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Outline 

• Background/phenomenology of ductile fracture 
• Metals: mathematical formulation  
• Optimal scaling laws  
• Numerical approximation 
• Applications: Hypervelocity impact and 

explosively-driven caps 
• Extension to polymers 
• Application: Taylor anvil tests on polyurea 
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Background on ductile fracture 

• Linear-elastic fracture 
mechanics attained 
engineering importance 
as a means of predicting 
fatigue-crack growth in 
aircraft structures (focus 
on Irwin’s stress-intensity 
factor, Paris’ fatigue law)  

Detail of cabin window crack of a  
de Havilland Comet G-ALYP 
recovered  from the Mediterranean 
after its  crash in January 1954. 

(http://www.ssplprints.com/image.php?imgref=10447442) 
 

http://www.ssplprints.com/image.php?imgref=10447442�
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Background on ductile fracture 

• Linear-elastic fracture 
mechanics proved 
inadequate for assessing 
safety of mild-steel 
pressure vessels in nuclear 
power plants, which 
spurred the development 
of elastic-plastic fracture 
mechanics (with focus on 
Rice’s J-integral formalism) 

Reactor Pressure Vessel (RPV)  
from Greifswald Nuclear Power Plant 
(courtesy Viehrig, H.W. and Houska, M., 
Helmholtz Zentrum, Dresden-Rossendorf, 
https://www.hzdr.de/db/Cms?pNid=2698) 

https://www.hzdr.de/db/Cms?pNid=2698�
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Background on ductile fracture 
brittle ductile 

(Courtesy NSW HSC online) 

Fracture surface in SA333 steel, 
room temp., dε/dt=3×10-3s-1 
(S.V. Kamata, M. Srinivasa and P.R. Rao, 
Mater. Sci. Engr. A, 528 (2011)  
4141–4146) 
 

• Ductile fracture in metals 
occurs by void nucleation, 
growth and coalescence  

• Fractography of ductile-
fracture surfaces exhibits 
profuse dimpling, vestige 
of microvoids 

• Ductile fracture entails 
large amounts of plastic 
deformation (vs. surface 
energy) and dissipation. 
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Background on ductile fracture 

Photomicrograph of a copper disk tested in a gas-gun 
experiment showing the formation of voids and their 

coalescence into a fracture plane 
Heller, A., How Metals Fail,  

Science & Technology Review Magazine,  
Lawrence Livermore National Laboratory, 

pp. 13-20, July/August, 2002  
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Background on ductile fracture 

• A number of ASTM 
engineering standards are 
in place to characterize 
ductile fracture properties 
(J-testing, Charpy test) 

• The Charpy test data 
reveals a brittle-to-ductile 
transition temperature 

• In general, the specific 
fracture energy for ductile 
fracture is greatly in 
excess of that required for 
brittle fracture… 

Charpy energy of  
A508 steel  

(Tanguy et al., Eng. 
Frac. Mechanics, 2005) 
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Outline/work plan 

• Background/phenomenology of ductile fracture 
• Metals: mathematical formulation  
• Optimal scaling laws  
• Numerical approximation 
• Applications: Hypervelocity impact and 

explosively-driven caps 
• Extension to polymers 
• Application: Taylor anvil tests on polyurea 
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Naïve model: Local plasticity 

Ti 

Eleiche & Campbell (1974) 
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Naïve model: Local plasticity 

• Energies with sublinear growth relax to 0. 
• For hardening exponents in the range of 

experimental observation, local plasticity yields 
no useful information regarding ductile fracture 
properties of materials 

• Need additional physics, structure… 
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Strain-gradient plasticity 

W. Nix & H. Gao (1998) 

N. Fleck et al. (1993) 

• The yield stress of metals is 
observed to increase in the 
presence of strain gradients  

• Deformation theory of strain-
gradient plasticity: 

• Strain-gradient effects may be 
expected to oppose localization 

• Growth of W with respect to the 
second deformation gradient? 
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Strain-gradient plasticity 

Fence structure  
in copper 

(J.W. Steeds, Proc. Roy. Soc. London,  
A292, 1966, p. 343) 

Dislocation wall 



Michael Ortiz 
OW12/13 

Strain-gradient plasticity 

• For metals, local plasticity exhibits sub-linear 
growth, which favors localization of deformations 

• Strain-gradient plasticity may be expected to 
exhibit linear growth, which opposes localization  

• Question: Can ductile fracture be understood as 
the result of a competition between sublinear 
growth and strain-gradient plasticity? 

• Mathematical model: Minimize 
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Optimal scaling – Uniaxial extension 
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Optimal scaling – Uniaxial extension 
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Optimal scaling – Uniaxial extension 

• Optimal (matching) upper and lower bounds: 

• Bounds apply to classes of materials having the 
same growth, specific model details immaterial 

• Energy scales with area (L2): Fracture scaling! 
• Energy scales with power of opening 

displacement (δ): Cohesive behavior! 
• Lower bound degenerates to 0 when the 

intrinsic length (ℓ) decreases to zero… 
• Bounds on specific fracture energy: 
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Sketch of proof – Upper bound 

Heller, A., Science & Technology Review Magazine,  
LLNL, pp. 13-20, July/August, 2002  

void 
sheet 

void 
sheet 
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Sketch of proof – Upper bound 

void 
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Sketch of proof – Lower bound 
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Sketch of proof – Lower bound 
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Sketch of proof – Lower bound 
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Sketch of proof – Lower bound 
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Comparison with experiment 

L. Fokoua, S. Conti & MO, 
J. Mech. Phys. Solids, 62 (2014) 295–311 
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Numerical implementation 

• Optimal scaling laws hint at the existence of a 
well-defined specific fracture energy Jc (in 
uniaxial tension) 

• Ideally, we would like to have (but we don’t) a 
full Γ-limit of the sequence of scaled functionals 

 

• Conjecture: The Γ-limit is Griffith-like with 
specific fracture Jc  

• In numerical calculations: Material-point 
erosion algorithm 
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Material-point erosion 

• ε-neighborhood construction: 
Choose h << ε << L 

• Erode material point if 
  

 
 

●  Proof of Γ-convergence to 
Griffith fracture: 
– Schmidt, B., Fraternali, F. & 

MO, SIAM J. Multiscale Model. 
Simul., 7(3):1237-1366, 2009.  

  
 

 

schematic of  
ε-neighborhood  

construction 
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Application to hypervelocity impact 

Impactor 

Caltech’s hypervelocity  
Impact facility 

Hypervelocity impact (5.7 Km/s) of 
0.96 mm thick aluminum plates by 5.5 

mg nylon 6/6 cylinders (Caltech)   

5 μs 10 μs 
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Application to hypervelocity impact   
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Application to explosively driven cap 

G.H. Campbell, G. C. Archbold, O. A. Hurricane and 
P. L. Miller, JAP, 101:033540, 2007 

Explosively 
driven 
steel cap 

Optical framing camera records 
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Application to explosively driven cap 
Experiment OTM simulation 
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Surface velocity for spot midway between pole and edge 

G.H. Campbell, G. C. Archbold, O. A. Hurricane and 
P. L. Miller, JAP, 101:033540, 2007 
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Application to explosively driven cap 

Recovered fragments 
(from OTM simulation) 

G.H. Campbell, G. C. Archbold, O. A. Hurricane and 
P. L. Miller, JAP, 101:033540, 2007 
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Application to explosively driven cap 

Experiment 

OTM simulation 
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Histograms of equivalent fragment radii 
G.H. Campbell, G. C. Archbold, O. A. Hurricane and 

P. L. Miller, JAP, 101:033540, 2007 
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Fracture of polymers 

T. Reppel, T. Dally, T. and K. Weinberg, 
Technische Mechanik, 33 (2012) 19-33. 

Crazing in 800 nm polystyrene  
thin film (C. K. Desai et al., 2011) 

• Polymers undergo 
entropic elasticity and 
damage due to chain 
stretching and failure 

• Polymers fracture by 
means of the crazing 
mechanism consisting of 
fibril nucleation, 
stretching and failure 

• The free energy density 
of polymers saturates in 
tension once the majority 
of chains are failed: p=0! 

• Crazing mechanism is 
incompatible with strain-
gradient elasticity… 
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Fracture of polymers 
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Taylor-anvil tests on polyurea 

Shot #854:  
R0 = 6.3075 mm,  
L0 = 27.6897 mm,  

v = 332 m/s 
 

Experiments conducted by W. Mock, Jr. and J. Drotar, 
at the Naval Surface Warfare Center (Dahlgren Division) 

Research Gas Gun Facility, Dahlgren, VA 22448-5100, USA 
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Experiments and simulations 

Shot #861:  
R0 = 6.3039 mm,  
L0 = 27.1698 mm,  

v = 424 m/s 
 

Experiments conducted by W. Mock, Jr. and J. Drotar, 
at the Naval Surface Warfare Center (Dahlgren Division) 

Research Gas Gun Facility, Dahlgren, VA 22448-5100, USA 
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Taylor-anvil tests on polyurea 

Comparison of damage and fracture patterns  
in recovered specimens and simulations 

Shot #854  Shot #861  
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Concluding remarks 

• Ductile fracture can indeed be understood as the 
result of the competition between sublinear growth 
and (possibly fractional) strain-gradient effects 

• Optimal scaling laws are indicative of a well-defined 
specific fracture energy, cohesive behavior, and 
provide a (multiscale) link between macroscopic 
fracture properties and micromechanics (intrinsic 
micromechanical length scale, void-sheet and 
crazing mechanisms…) 

• Ductile fracture can be efficiently implemented 
through material-point erosion schemes 

• Highly to be desired: Full Γ-limit as ℓ     0… 
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