

'Full Physics' and Uncertainty Quantification as Drivers for Exascale Computing

M. Ortiz

California Institute of Technology

SimTech Colloquium Universität Stuttgart, December 18, 2012

DoE/ASC/PSAAP Centers

The Predictive Science challenge

Aim: Demonstrate Predictive Science in the field of hypervelocity impact (impact velocities up to 10Km/s)

Hypervelocity impact test bumper shield (Ernst-Mach Institut, Freiburg Germany)

NASA Ames Research Center Energy flash from hypervelocity test at 7.9 Km/s

M. Ortiz

- Aim: Predict the behavior of complex physical/engineered systems with quantified uncertainties
- Paradigm shift in experimental science, modeling and simulation, scientific computing (predictive science):
 - Deterministic → Non-deterministic systems
 - Mean performance → Mean performance + Uncertainty

Old single-calculation paradigm

New ensemble-of-calculations paradigm Uni-St

Uncertainty Quantification

Modeling and Simulation

Experimen tal Science

UncertaintyQuantification

Modeling and Simulation

Experimen tal Science

PSAAP: Predictive Science Academic Alliance

Hypervelocity Impact Testing

Catech's Small Particle Hypervelocity Impact Range (SPHIR)

M. Ortiz

PSAAP: Predictive Science Academic Alliance Program

Uni-Stuttgart 12/12-7

Hypervelocity Impact Testing

Small Particle Hypervelocity Impact Range (SPHIR)

- Two-Stage Light-Gas Gun
- 1.8 mm bore diameter

Target Materials

- Steel
- Aluminum
- Tantalum

Test configuration parameters:

- Impact Speeds: 2 to 10 km/s
- Impact Obliquities: 0 to 80 degrees
- Impactor Mass: 1 to 50 mg
- Target plate thickness: 0.5-3 mm

Impactor Materials

- •440 C Steel
- •6/6 Nylon

Hypervelocity Impact Diagnostics

M. Ortiz

Uni-Stuttgart 12/12-9

Diagnostic Technique Performance Measures Perforation Area **Routine** Post Mortem Target back-surface slope **Profilometry** Bulge formation **Operational** In Situ Side-Lighting Ejecta/debris cloud formation Shadowgraphs Ejecta/debris cloud distribution Operational •Index of refraction gradient of In Situ CGS Ejecta and Debris cloud by Transmission **Operational** Back-surface normal velocity In Situ VISAR Emission spectra **Operational** In Situ Thermal distribution of Spectrometry target/debris cloud

PSAAP: Predictive Science Academic Alliance Program

SPHIR — Post Mortem Profilometry

Optimet MiniConoscan 3000

- Produces surface map as {x,y,z}coordinate table
- •Scans 101 mm x 101 mm area
- •25 micron resolution in x, y, z

Accurately measures post-test target deformation features for comparison with numerical simulation

- Target Perforation area
- Back-surface slope map

SPHIR – Perforation area data

440 C Steel spherical projectiles 304 Stainless Steel plate targets

6/6 nylon cylindrical projectiles 6061-T6 aluminum plate targets

SPHIR - Laser Side Lighting System CALTECH PSAAP

PSAAP: Predictive Science Academic Alliance Program

Uni-Stuttgart 12/12- 12

SPHIR – Shadowgraph Data

h = 3.0 mm $v_{impact} = 5.95 \text{ km/s}$

Nylon 6/6 Impactor L/D=1 Cylinder

6061-T6 Al. Target

 $P_{atm} = 1.0 \text{ Torr}$

 $t = 10.3 \mu s$

h = 1.5 mm $v_{impact} = 6.00 \text{ km/s}$

h = 0.5 mm $v_{impact} = 6.31 \text{ km/s}$

M. Ortiz Uni-Stuttgart 12/12- 13

SPHIR – Debris Front Data

SPHIR – Debris Capture Data

Measurements

- (1) X-Y position of debris particle perforations on each film [dispersion of debris]
- (2) <u>Size of debris particle perforations</u> [debris particle size]
- (3) #1 combined with film distance from target perforation site gives debris particle direction and penetration path length in foam [related to mass & velocity of debris particle]
- (4) Recovery of debris material from selected tests

High Strain-Rate Testing (HSRT)

Stress:
$$\sigma_{eq} = k_1 (1 - k_2 \varepsilon_{eq}^p) \frac{P}{Dt}$$

Shear Compression

Specimen (SCS)

Split Hokinson (Kolsky) pressure bar

Strength

Dissipation

Measure $\Longrightarrow \sigma(t)$, $\varepsilon(t)$ and $\theta(t)$

Caltech's High Strain-Rate Testing (HSRT) facility (Prof. G. Ravichandran, Director)

Full-field imaging, Sub-grain resolution

M. Ortiz

Uni-Stuttgart 12/12-16

PSAAP: Predictive Science Academic Alliance Program

High Strain-Rate Testing (HSRT)

Shear-compression specimen test

M. Vural, D. Rittel and G. Ravichandran, "Large strain mechanical behavior of 1018 cold-rolled steel over a wide range of strain rates," *Metallurgical and Materials Transactions A*, Vol. 34A (2003) p. 2873.

High Strain-Rate Testing (HSRT)

PSAAP: Predictive Science Academic Alliance Program

Uni-Stuttgart 12/12-18

Experimental data at Caltech

- Experimental Science, full-device testing, component and materials testing, essential to Predictive Science: No data, no prediction!
- The Caltech center houses experimental facilities:
 - Small Particle Hypervelocity Impact Range
 - High-Strain Rate Facility (constitutive characterization)
- The material characterization facilities supply material data for model calibration and validation
- Hypervelocity impact facility defines performance measures to be predicted and supplies quantitative data for *Uncertainty Quantification*

Uncertainty Quantification

Modeling and Simulation

Experimen tal Science

Hypervelocity Modeling & Simulation CALTECH PSAAP

- Phenomena that challenge modeling and simulation:
 - Plasma magneto-hydrodynamics
 - Coupled multiphase large-deformation thermo-plasticity
 - Fracture, fragmentation, collisions/contact
- Physics that challenge modeling and simulation:
 - Pressure ~ 1-2 Mbar, strain rates ~ 10¹¹ 1/s, temp ~ 10⁴ K
 - melting and vaporization, dissociation, ionization, plasma
 - luminescence and radiative transport
 - hydrodynamic instabilities, mixed-phase flows, mixing
 - solid-solid phase transitions, high-strain-rate deformation, thermo-mechanical coupling
 - fracture, fragmentation, spall and ejecta, deformation instabilities such as shear banding

Optimal-Transportation Meshfree

OTM meshfree spatial discretization CALTECH PSAAP

Steel projectile/aluminum plate: Nodal set

OTM meshfree spatial discretization CALTECH PSAAP

Steel projectile/aluminum plate: Material point set

M. Ortiz

PSAAP: Predictive Science Academic Alliance Program

Uni-Stuttgart 12/12-24

Meshfree spatial discretization

Max-ent spatial interpolation

Max-ent shape functions of decreasing entropy

Arroyo, M. & MO, Int. J. Numer. Meth. Engr., 65:2167-2202, 2006

Max-ent spatial discretization

- Max-ent interpolation at material point p determined by nodes in its local environment N_p only
- Local environments determined 'on-the-fly' by range searches
- Local environments evolve continuously during flow (dynamic reconnection)
- Dynamic reconnection requires no remapping of history variables!

OTM — Seizing contact

Seizing contact (infinite friction) is obtained for free in OTM!

OTM – Material-point erosion

Schematic of ε-neighborhood construction ϵ -neighborhood construction: Choose h << ϵ << L

Erode material point if

$$G_{\epsilon} \sim \frac{h^2}{|K_{\epsilon}|} \int_{K_{\epsilon}} W(\nabla u) dx \ge G_c$$

- Proof of convergence to Griffith fracture:
 - Schmidt, B., Fraternali, F. &
 MO, SIAM J. Multiscale Model.
 Simul., 7(3):1237-1366, 2009.

Hypervelocity impact - Simulation

Caltech's hypervelocity Impact facility

OTM simulation, 5.2 Km/s, Nylon/Al6061-T6, 20 million points

M. Ortiz

PSAAP: Predictive Science Academic Alliance Program

Uni-Stuttgart 12/12-33

Solvers – Massively Parallel OTM

Uncertainty Quantification (UQ)

- Black box: $x \equiv$ inputs, $y \equiv$ outputs
- Response function: y = f(x)
- Exact probability of outcomes:

UQ – Essential difficulties

- Input space of high dimension, unknown unknowns
- Probability distribution of inputs not known in general
- System response stochastic, not known in general
- Models are inaccurate, partially verified & validated
- System performance cannot be tested on demand
- Legacy data incomplete, inconsistent, and noisy
- Failure events rare, high consequence decisions...

Optimal Uncertainty Quantification

- ullet Wanted: $\mathbb{E}_{\mu}[\{f\in A\}]$
- Assume information about (μ, f) : Data, models...
- Admissible set: $\mathcal{A} = \{(\mu, f) \text{ compatible with info}\}$
- Wanted: Optimal probability bounds,

$$\inf_{(\mu,f)\in\mathcal{A}}\mathbb{E}_{\mu}[\{f\in A\}] \leq \sup_{(\mu,f)\in\mathcal{A}}\mathbb{E}_{\mu}[\{f\in A\}]$$

OUQ - The Reduction Theorem

Theorem [Owhadi et al. (2011)] Suppose that

$$\mathcal{A} = \left\{ (\mu, f) \middle| \begin{array}{l} \langle \text{some conditions on } f \text{ alone} \rangle \\ \mathbb{E}_{\mu}[\varphi_1] \leq 0, \dots \mathbb{E}_{\mu}[\varphi_n] \leq 0 \end{array} \right\}. \text{ Let:}$$

$$\mathcal{A}_{\text{red}} = \left\{ (\mu, f) \in \mathcal{A} \middle| \mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}, \ \alpha_i \ge 0, \ \sum_{i=1}^{n} \alpha_i = 1 \right\}$$

Then:
$$\inf_{(\mu,f)\in\mathcal{A}}\mathbb{E}_{\mu}[\{f\in A\}] = \inf_{(\mu,f)\in\mathcal{A}_{\mathrm{red}}}\mathbb{E}_{\mu}[\{f\in A\}]$$

$$\sup_{(\mu,f)\in\mathcal{A}}\mathbb{E}_{\mu}[\{f\in A\}] = \sup_{(\mu,f)\in\mathcal{A}_{\mathrm{red}}}\mathbb{E}_{\mu}[\{f\in A\}]$$

 OUQ problem is reduced to optimization over finitedimensional space of measures: Program feasible!

OUQ - Model based protocol

M. Ortiz

4.0

4.5

5.0

5.5

Impact speed (km/s)

6.0

6.5

7.0

7.5

OUQ - Model based protocol

OUQ - Model based protocol

Hypervelocity — Model-based OUQ

• Inputs: $x \equiv \begin{cases} h \in [1.524, 2.667] \text{ mm} \\ \theta \in [0, \frac{\pi}{6}] \\ v \in [2.1, 2.8] \text{ km s}^{-1} \end{cases}$

Caltech's SPHIR facility • Output: $y \equiv perforation$ area

Admissible set:

$$\mathcal{A} \equiv \left\{ (f, \mu) \middle| \begin{array}{l} d(f, f_{\mathsf{OTM}}) \leq \delta \\ \mu = \mu_1 \otimes \mu_2 \otimes \mu_3 \end{array} \right\}$$

Reduced admissible set:

$$\mathcal{A}_{\text{red}} \equiv \left\{ (f, \mu) \middle| \begin{array}{c} d(f, f_{\text{OTM}}) \leq \delta, \\ \mu = \mu_1 \otimes \mu_2 \otimes \mu_3, \\ \mu_i = \alpha_i \delta_{a_i} + (1 - \alpha_i) \delta_{b_i}, \ i = 1, 2, 3 \end{array} \right\}$$

Hypervelocity — OUQ/OTM calcs.

OTM calculations based On engineering material models with first principles input (EoS, elastic moduli, viscosity, melting, cohesive energy...)

- Each point averages
 4 runs with different yaw
 angles (uncontrollable)
- Each run uses ~1million material points to model plate and projectile
- Each run is performed using 512 mpi tasks in 10 hours on: hera, glory, mapache, moonlight, cab, chama and others

PSAAP: Predictive Science Academic Alliance Program

Uni-Stuttgart 12/12-45

Hypervelocity — Model-based OUQ

OUQ — Critique and outlook

- The optimal bounds on probabilities of outcomes tend to be loose, i.e., the *levels of uncertainty* regarding the behavior of complex systems are often *unacceptably high*. Path forward?
- In order to *reduce uncertainty* we need:
 - More data (but this may not be possible of too expensive)
 - Better statistics: Larger samples, larger parametric dimension...
 - Higher fidelity models, 'full physics': Quantum mechanical?
 Atomistic? Coarse-grained atomistic? Multiscale?
- These drivers ('full-physics, uncertainty quantification) place increasing demands on computing power: Exascale Computing!

Outlook for Exascale Computing

Current trends will increase the *length*, but not *time*, scales accessible by molecular dynamics simulation

(From: Timothy C. Germann, LANL, April 25-28, 2011)

Outlook for Exascale Computing

- Computer architectures are becoming increasingly heterogeneous and hierarchical, with greatly increased flop/byte ratios, architectural design uncertain...
- The algorithms, programming models, and tools that will thrive in this environment must mirror these characteristics, codes will need to be rewritten...
- SPMD bulk synchronous parallelism (message passing, MPI...) will no longer be viable...
- Power, energy, and heat dissipation are increasingly important, presently unsolved technological bottleneck
- Traditional global checkpoint/restart is becoming impractical (fault tolerance and resilience!)
- Analysis and visualization...

Evolution of Predictive Science...

exascale computing

Concluding remarks...

