete linear elasticity schemes:
 - Simplicial interpolation can be expressed as discrete elasticity scheme, locks in incompressible limit
 - Certain discrete differential complexes result in checkerboard modes
- These difficulties (locking, checkerboarding) are typical of tensor problems and do not arise in vector problems

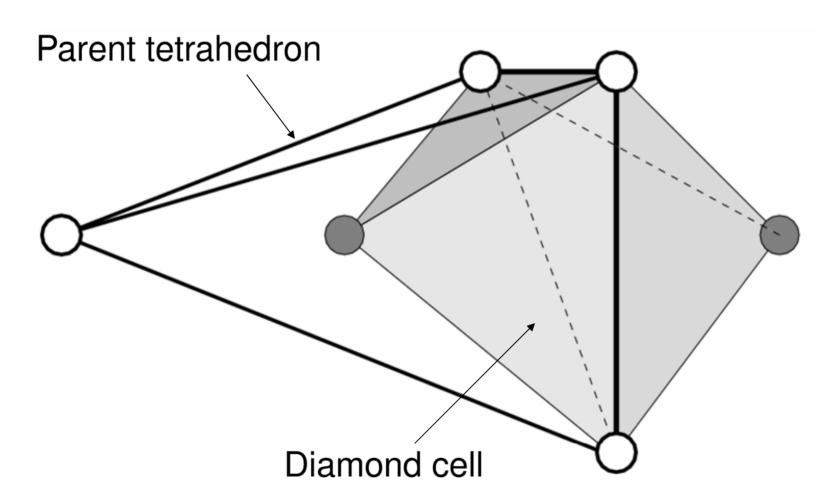
Outline

- Overview of discrete mechanics for vector problems
- Discrete mechanics in the context of tensor problems
- Diamonds: Finite element/discrete mechanics approximation schemes with guaranteed optimal convergence

Diamonds



Diamonds



Diamonds

Discrete Kröner differential complex:

Domain and range	Definition
Def: $\Omega^0(\mathcal{S}_h; \mathbb{R}^3) \to \Omega^3(\mathcal{S}_h; \operatorname{sym} \mathbb{R}^{3 \times 3})$	$(Defu)(T) = \frac{1}{2 T } \sum_{F \prec T} F (\langle u \rangle \otimes n + \langle u \rangle \otimes n)$
Inc : $\Omega^3(\mathcal{S}_h;\operatorname{sym} \mathbb{R}^{3 imes 3}) o \Omega^3(\mathcal{S}_h;\operatorname{sym} \mathbb{R}^{3 imes 3})$	$(\operatorname{Inc}\epsilon)(T) = \frac{1}{ T } \sum_{F \prec T, \ F \not\subset \partial \Omega} (n \times \llbracket \epsilon \rrbracket) \times n$
$Div: \Omega^3(\mathcal{S}_h; sym \mathbb{R}^{3\times 3}) \to (\mathcal{S}_h; \Omega^0 \mathbb{R}^3)$	$(\operatorname{Div}\sigma)(N) = rac{1}{3} \sum_{F \succ N} F \llbracket \sigma rbracket \cdot n$

- Verify: $Inc \circ Def = 0$, $Div \circ Inc = 0$
- Discrete metric: $g^{\sharp} \equiv$ piecewise constant on \mathcal{D}_h
- The isotropic differential complex:

$$\Omega^0_*(\mathcal{D}_h;\mathbb{R}^3) \ \to \ \Omega^3_*(\mathcal{D}_h;\mathbb{R}) \ \to \ \Omega^3_*(\mathcal{D}_h;\mathbb{R}) \ \to \ \Omega^0_*(\mathcal{D}_h;\mathbb{R}^3),$$

grad $p = Div(pg^{\sharp})$, div $u = g^{\sharp} \cdot Def u$

(constant pressure over diamond cells)

Express discrete problem in variational form:

$$V_h = \{u_h, \text{ piecewise affine on } S_h\}$$

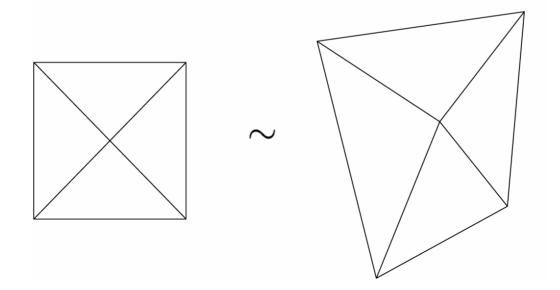
 $P_h = \{u_h, \text{ piecewise constant on } \mathcal{D}_h\}$

$$\begin{cases} a(u_h, v_h) + b(v_h, p_h) = f(v_h), & \forall v_h \in V_h \\ b(u_h, q_h) = 0, & \forall q_h \in P_h \end{cases}$$

Proposition For any initial simplicial mesh, $\exists \beta > 0$ independent of h such that the inf-sup condition

$$\inf_{q_h \in \mathsf{P}_h \backslash \{\mathsf{0}\}} \sup_{v_h \in \mathsf{V}_h \backslash \{\mathsf{0}\}} \frac{b(v_h, q_h)}{\|q_h\|_{\mathsf{0},\Omega} \, \|v_h\|_{\mathsf{1},\Omega}} \geq \beta_h > \mathsf{0}$$

- Proof based on Stenberg's macroelement method.
- A macroelement is a cell complex.
- Two simplicial macroelements are equivalent if they can be mapped into each other by a continuous mapping that is affine on every simplex.



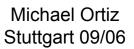
Theorem [Stenberg] Suppose that there exist macroelement equivalence classes $\{\mathcal{E}_i, i = 1, 2, ..., q\}$ and a finite cover \mathcal{M}_h of macroelements such that:

$$i) \ \forall M \in \mathcal{E}_i, \ i=1,2,..,q, \ q_h \in \mathsf{P}_h(M),$$

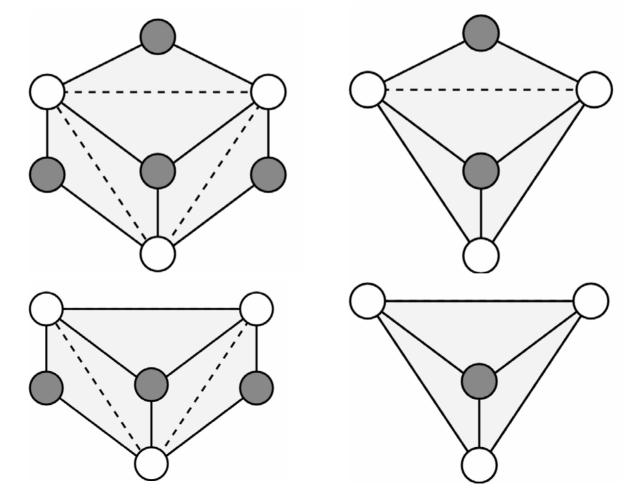
$$\int_M q_h \, \mathrm{div} v_h = 0 \quad \forall v_h \in \mathsf{V}_h^0(M) \Rightarrow q_h = \mathrm{const.}$$

- ii) Each $M \in \mathcal{M}_h$ belongs to one of the classes \mathcal{E}_i .
- iii) Each face F is contained in the interior of macroelements $M \in \mathcal{M}_h$.

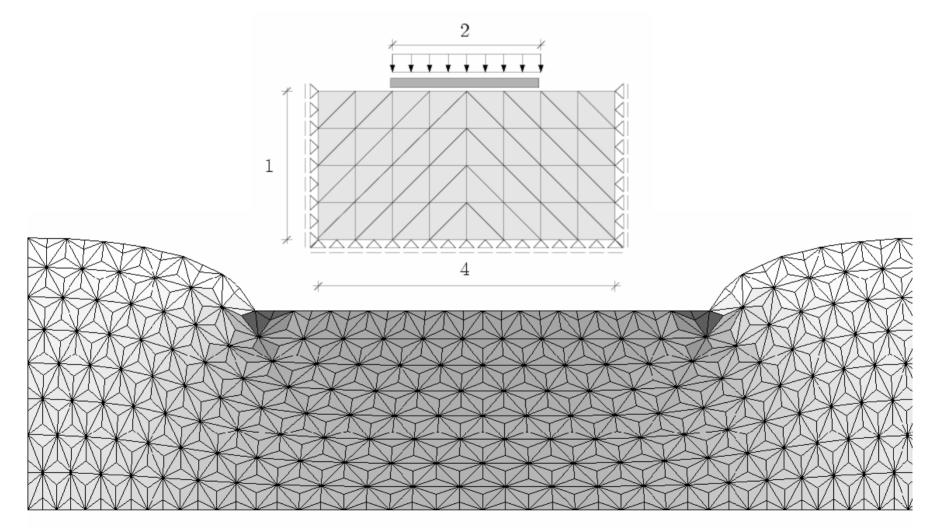
Then, the inf-sup condition is satisfied.



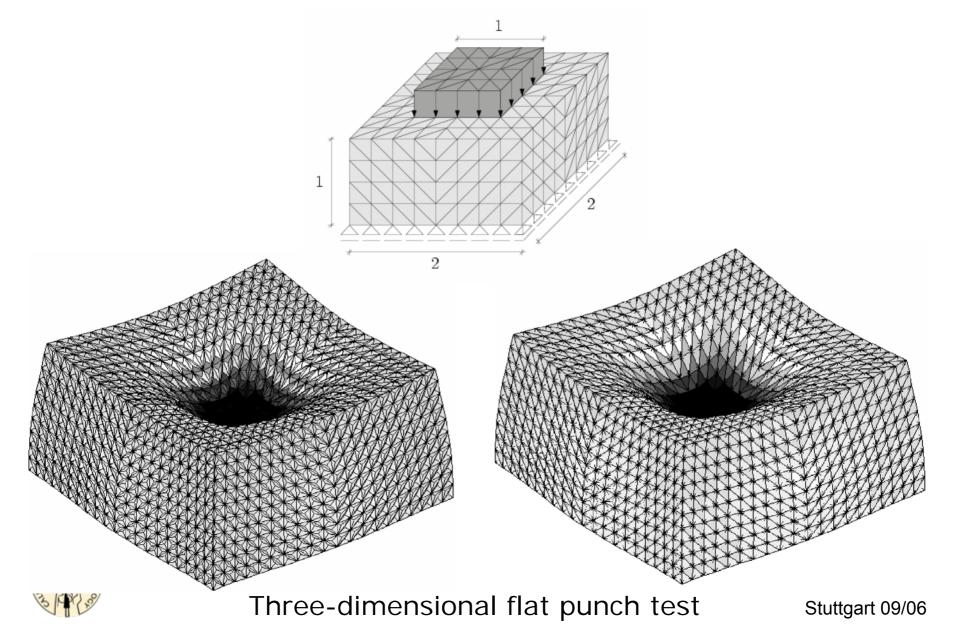
 Diamonds satisfy conditions of Stenberg theorem with the choice of macroelements:



Diamonds – Numerical tests



Diamonds – Numerical tests



Inf-sup condition and topology

- Stenberg's analysis shows that the inf-sup condition is topological in nature: If one mesh satisfies the infsup condition, any continuous deformation of the mesh also satisfies the inf-sup condition
- The inf-sup condition can be verified based on the mesh connectivity (topology) only, without reference to nodal coordinates
- Connection between inf-sup condition and topological invariants?

Inf-sup condition and topology

Recall: Isotropic differential complex:

$$\begin{array}{cccc} & \text{div} & 0 & \text{grad} \\ \Omega^0_*(\mathbb{R}^3) & \to & \Omega^3_*(\mathbb{R}) & \to & \Omega^3_*(\mathbb{R}) & \to & \Omega^0_*(\mathbb{R}^3), \end{array}$$

Isotropic complex cohomology:

$$H^2 = \Omega^3_*(\mathbb{R})/\mathrm{im}(\mathrm{div})$$
 $H^3 = \ker(\mathrm{grad})$

Proposition. The following statements are equivalent:

i)
$$H^2 = \{0\}$$
, ii) $H^3 = \{0\}$,

iii) the inf-sup condition is satisfied.

Concluding remarks

- There is a vast difference between vector and tensor problems where discrete mechanics is concerned
- In applications to tensor problems, geometrical considerations must be carefully balanced against analysis considerations (e.g., convergence)
- Diamonds:
 - Are a discrete mechanics approximation scheme (exact satisfaction of conservations laws, Helmholtz-Hodge...)
 - Automatically satisfy the inf-sup condition (convergence)
 - Make possible incompressible elasticity, plasticity, analysis on arbitrary simplicial meshes (advantageous in applications to contact, explicit dynamics, mesh adaption...)
 - Uniqueness? Extension to finite kinematics?...

