Diamonds:
Finite Element/Discrete Mechanics
schemes with guaranteed optimal
convergence

M. Ortiz
California Institute of Technology
In collaboration with: P. Hauret and E. Kuhl

International Conference on Multifield
Problems,

Stuttgart, Germany, October 5, 2006

Michael Ortiz
Stuttgart 09/06




Outline

® Overview of discrete mechanics for vector problems
® Discrete mechanics in the context of tensor problems

® Diamonds: Finite element/discrete mechanics
approximation schemes with guaranteed optimal
convergence

% Michael Ortiz
N3 (64 Stuttgart 09/06



Outline

® Overview of discrete mechanics for vector problems
[

% Michael Ortiz
% [H( Stuttgart 09/06



;;7“'1 WUrE R
= b
A )
H] H|
1 e 180 1;‘. E.
e |r S &)
i LN F oy
A e
-

Discrete mechanics

Aka: Discrete Exterior Calculus (DEC)...

Reformulation of the field equations of mechanics in
which space (and possibly time) are discrete ab initio

The field equations of mechanics retain their form, but:

— Are defined on a discrete geometrical space (cell complex)

— Are expressed in terms of discrete differential and integral
operators

Discrete mechanics enjoys a long tradition in problems

of the ‘vector type’, e.g.:

— Bossavit (electromagnetism)

— Hipmair (electromagnetism)

— Arnold (also 2d tensor problems such as elasticity)

— Desbrun, Hirani, Kanso, Leok, Marsden, Schroder...
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Geometric mechanics

e The de-Rham differential complex in R3:

grad curl div
0 — QOR3IH/R — QLRI — Q2R3 — QB3(R3H/R — 0

e Differential complex property:

curlograd = 0

divocurl =0

o Integral identities (Stokes’ theorem):

/divoch=f a-vdS
vV oV

curl BdS = - dx
E~¥5 ¢ [g B oS p Michael Ortiz
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Geometric mechanics

e Helmholtz-Hodge decomposition:

QL(R3) 5 8 = grado + curl A + ~,

and decomposition L2-orthogonal.
e de Rham cohomology:
HY(R3) = ker(grad)
H?(R3) = ker(curl) /im(grad)
H3(R3) = ker(div) /im(curl)

Lemma. (Poincaré) HP(R3) = 0.

\

Ay =20

>

/

Lemma. {y, A~ = 0} isomorphic with H3(R3).
.,_gjffifﬁ%zi'gorollary. QUR3) 5 3 =gradd + curlA. v o
U

Stuttgart 09/06



Model problem — Maxwell’'s equations

e Maxwell's equations for linear materials:

div(e E) = p 1 (Gauss law)
div(u H) =0 (Gauss law for magnetism)
curlE = —oy(n H) > (Faraday’s law of induction)
curlH = J + 0;,(e¢ E)) (Ampere’s law)

E = electric field, H = magnetic field,

p = charge density, J = current density.

e = electrical permitivity, 1 = magnetic permeability.
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Discrete mechanics — Cell complexes

e Cell complex:

2-cell C = {cells}
L7 o £, ={p—cells}
e\ e p-forms: QP(C) =
3-cell £ AL {w: Ep— R
Y Integration:
1—Ce||5\ _. /E w= Y wlep)lepl
* cEp




Cell complexes — Dual cell complex

o', 0-simplex | o!, 1-simplex | o2, 2-simplex | o2, 3-simplex

4

D(c%) 3-cell | D(otl),2-cell | D(o?),1-cell | D(o?),0-cell

Three-dimensional dual complex (A. Hirani, 2003) ,
Michael Ortiz
Stuttgart 09/06




Discrete differential complexes

e Discrete de-Rham differential complex: Sequence

grad

curl

div

0 - QUO)/R — QY C) — Q%) — Q3(C)/R — 0

such that: curl o grad = 0O, div o curl = 0.

/divadVZ/ a-vdS, /curlﬁdSz B -dx
V oV S 0S

o Example: C' simplicial,
dA

dV

. du @ dxr
radu =
° dx?
d(3 - d

curl3 = (8- dx)

dA

, d(a - vdA)

diva =

dV y,
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Discrete Maxwell's equations

e Continuum (in R3): e Discrete (on C):
div(e E) = p ) div(e E) = p )
div(u H) =0 div(u H) =0
curlE = —oy(n H) > curlE = —oy(n H) >
curltH = J + 0i(e F)) curltH = J + 0i(e F))

EcQYC), (eE)eQ2(C*), peQ3(CH),
H e QL(C*), (uH)e Q2(C), JeQ2(Cr),
CE QL(C) = Q2(C™), u:Ql(Cc*) = Q2(0).
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Discrete mechanics — Vector problems

¢ Continuum and discrete mechanics are identical, with
the discrete field equations expressed on cell
complexes in terms of discrete differential operators

® Discrete mechanics works with the field equations
directly, bypasses the usual variational detour

® Discrete mechanics schemes satisfy conservation laws
exactly (Stokes’ theorem), possess a Helmholtz-Hodge
decomposition

® Discrete mechanics schemes have been successfully
applied to vector problems such as electromagnetism

® Are discrete mechanics schemes inherently superior?
® Do they work for solid mechanics (tensor problems)?
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Outline

® Discrete mechanics in the context of tensor problems
[
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Geometric linear elasticity

e The Kroner differential complex:

Def Inc Div
0 — Q9R3/RM — 3(symR3%3) — Q3(symR3*3) — QO(R3)/RM — 0

Domain and range ‘'nabla’ expression Coordinate expression
Def : QO(R?’) — Q3(sym R3X3) VS = (V + VT)/Q (Def u)zj = (’U,ZJ + uj,?;)/Q
Inc : 23(symR3*3) — Q3(sym R3%3) V x (e x V) (Inc€)ij = €rlmnCrkmiCin
Div : 23(symR3*%3) — QO(R3) V- (Divo); = 0y

@ IncoDef =0, Divolnc=20

e The isotropic differential complex:

div O grad
QOR3) — Q3(R) — 23(R) — QYR
gradp = Div (pgf), divu =gt Defu

; 5 8 Michael Ortiz
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Geometric linear elasticity

e Compressible linear elasticity:

—Div (2u Defu) —div(Agradu) =f4t, inQQU Iy
u= 0, onl p

e Incompressible linear elasticity (A T 4o0):

—Div(2uDefu) —gradp=f+t, INnQUIly
divu = 0, in <2
u=20, onl p

% Michael Ortiz
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Discrete linear elasticity

® Discrete linear elasticity schemes can be obtained by
defining discrete counterparts to the continuum
Kroner and isotropic differential complexes, keeping
the field equations unchanged.

® Does discrete mechanics guarantee superior
numerical schemes?

® Two counterexamples!

E‘:; I 2 Michael Ortiz
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Counterexample |

o (' = §; = simplicial complex of size h.
e Discrete Kroner differential complex:

Domain and range Definition

Def : QO(Sp,; R3) — Q3(Sp,; symR>%3) (Def u)(T) = 2|T| Y=< |F|({u) ® n 4+ (u) ®n)
Inc : Q3(Sy,; symR3%3) — Q3(S),; symR3%3) | (Ince)(T) = ITI S <t Feoo (n x [e]) x n
Div : 3(Sp,; sSYymR3*3) — (Sp; QUR3) (Dive)(N) = 35 po N |F| [o] - n

o Verify: IncoDef =0, Divolnc=20

e The isotropic differential complex:

Domain and range Definition
grad : Q3(5,iR) — Q0(S4 R3) | (grad u) (T) = g L [F] (u) -
div : QO(S,i R3) — Q3(Sp;R) | (dive)(N) =25 p N |F] o] - n

e Simplicial interpolation! Locking!
'._5;""' T 3 Michael Ortiz
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Counterexample |l

o Grad : Q9(S;,, R3)x QO (S5, R3) — Q2(Sy,, R3%3):
Two columns of Grad computed from F; third col-
umn of Grad computed from xF'.

e Can complete differential complex Def — Inc —
% Div such that Inc o Def = 0 and Div o Inc = 0.
'I§|s|u| 1;.\. J;Il
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Counterexample |l

o However: (Graduw)([F, «F]) = /[F*F] Vuy dr,

where u;, = interpolant of u linear on faces of [F, xF'].

e Same situation as Q1 /Pg: checkerboard modes!

Ewrde 2 Michael Ortiz
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Discrete linear elasticity

® Discrete mechanics is no guarantee of superior
performance in tensor problems

® Examples of non-convergent discrete linear elasticity

schemes:

— Simplicial interpolation can be expressed as discrete elasticity
scheme, locks in incompressible limit

— Certain discrete differential complexes result in checkerboard
modes

® These difficulties (locking, checkerboarding) are
typical of tensor problems and do not arise in vector

problems
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Diamonds

Arbitrary
simplicial —
complex

- Simplicial complex &,
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Diamonds

Parent tetrahedron

Diamond cell
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Diamonds

e Discrete Kroner differential complex:

Domain and range Definition
Def : Q0(Sy; R?) — Q3(SpisymR>*3) | (Def u)(T) = 5y Zr<r |F| (1) @ n + (u) @ n)
Inc : Q3(Sy,; symR3%3) — Q3(S),; symR3%3) | (Ince)(T) = ﬁzpﬂn’ rroa (n x [e]) x n
Div : 3(8p,; symR3%3) = (5,; QOR3) (Divo)(N) = 3 S py n [F| [o] - n

o Verify: IncoDef =0, Divolnc=20

e Discrete metric: g = piecewise constant on Dy,

e The isotropic differential complex:
div 0 grad
QUDpR3) — QF(DpiR) — QBF(DpiR) —  QUDpR3),
grad p = Div(p gﬁ), divu = gIi . Def u

9% (constant pressure over diamond cellS)  inael o
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Diamonds — Convergence analysis

e EXxpress discrete problem in variational form:
Vy, = {uy, piecewise affine on Sy}
P, = {uy, piecewise constant on D}
a(up,vp) + b(vp, pp) = f(vp), Vo, €V
\b(uha Qh) — Oa VQh - Ph

Proposition For any initial simplicial mesh, 33 > O
iIndependent of h such that the inf-sup condition

N

b
inf Sup Wnoan) 8, > 0

ah€P\0} v,eVv,\{0} llanllo.@ llvnll1,0
%;s satisfied with 3;, > 3 for all h > 0.
L
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Diamonds — Convergence analysis

e Proof based on Stenberg’s macroelement method.

e A macroelement is a cell complex.

e Two simplicial macroelements are equivalent if
they can be mapped into each other by a con-
tinuous mapping that is affine on every simplex.

F;' o :. Michael Ortiz
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Diamonds — Convergence analysis

Theorem [Stenberg] Suppose that there exist macroele-
ment equivalence classes {&;, i« = 1,2,..,q} and a

finite cover M, of macroelements such that:
) VM € &,i=1,2,..,q, q € Pr(M),

/M qgn divvy, =0 Vo, € V?L(M) = q;, = const.

i) Each M € M, belongs to one of the classes &;.

lii) Each face F' is contained in the interior of macroele-
ments M € M,,.

Then, the inf-sup condition is satisfied.

s
£ )
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Diamonds — Convergence analysis

e Diamonds satisfy conditions of Stenberg theorem
with the choice of macroelements:
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Diamonds — Numerical tests
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Inf-sup condition and topology

® Stenberg’s analysis shows that the inf-sup condition
Is topological in nature: If one mesh satisfies the inf-
sup condition, any continuous deformation of the
mesh also satisfies the inf-sup condition

® The inf-sup condition can be verified based on the
mesh connectivity (topology) only, without reference
to nodal coordinates

® Connection between inf-sup condition and topological
invariants?

W Michael Ortiz
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Inf-sup condition and topology

e Recall: Isotropic differential complex:

div O grad
QUR3) — BR) — BR) — QUR3),

e |sotropic complex cohomology:

H? = Q3(R)/im(div)
H3 = ker(grad)

Proposition. The following statements are equiva-

lent:
e i) H2 = {0}, ii) H3 = {0},

% i) the inf-sup condition is satisfied.
Ir? ;gl
(2
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Concluding remarks

There is a vast difference between vector and tensor
problems where discrete mechanics is concerned

In applications to tensor problems, geometrical
considerations must be carefully balanced against
analysis considerations (e.g., convergence)

Diamonds:

— Are a discrete mechanics approximation scheme (exact
satisfaction of conservations laws, Helmholtz-Hodge...)

— Automatically satisfy the inf-sup condition (convergence)

— Make possible incompressible elasticity, plasticity, analysis
on arbitrary simplicial meshes (advantageous in applications
to contact, explicit dynamics, mesh adaption...)

Uniqueness? Extension to finite kinematics?...
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