Optimal scaling laws in ductile fracture

M. Ortiz

California Institute of Technology
Joint work with: S. Conti, L. Fokoua, S. Heyden,
B. Li, K. Weinberg

Workshop on Materials Theories

Mathematisches Forschungsinstitut Oberwolfach

December 15-21, 2013

Outline

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

 Linear-elastic fracture mechanics attained engineering importance as a means of predicting fatigue-crack growth in aircraft structures (focus on Irwin's stress-intensity factor, Paris' fatigue law)

Detail of cabin window crack of a de Havilland Comet G-ALYP recovered from the Mediterranean after its crash in January 1954.

 Linear-elastic fracture mechanics proved inadequate for assessing safety of mild-steel pressure vessels in nuclear power plants, which spurred the development of elastic-plastic fracture mechanics (with focus on Rice's J-integral formalism)

Reactor Pressure Vessel (RPV) from Greifswald Nuclear Power Plant (courtesy Viehrig, H.W. and Houska, M., Helmholtz Zentrum, Dresden-Rossendorf, https://www.hzdr.de/db/Cms?pNid=2698)

(Courtesy NSW HSC online)

- Ductile fracture in metals occurs by void nucleation, growth and coalescence
- Fractography of ductilefracture surfaces exhibits profuse dimpling, vestige of microvoids
- Ductile fracture entails large amounts of plastic deformation (vs. surface energy) and dissipation.

Fracture surface in SA333 steel, room temp., $d\epsilon/dt=3\times10^{-3}s^{-1}$ (S.V. Kamata, M. Srinivasa and P.R. Rao, Mater. Sci. Engr. A, **528** (2011) Michael Ortiz

OW12/13

Photomicrograph of a copper disk tested in a gas-gun experiment showing the formation of voids and their coalescence into a fracture plane

Heller, A., How Metals Fail, Science & Technology Review Magazine, Lawrence Livermore National Laboratory, pp. 13-20, July/August, 2002

Charpy energy of A508 steel (Tanguy et al., Eng. Frac. Mechanics, 2005)

- A number of ASTM engineering standards are in place to characterize ductile fracture properties (J-testing, Charpy test)
- The Charpy test data reveals a brittle-to-ductile transition temperature
- In general, the specific fracture energy for ductile fracture is greatly in excess of that required for brittle fracture...

Outline/work plan

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

Naïve model: Local plasticity

Deformation theory: Minimize

$$E(y) = \int_{\Omega} W(Dy(x)) dx$$

- Growth of W(F)?
- Asume power-law hardening:

$$\sigma \sim K\epsilon^n = K(\lambda - 1)^n$$

- Nominal stress: $\partial_{\lambda}W = \sigma/\lambda = K(\lambda-1)^{n}/\lambda$
- For large λ : $\partial_{\lambda}W \sim K\lambda^{n-1} \Rightarrow W \sim K\lambda^n$ In general: $W(F) \sim |F|^p, \ p=n \in (0,1)$
- - ⇒ Sublinear growth!

Naïve model: Local plasticity

- Example: Uniaxial extension
- Energy: $E_h \sim h \left(\frac{2\delta}{h}\right)^p$
- For p < 1: $\lim_{h \to 0} E_h = 0$
- Energies with sublinear growth relax to 0.
- For hardening exponents in the range of experimental observation, local plasticity yields no useful information regarding ductile fracture properties of materials
- Need additional physics, structure...

Strain-gradient plasticity

- The yield stress of metals is observed to increase in the presence of strain gradients
- Deformation theory of straingradient plasticity:

$$E(y) = \int_{\Omega} W(Dy(x), D^2y(x)) dx$$

 $y:\Omega\to\mathbb{R}^n$, volume preserving

- Strain-gradient effects may be expected to oppose localization
- Growth of *W* with respect to the second deformation gradient?

Strain-gradient plasticity

(J.W. Steeds, *Proc. Roy. Soc. London*, **A292**, 1966, p. 343)

- Growth of $W(F, \cdot)$?
- For fence structure:

$$F^{\pm} = R^{\pm}(I \pm \tan \theta \, s \otimes m)$$

Across jump planes:

$$|[F]| = 2 \sin \theta$$

• Dislocation-wall energy:

$$E = \frac{T}{b} 2 \sin \theta = \frac{T}{b} | \llbracket F \rrbracket |$$

 $\Rightarrow W(F, \cdot)$ has linear growth!

Strain-gradient plasticity

Mathematical model: Minimize

$$E(y) = \int_{\Omega} W(Dy(x), D^2y(x)) dx$$

 $y: \Omega \to \mathbb{R}^n$, volume preserving

- For metals, local plasticity exhibits sub-linear growth, which favors localization of deformations
- Strain-gradient plasticity may be expected to exhibit linear growth, which opposes localization
- Question: Can ductile fracture be understood as the result of a competition between sublinear growth and strain-gradient plasticity?

Outline

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

Optimal scaling – Uniaxial extension

- Approach: Optimal scaling
- Slab: $\Omega = [0, L]^2 \times [-H, H]$, periodic
- Uniaxial extension: $y_3(x_1, x_2, \pm H) = x_3 \pm \delta$

Optimal scaling – Uniaxial extension

- $y:\Omega\to\mathbb{R}^3$, $[0,L]^2$ -periodic, volume preserving
- $y \in W^{1,1}(\Omega; \mathbb{R}^3)$, $Dy \in BV(\Omega; \mathbb{R}^{3\times 3})$
- ullet Growth: For $0 < K_L < K_U$, intrinsic length $\ell > 0$,

$$E(y) \ge K_L \left(\int_{\Omega} (|Dy|^p - 3^{p/2}) \, dx + \ell \int_{\Omega} |D^2 y| \, dx \right)$$

$$E(y) \le K_U \left(\int_{\Omega} (|Dy|^p - 3^{p/2}) \, dx + \ell \int_{\Omega} |D^2 y| \, dx \right)$$

Theorem [Fokoua, Conti & MO, ARMA, 2013]. For ℓ sufficiently small, $p \in (0, 1)$, $0 < C_L(p) < C_U(p)$,

$$C_L(p)L^2\ell^{rac{1-p}{2-p}}\delta^{rac{1}{2-p}} \leq \inf E \leq C_U(p)L^2\ell^{rac{1-p}{2-p}}\delta^{rac{1}{2-p}}$$

Optimal scaling – Uniaxial extension

Optimal (matching) upper and lower bounds:

$$C_L(p)L^2\ell^{\frac{1-p}{2-p}}\delta^{\frac{1}{2-p}} \le \inf E \le C_U(p)L^2\ell^{\frac{1-p}{2-p}}\delta^{\frac{1}{2-p}}$$

- Bounds apply to classes of materials having the same growth, specific model details immaterial
- Energy scales with area (L²): Fracture scaling!
- Energy scales with power of *opening* displacement (δ): Cohesive behavior!
- Lower bound degenerates to 0 when the intrinsic length (ℓ) decreases to zero...
- Bounds on specific fracture energy:

$$C_L(p)\ell^{\frac{1-p}{2-p}}\delta^{\frac{1}{2-p}} \le J_c \le C_U(p)\ell^{\frac{1-p}{2-p}}\delta^{\frac{1}{2-p}}$$

Sketch of proof – Upper bound

Heller, A., Science & Technology Review Magazine, LLNL, pp. 13-20, July/August, 2002

Sketch of proof – Upper bound

• In every cube: void

• Calculate, estimate:
$$E \leq CL^2\left(a^{1-p}\delta^p + \ell\delta/a\right)$$

• Optimize a: $E \leq C_U L^2 \ell^{\frac{1-p}{2-p}} \delta^{\frac{1}{2-p}}$

- Lower bound: 1D arguments in x_3 -direction
- For fixed (x_1, x_2) : $f(x_3) \equiv |D_3y(x_1, x_2, x_3)|$
- Then: $|D^2y| \ge |D_3^2y| \ge |D_3|D_3y| = |Df|$

$$\bar{f} \equiv \frac{1}{2H} \int_{-H}^{H} f(x_3) dx_3 \ge \frac{1}{2H} \int_{-H}^{H} \frac{\partial u_3}{\partial x_3} dx_3 = 1 + \frac{\delta}{H}$$

• Define reduced energy density:

$$W(\lambda) = \min\{|F|^p - 3^{p/2}, \det F = 1, |Fe_3| = \lambda\}$$

• Then:
$$\int_{-H}^{H} (|Dy|^p - 3^{p/2} + \ell |D^2y|) dx_3 \ge$$

$$\int_{-H}^{H} (W(f(x_3)) + \ell |Df(x_3)|) dx_3$$

- $W(\lambda)$: Minimized at $\lambda = 1$, p-growth
- Let: $M = \max f$, $N = \min f$
- Then: $\int_{-H}^{H} |Df| \, dx_3 \ge M N$

- $W(\lambda)$: Minimized at $\lambda = 1$, p-growth
- Let: $M = \max f$, $N = \min f$
- Then: $\int_{-H}^{H} |Df| \, dx_3 \ge M N$
- By Jensen: $\frac{1}{2H} \int_{-H}^{H} W(f(x_3)) dx_3 \ge W_M^{**}(\bar{f})$
- Suffices to bound: $G(\bar{f}) = HW_M^{**}(\bar{f}) + \ell(M-N)$ subject to: $N \leq \overline{f} \leq M$, $\overline{f} \geq 1 + \frac{\delta}{H} > 1$
- ullet From estimates for W_M^{**} : $G(ar f) \geq C_L \ell^{rac{1-p}{2-p}} \delta^{rac{1}{2-p}}$

Integrating: $E \geq C_L L^2 \ell^{\frac{1-p}{2-p}} \delta^{\frac{1}{2-p}}$ q. e. d.

Comparison with experiment

L. Fokoua, S. Conti & MO, J. Mech. Phys. Solids, **62** (2014) 295–311

Outline

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

Numerical implementation

- Optimal scaling laws hint at the existence of a well-defined specific fracture energy J_c (in uniaxial tension)
- Ideally, we would like to have (but we don't) a full Γ-limit of the sequence of scaled functionals

$$F_{\ell}(y) = \ell^{-\frac{1-p}{2-p}} \int_{\Omega} W(Dy(x), \ell D^2 y(x)) dx$$

- Conjecture: The Γ -limit is Griffith-like with specific fracture J_c
- In numerical calculations: *Material-point* erosion algorithm

Material-point erosion

schematic of ε-neighborhood construction

- ϵ -neighborhood construction: Choose h $<<\epsilon<$ L
- Erode material point if

$$\frac{h^2}{|K_{\epsilon}|} \int_{K_{\epsilon}} W(\nabla u) \, dx \ge J_c$$

- Proof of Γ-convergence to Griffith fracture:
 - Schmidt, B., Fraternali, F. &
 MO, SIAM J. Multiscale Model.
 Simul., 7(3):1237-1366, 2009.

Outline

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

Application to hypervelocity impact

Caltech's hypervelocity
Impact facility

Hypervelocity impact (5.7 Km/s) of 0.96 mm thick aluminum plates by 5.5 mg nylon 6/6 cylinders (Caltech)

Application to hypervelocity impact

Optical framing camera records

Surface velocity for spot midway between pole and edge

OTM simulation

Histograms of equivalent fragment radii

G.H. Campbell, G. C. Archbold, O. A. Hurricane and P. L. Miller, *JAP*, **101**:033540, 2007

Michael Ortiz OW12/13

Outline

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

Fracture of polymers

T. Reppel, T. Dally, T. and K. Weinberg, Technische Mechanik, 33 (2012) 19-33.

film (C. K. Desai et al., 2011)

 Polymers undergo entropic elasticity and damage due to chain stretching and failure

- Polymers fracture by means of the crazing mechanism consisting of fibril nucleation, stretching and failure
- The free energy density of polymers saturates in tension once the majority of chains are failed: p=0!
- Crazing mechanism is incompatible with straingradient elasticity...

Michael Ortiz OW12/13

Fracture of polymers

• Suppose: For $K_U > 0$, intrinsic length $\ell > 0$,

$$E(y) \le K_U \left(\int_{\Omega} (|Dy|^p - 3^{p/2}) dx + \ell \int_{\Omega} |D^2y| dx \right)$$

- If $E(y) < +\infty$: $y \in W^{2,1}(\Omega) \Rightarrow y$ continuous
- Crazing is precluded by the continuity of y!
- Instead suppose: For $\sigma \in (0, 1)$,

$$E(y) \le K_U \left(\int_{\Omega} (|Dy|^p - 3^{p/2}) dx + \ell^{\sigma} |y|_{W^{1+\sigma,1}(\Omega)} \right)$$

Theorem [Conti, Heyden & MO]. For ℓ sufficiently small,

$$p = 0, \ \sigma \in (0,1), \ 0 < C_L < C_U,$$

$$C_L L^2 \ell^{\frac{\sigma}{1+\sigma}} \delta^{\frac{1}{1+\sigma}} \leq \inf E \leq C_U L^2 \ell^{\frac{\sigma}{1+\sigma}} \delta^{\frac{1}{1+\sigma}} \max_{\text{Micl.}} \ell^{\frac{\sigma}{1+\sigma}} \delta^{\frac{1}{1+\sigma}} \delta^{\frac{$$

Outline

- Background/phenomenology of ductile fracture
- Metals: mathematical formulation
- Optimal scaling laws
- Numerical approximation
- Applications: Hypervelocity impact and explosively-driven caps
- Extension to polymers
- Application: Taylor anvil tests on polyurea

Taylor-anvil tests on polyurea

Shot #854: R0 = 6.3075 mm, L0 = 27.6897 mm, v = 332 m/s

Experiments conducted by W. Mock, Jr. and J. Drotar, at the Naval Surface Warfare Center (Dahlgren Division) Research Gas Gun Facility, Dahlgren, VA 22448-5100, USA

Experiments and simulations

Shot #861: R0 = 6.3039 mm, L0 = 27.1698 mm, v = 424 m/s

Experiments conducted by W. Mock, Jr. and J. Drotar, at the Naval Surface Warfare Center (Dahlgren Division) Research Gas Gun Facility, Dahlgren, VA 22448-5100, USA

Taylor-anvil tests on polyurea

Shot #854 Shot #861

Comparison of damage and fracture patterns in recovered specimens and simulations

Concluding remarks

- Ductile fracture can indeed be understood as the result of the competition between sublinear growth and (possibly fractional) strain-gradient effects
- Optimal scaling laws are indicative of a well-defined specific fracture energy, cohesive behavior, and provide a (multiscale) link between macroscopic fracture properties and micromechanics (intrinsic micromechanical length scale, void-sheet and crazing mechanisms...)
- Ductile fracture can be efficiently implemented through material-point erosion schemes
- Highly to be desired: Full Γ -limit as $\ell \to 0...$

