Dislocations in graphene

M. Ortiz

California Institute of Technology
In collaboration with:

M.P. Ariza, Universidad de Sevilla

S. Conti, Universität Bonn

A. Garroni, Sapienza, Università di Roma

Workshop on PDEs and Materials
Oberwolfach, September 13-19, 2009

Graphene

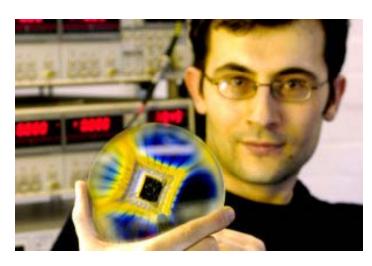
Andre K. Geim
School of Physics
& Astronomy
Manchester University

- First fabricated by Novoselov, K.S., et al. "Electric field effect in atomically thin carbon films" Science, 306 (2004) pp. 666-669
- One-atom thick free-standing carbon sheet
- Stable under ambient conditions
- 2D crystal arranged in a chickenwire or honeycomb lattice
- Fabricated by:
 - Mechanical cleavage of graphite (manually, ultrasonic)
 - Epitaxial growth followed by chemical etching

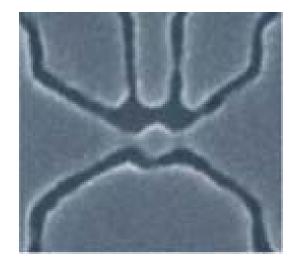
Graphene

- A.K. Geim, "Graphene: Status and Prospects", Science, 324 (2009) pp. 1530-1534:
 - Graphene is a wonder material
 - Thinnest known material in the universe and the strongest ever measured
 - Its charge carriers exhibit giant intrinsic mobility, have zero effective mass, and can travel for micrometers without scattering at room temperature.
 - Can sustain current densities six orders of magnitude higher than that of copper
 - Shows record thermal conductivity and stiffness, is impermeable to gases
 - Electron transport in graphene is described by a (relativistic-quantum) Dirac-like equation

Graphene - Applications



"Graphene used to create world's smallest transistor. Graphene can be carved into tiny electronic circuits with individual transistors having a size not much larger than that of a molecule"



Graphene-based single-electron transistor. Device with the central island of 250 nm in diameter and distant side gates; high resolution lithography allows features down to 10 nm (Ponomarenko, L.A., et al., "Chaotic Dirac Billiard in Graphene Quantum Dots," *Science*, **320** (2008) pp. 356-358)

http://www.manchester.ac.uk/aboutus/news/

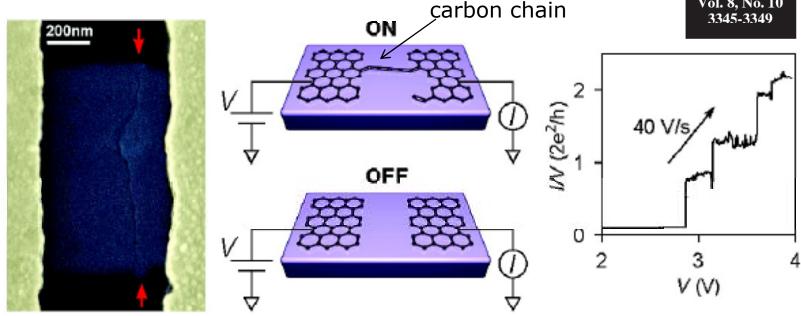
Michael Ortiz OW091409

Graphene - Applications

Graphene-Based Atomic-Scale Switches

Brian Standley,† Wenzhong Bao,‡ Hang Zhang,‡ Jehoshua Bruck,§ Chun Ning Lau,‡ and Marc Bockrath*,†

NANO LETTERS 2008 Vol. 8, No. 10 3345-3349



nonvolatile memory element based on graphene break junctions

THEORETICAL STUDIES OF ICOSAHEDRAL C60 AND SOME RELATED SPECIES

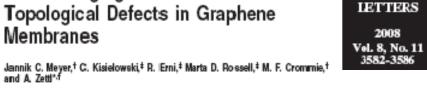
NANO

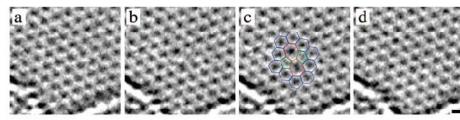
A.J. STONE and D.J. WALES

University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK

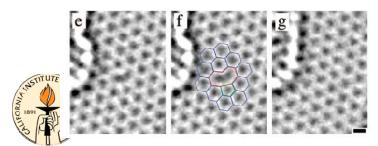
Received 1 May 1986; in final form 23 May 1986

Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes



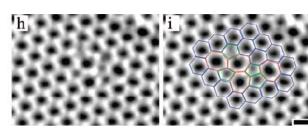


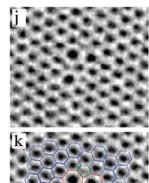
Stone-Wales defect



vacancy

Stone-Wales defect



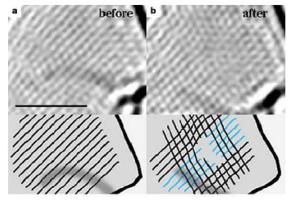


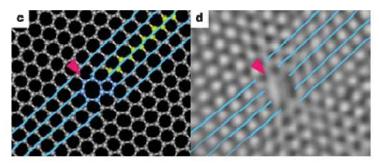
heptagons and pentagons

Direct evidence for atomic defects in graphene layers

Ayako Hashimoto 1 , Kazu Suenaga 1 , Alexandre Gloter 1,2 , Koki Urita 1,3 & Sumio liiima 1

NATURE | VOL 430 | 19 AUGUST 2004 | www.nature.com/nature





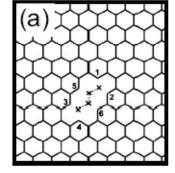
edge dislocation (missing zig-zag chain)

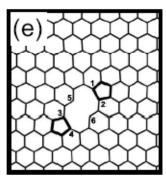
topological defects induced by electron-beam irradiation

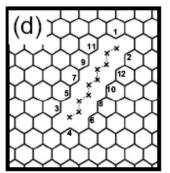
PHYSICAL REVIEW B 78, 165403 (2008)

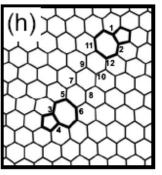
Stability of dislocation defect with two pentagon-heptagon pairs in graphene

Byoung Wook Jeong,¹ Jisoon Ihm,¹ and Gun-Do Lee²









Michael Ortiz OW091409

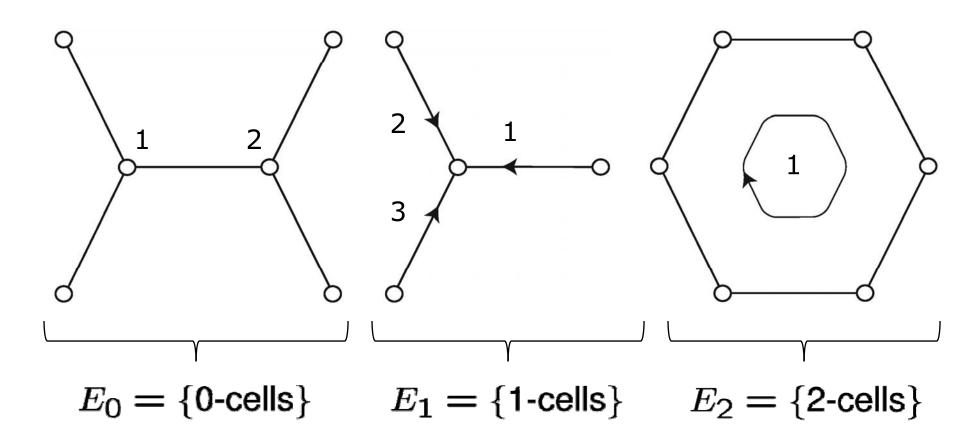
- Majority of studies to date computational:
 - Ab initio: Restricted to small cells, difficult to extract thermodynamic properties...
 - Molecular dynamics: Predictiveness limited by empirical potentials, cell size, time step...
 - Mixed continuum atomistic: Ad hoc, patchwork...
- Main issues of interest:
 - Properties of individual defects: Core structure, core energies, limiting behaviors (dilute, continuum...)
 - Equilibrium properties of defect ensembles: Free energy, critical temperature for spontaneous defect nucleation
- Defect densities at critical temperature small,
 not accessible to direct simulation!

• Our approach:

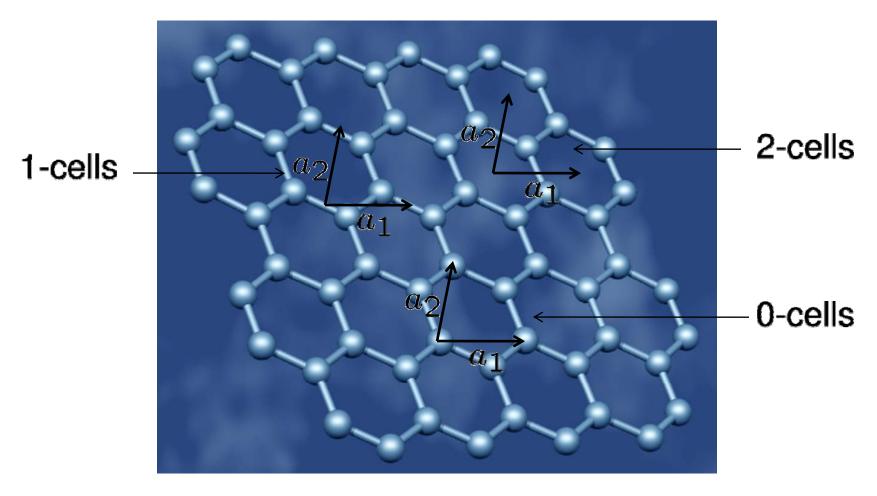
- Graphene lattice as differential complex
- Defects as eigendeformations
- Formal asymptotics and/or Γ-convergence
- Equilibrium statistical mechanics

Results to date:

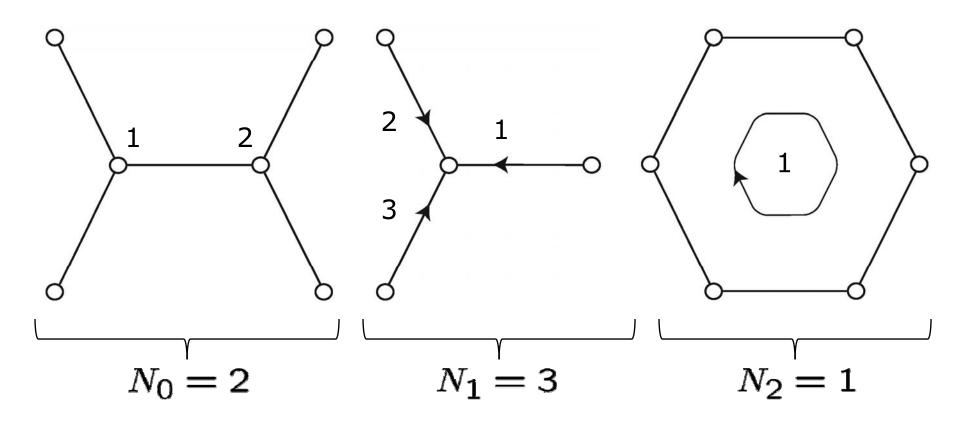
- Dislocation core structures, validation
- Core energies, prelogarithmic energy factors
- Continuum and dilute limits of stored energies:
 - o Direct numerical simulation
 - Formal asymptotics
 - Γ-convergence (in progress)
- Critical temperature, scaling (in progress)



the oriented cells of graphene classification by type



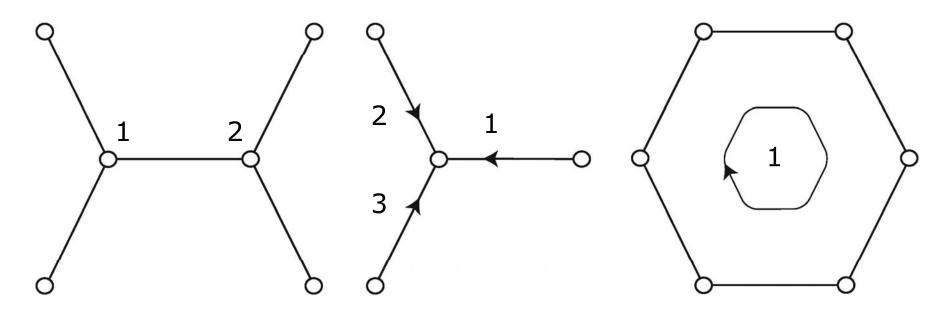
cells of same type define simple Bravais lattices



$$E_p = \{e_p(l, \alpha), l \in \mathbb{Z}^2, \alpha = 1, \dots, N_p\}$$

the Bravais lattices of cells of same type

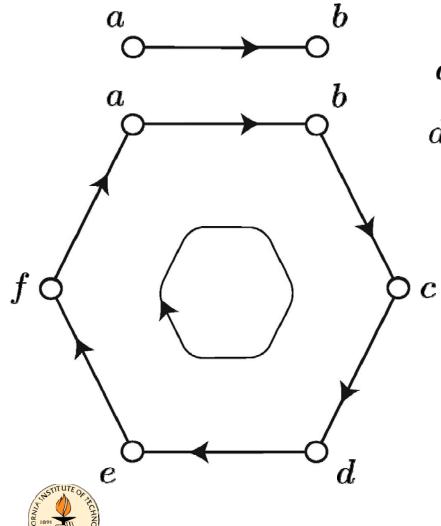
Michael Ortiz OW091409



discrete p-forms: $\Omega^p = \{\omega_p : E_p \to \mathbb{R}^m\}$

discrete p-currents: $\Omega_p = \{ \Lambda^p : E_p \to \mathbb{R}^m \}$

cuality pairing: $\langle \mathsf{\Lambda}^p, \omega_p \rangle = \sum_{\alpha=1}^{N_p} \sum_{l \in \mathbb{Z}^2} \mathsf{\Lambda}^p(l, \alpha) \cdot \omega_p(l, \alpha)$ Michael Ortiz OW091409



Differential operator:

$$d\omega(e_{ab}) = \omega(e_b) - \omega(e_a)$$

$$d\omega(e_{abcdef}) = \omega(e_{ab}) + \omega(e_{bc})$$

$$+ \omega(e_{cd}) + \omega(e_{de})$$

$$+ \omega(e_{ef}) + \omega(e_{fa})$$

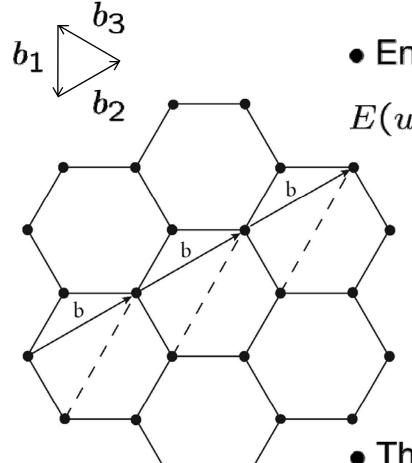
• Codifferential operator:

$$\langle \Lambda, d\omega \rangle = \langle \delta \Lambda, \omega \rangle$$

Fundamental property:

$$d^2 = 0, \quad \delta^2 = 0$$

Graphene – Discrete dislocations



Energy of defective graphene:

$$E(u,\beta) = \frac{1}{2} \langle \Psi * (du - \beta), (du - \beta) \rangle$$

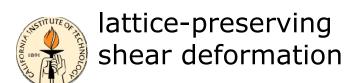
 $\Psi \equiv$ bondwise force constants

$$\Omega^0 \ni u \equiv \text{displacement field}$$

$$\Omega^1 \ni du \equiv \text{bond deformation}$$

$$\Omega^1 \ni \beta \equiv$$
 eigendeformations

Three lattice-preserving shears:

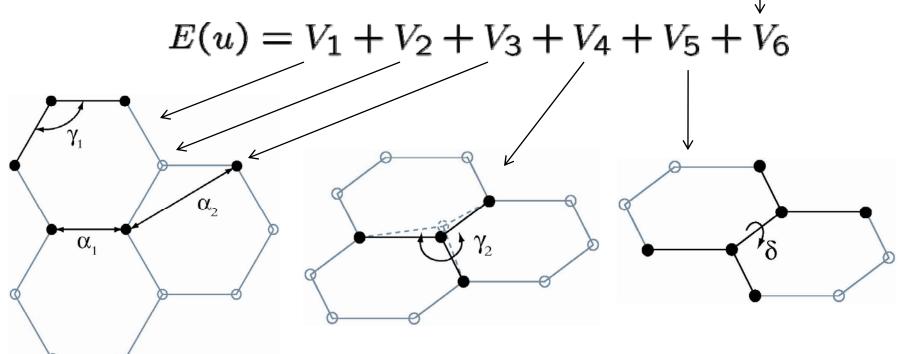


$$eta(e_1) \in b_1 \mathbb{Z} + b_2 \mathbb{Z} + b_3 \mathbb{Z}$$
Michael Ortiz
OW091409

Graphene – Force constants

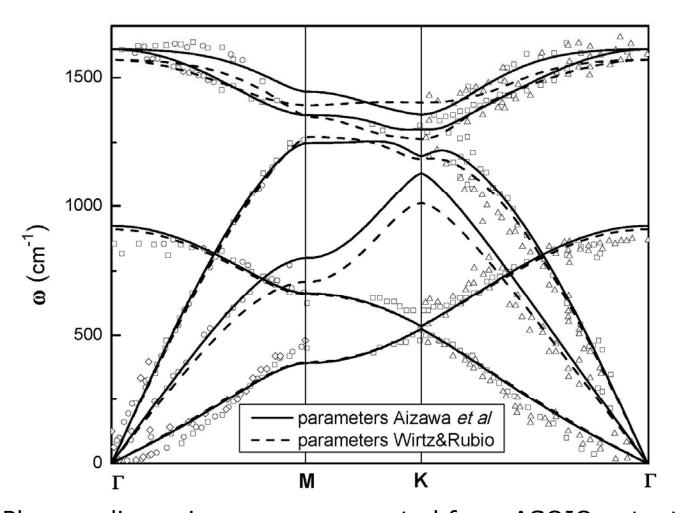
ASOIO Potential:

interaction with substrate



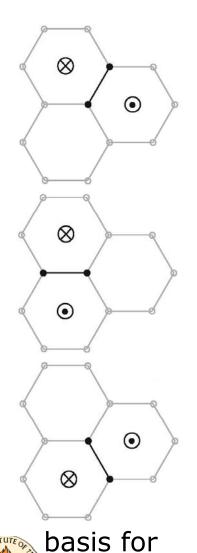
Aizawa, T. et al., "Bond Softening in Monolayer Graphite Formed on Transition-Metal Carbide Surfaces" Phys. Rev. B, **42**(18) (1990) pp. 11469--11478

Graphene – Force constants



Phonon-dispersion curves computed from ASOIO potential (Aizawa *et al.* (1990) and by Wirtz & Rubio (2004)) Michael Ortiz OW091409

Graphene – Discrete dislocations



graphene

dislocations

Energy of defective graphene:

$$E(u,\beta) = \frac{1}{2} \langle \Psi * (du - \beta), (du - \beta) \rangle$$

Displacement equilibrium problem:

$$\delta \Psi * du \equiv Au = f \equiv \delta \Psi \beta$$

- Note: inf $E(u, \beta) = 0$ if $\beta = dv$
- Discrete dislocation density: $\alpha = d\beta$
- Hodge: $\alpha = 0$ iff $\beta = dv$
- Stored energy depends on α:

$$E(\alpha) = \inf\{E(u, \beta), d\beta = \alpha\}$$

Michael Ortiz OW091409

Graphene - Discrete Fourier transform

• Discrete Fourier Transform: $\hat{f}(\theta) = \sum_{l \in \mathbb{Z}^2} f(l) e^{-i\theta \cdot l}$

• Inverse:
$$f(l) = \frac{1}{(2\pi)^2} \int_{[-\pi,\pi]^2} \widehat{f}(\theta) e^{i\theta \cdot l} d\theta$$

- Convolution theorem: $\widehat{f} * \widehat{g} = \widehat{f}\widehat{g}$
- Parseval identity: $\langle f, g \rangle = \frac{1}{(2\pi)^2} \int_{[-\pi, \pi]^2} \widehat{f}(\theta) \widehat{g}^*(\theta) d\theta$
- Differential operator: $\widehat{d\omega}(\theta) = Q(\theta)\widehat{\omega}(\theta)$

$$Q_1(\theta) = \begin{pmatrix} 1 & -\mathrm{e}^{i heta_2} \\ 1 & -1 \\ 1 & -\mathrm{e}^{-i heta_3} \end{pmatrix}, \quad heta_3 = heta_1 - heta_2$$
 $Q_2(\theta) = \left(\mathrm{e}^{i heta_3} - 1, 1 - \mathrm{e}^{i heta_1}, \mathrm{e}^{i heta_1} - \mathrm{e}^{i heta_3}\right)$

$$Q_2(\theta) = (e^{i\theta_3} - 1, 1 - e^{i\theta_1}, e^{i\theta_1} - e^{i\theta_3})$$

Graphene - Discrete Fourier transform

• For given eigendeformations: $\hat{u}(\theta) = -\hat{\Phi}^{-1}Q_1^T\hat{\Psi}\hat{\beta}$ where: $\hat{\Phi}(\theta) = Q_1^T(\theta)\hat{\Psi}(\theta)Q_1^*(\theta)$

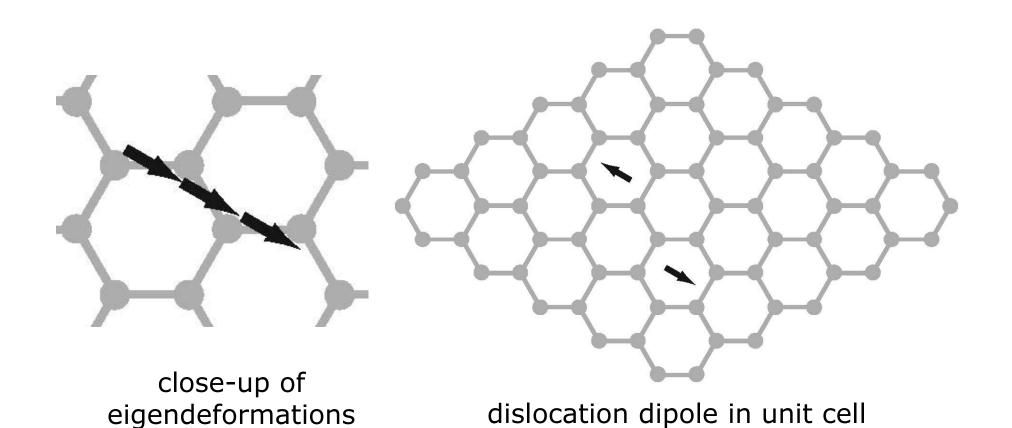
For given discrete dislocation density:

$$E(\alpha) = \frac{1}{(2\pi)^2} \int_{[-\pi,\pi]^2} \frac{1}{2} \langle \widehat{\Gamma}(\theta) \widehat{\alpha}(\theta), \widehat{\alpha}^*(\theta) \rangle d\theta$$

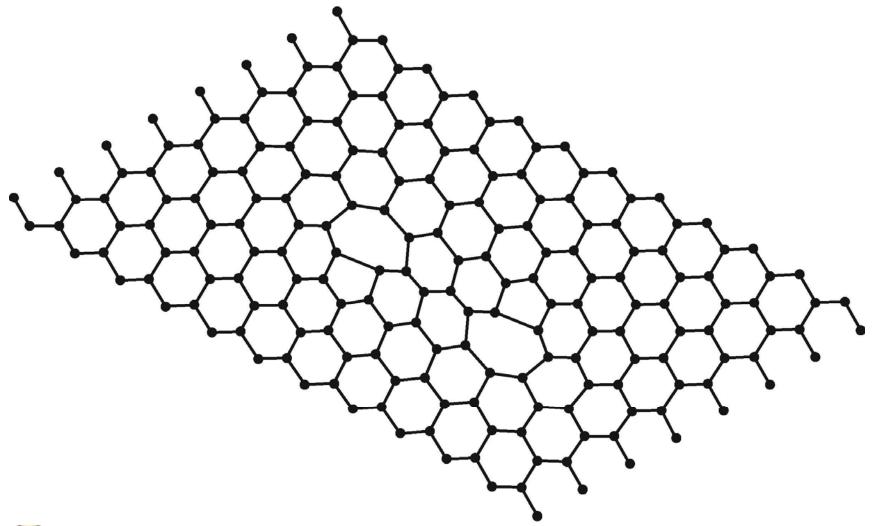
$$\hat{\Gamma}(\theta) = \hat{\Delta}^{-T} (Q_2^* \hat{\Psi} Q_2^T - Q_2^* \hat{\Psi} Q_1^* \hat{\Phi}^{-1} Q_1^T \hat{\Psi} Q_2^T) \hat{\Delta}^{-1}$$

$$\hat{\Delta}(\theta) = 2(3 - \cos \theta_1 - \cos \theta_2 - \cos \theta_3)$$

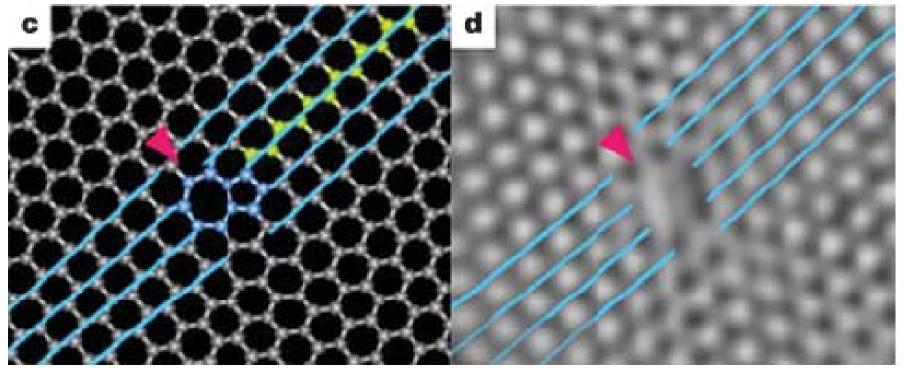
Periodic case: Integrals reduce to finite sums



Periodic arrangement of dislocation dipoles



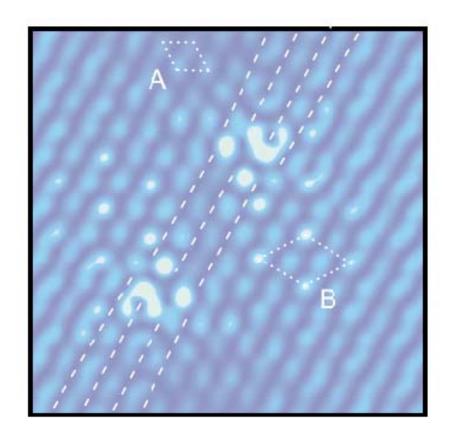
Discrete dipole core structure in ASOIO graphene, exhibiting dissociated pentagon-heptagon ring (5-7-7-5) Michael Ortiz OW091409

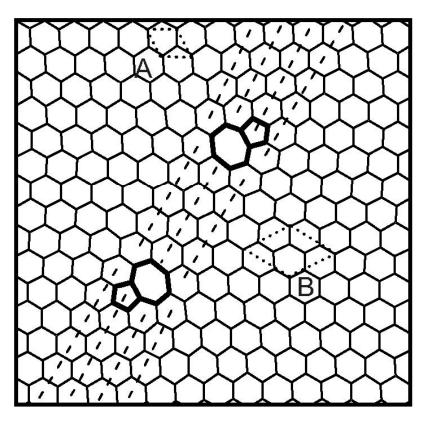


pentagon-heptagon pair in the graphitic network

simulated HR-TEM image

In situ observation of a dislocation in a graphene layer (Hasimoto et al. "Direct evidence for atomic defects in graphene layers", Letters to Nature, 430 (2004) pp.870-873)



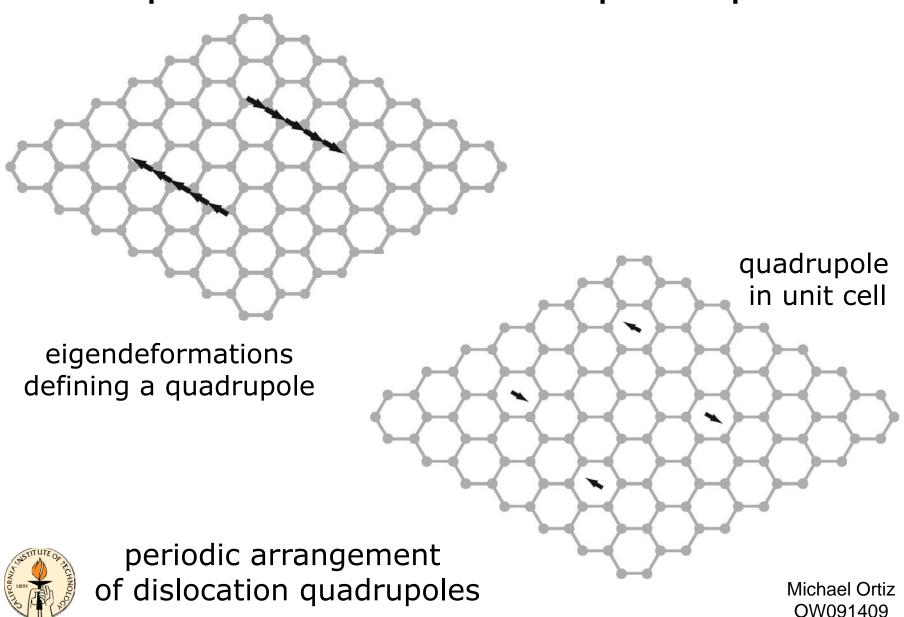


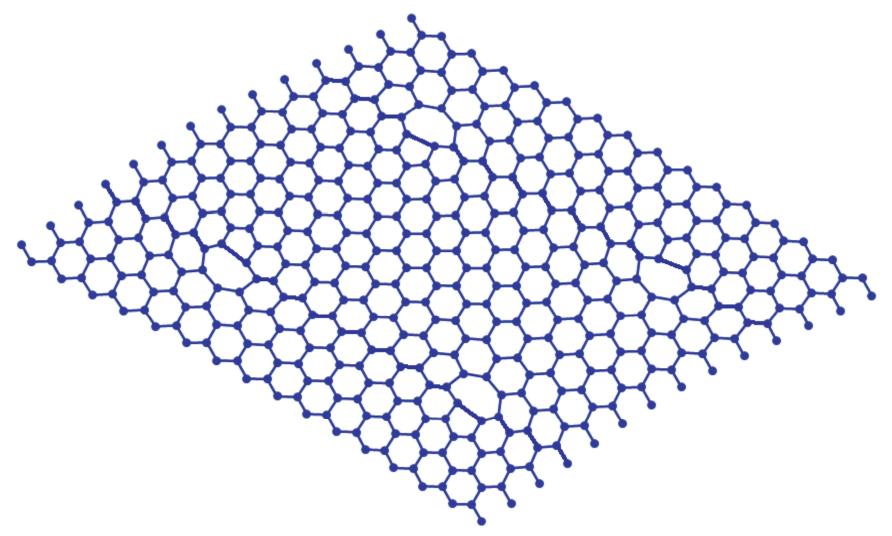
Simulated STM image (DFT)

Atomic structure

Jeong, B.W. et al., Stability of dislocation defect with two pentagon-heptagon pairs in graphene,
Phys. Rev. B, **78**, 165403 (2008)

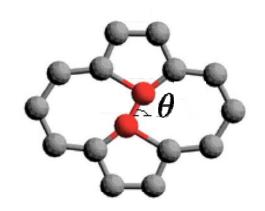
Michael Ortiz OW091409



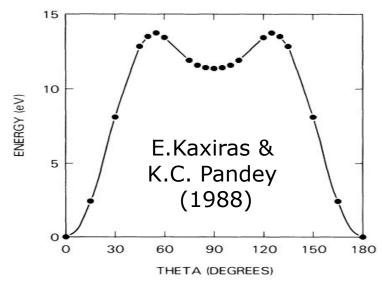


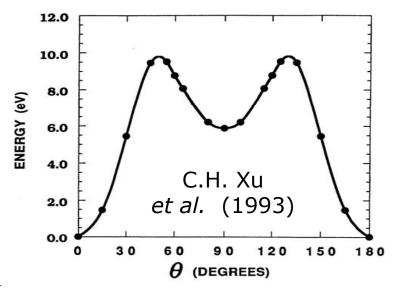
Discrete quadrupole core structure in ASOIO graphene, exhibiting dissociated pentagon-heptagon ring (5-7-7-5) $_{\rm O}^{\rm Mic}$

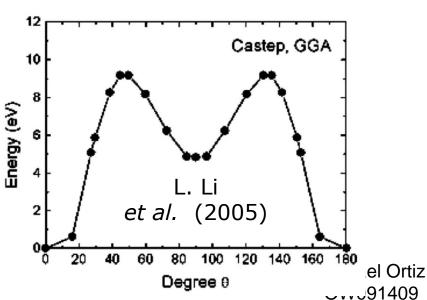
Graphene – Dislocation cores



bond rotation angle







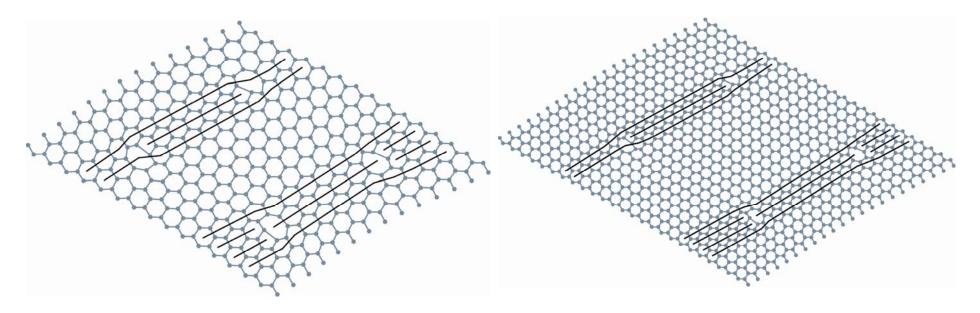
Graphene – Dislocation cores

Summary of bond angles and formation energies at transition state computed from firs-principles calculations

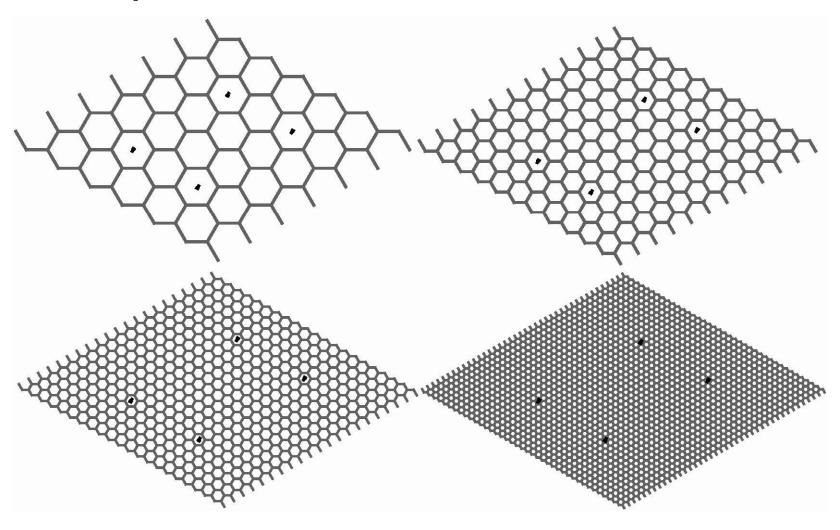
bond rotation angle

Study	Formation angle	Formation energy
Ariza & MO	52 degrees	11.92 eV
Li et al. (2005)	45 degrees	9.2 eV
Kaxiras & Pandy (1988)	55 degrees	14.0 eV
Xu et al. (1993)	50 degrees	9.8 eV
Los et al. (2005)	50 degrees	8.0 eV
Meyer et al. (2008)	-	< 15.6 eV

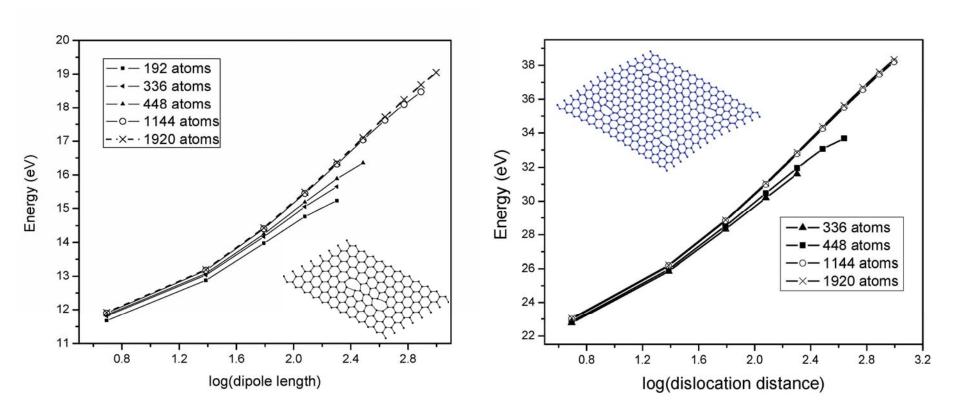
Graphene – Dislocation cores



- Discrete-dislocation model predicts 5-7 dislocation core structures, in agreement with observation and first-principles calculations
- Predicted unstable transition configuration and formation energies are in the range of first-principles calculations



Limit of dilute dislocation densities (equivalently, continuum limit)

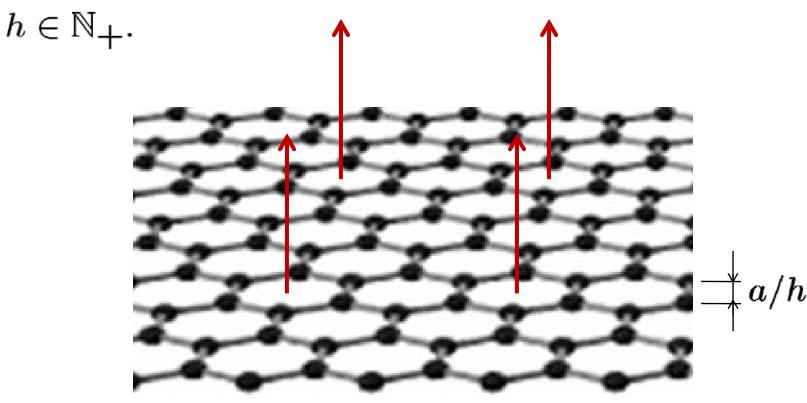


 $E = (23.07255 \text{ eV}) + (6.80 \text{ eV}) \log h$

Energy of periodic dislocation densities in ASOIO graphene as a function of dislocation separation and unit-cell size.

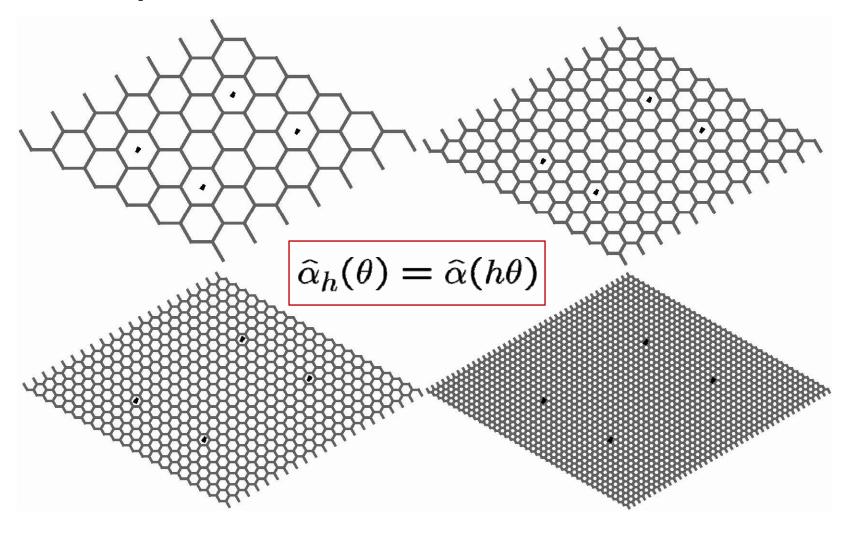
Michael Ortiz
OW091409

• Identify discrete dislocation densities with measures whose Fourier transform is $[-h\pi, h\pi]^2$ -periodic for some



 $\widehat{\alpha}(\theta)$ is $[-h\pi, h\pi]^2$ -periodic!

Michael Ortiz OW091409



Sequence of scaled dislocation densities

Define the sequence of energies:

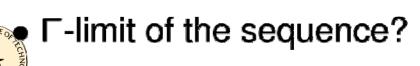
$$E_h(\alpha) = \begin{cases} E(\alpha_h), & \text{if } \hat{\alpha} \text{ is } [-h\pi, h\pi]^2 - \text{periodic}, \\ +\infty, & \text{otherwise}. \end{cases}$$

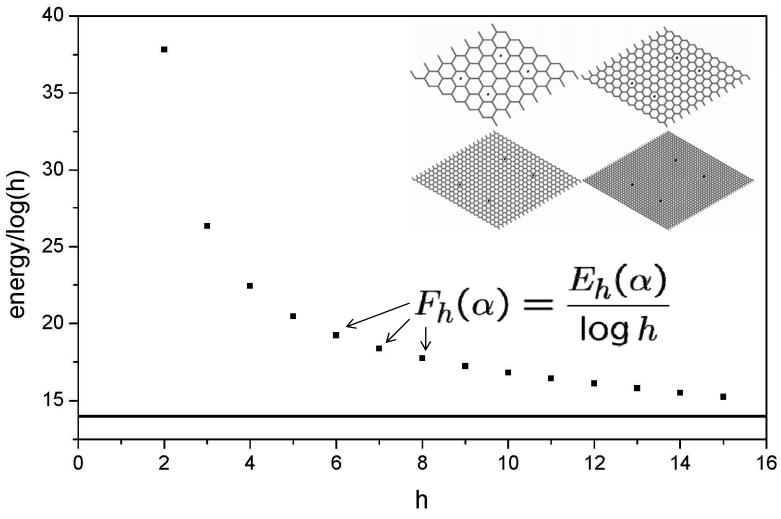
ullet Pointwise limit: $F(lpha) \equiv \lim_{h o \infty} \frac{E_h(lpha)}{\log h} =$

$$\begin{cases} \langle K\alpha, \alpha \rangle_{l^2(\mathbb{Z}^2)}, & \text{if } \widehat{\alpha} \text{ is } [-k\pi, k\pi]^2 - \text{periodic}, \\ +\infty, & \text{otherwise}. \end{cases}$$

where $K \equiv LE$ prelogarithmic energy factor

Pointwise limit: Sum of dislocation core energies!



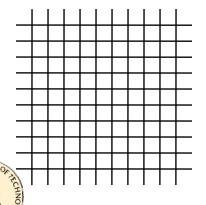


Energy sequence is decreasing!

Proposition [Dal Maso (1993), Prop. 5.7] If F_h is a decreasing sequence converging to F pointwise, then F_h Γ -converges to the relaxation sc^-F of F.

Question: What is the relaxation of the pointwise limit?

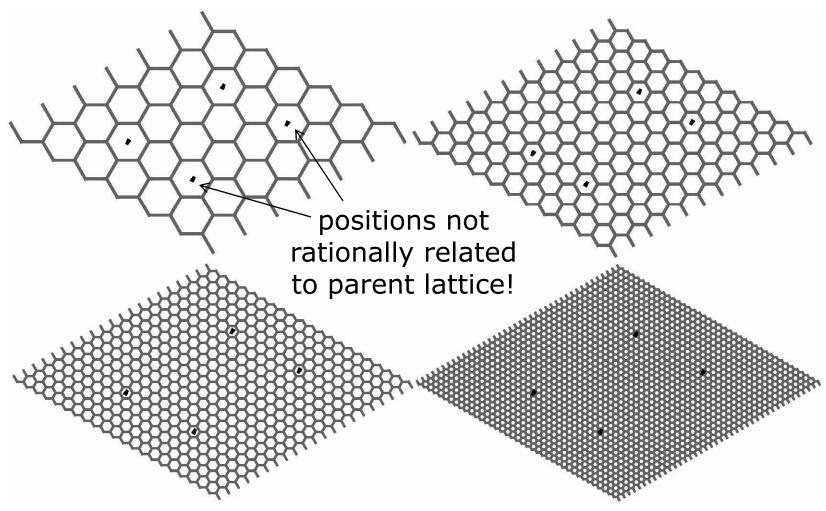
M. Ponsiglione: Square lattice, screw (scalar) dislocations, energy proportional to total mass of dislocation.



$$\operatorname{sc}^-F(\alpha) = C|\alpha|$$

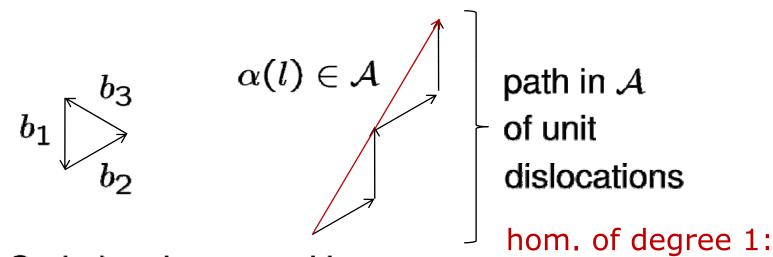
total dislocation mass!

Garroni & Leoni: Related 2D result



Extend limit to $\widehat{\alpha}(\theta)$ $[-a\pi, b\pi]^2$ -periodic by density

- $\alpha(l) \in b_1 \mathbb{Z} + b_2 \mathbb{Z} + b_3 \mathbb{Z} \equiv A$ Recall:
- Decompose dislocations locally:

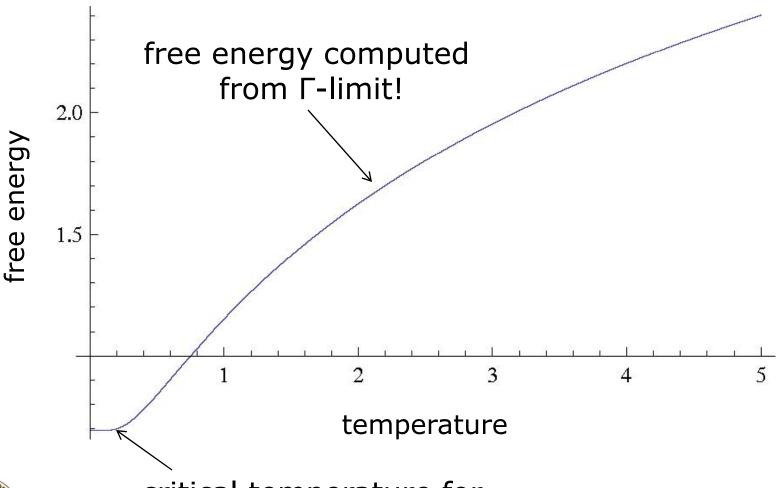


Optimize decomposition:

• Optimize decomposition: line tension!
$$\mathsf{sc}^-F \sim \sum_{l \in \mathbb{Z}^2} \left[\min_{\substack{\mathsf{paths to } \alpha(l) \\ \mathsf{b} \in \mathsf{path to } \alpha(l)}} \left(\sum_{\substack{b \in \mathsf{path to } \alpha(l) \\ \mathsf{b} \in \mathsf{path to } \alpha(l)}} \frac{1}{2} \langle Kb, b \rangle \right) \right]_{\mathsf{Michael Ortiz}}$$

OW091409

Graphene – Free energy of defects



critical temperature for spontaneous dislocation nucleation

Michael Ortiz OW091409

Dislocations in graphene

