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Background on ductile fracture 

Photomicrograph of a copper disk tested in a gas-gun 
experiment showing the formation of voids and their 

coalescence into a fracture plane 
Heller, A., How Metals Fail,  

Science & Technology Review Magazine,  
Lawrence Livermore National Laboratory, 

pp. 13-20, July/August, 2002  

void sheet 
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Scope 

• Micro-macro relations for ductile fracture 
• (Universal) scaling relations in ductile fracture? 
• Application of optimal scaling to ductile fracture 
• Results for metals and polymers 
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Background on ductile fracture 
brittle ductile 

(Courtesy NSW HSC online) 

Fracture surface in SA333 steel, 
room temp., dε/dt=3×10-3s-1 
(S.V. Kamata, M. Srinivasa and P.R. Rao, 
Mater. Sci. Engr. A, 528 (2011)  
4141–4146) 
 

• Ductile fracture in metals 
occurs by void nucleation, 
growth and coalescence  

• Fractography of ductile-
fracture surfaces exhibits 
profuse dimpling, vestige 
of microvoids 

• Ductile fracture entails 
large amounts of plastic 
deformation (vs. surface 
energy) and dissipation. 
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Background on ductile fracture 

• A number of ASTM 
engineering standards are 
in place to characterize 
ductile fracture properties 
(J-testing, Charpy test) 

• The Charpy test data 
reveals a brittle-to-ductile 
transition temperature 

• In general, the specific 
fracture energy for ductile 
fracture is greatly in 
excess of that required for 
brittle fracture… 

Charpy energy of  
A508 steel  

(Tanguy et al., Eng. 
Frac. Mechanics, 2005) 
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Micromechanics of ductile fracture 

• Objective: Elucidate microstructure/property 
relations (voids to specific fracture energy) 

• Traditional ‘micromechanics’ approach: 
– Select a specific microscale model (crystal plasticity, 

porous plasticity, strain-gradient plasticity…) 
– Select a ‘representative microstructure’ (void in 

periodic cell, shear/damage localization band…) 
– Perform ‘unit-cell’ calculations, parametric studies… 

• Critique: 
– Pros: Calculations ‘exact’ (within numerical precision) 
– Cons: Model-specific results, non-optimal static 

microstructures, numerical (vs. epistemic) results… 
• Alternative: Analysis (e.g., optimal scaling)  
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Scaling laws in science 

• A broad variety of physical phenomena obey 
power laws over wide ranges of parameters 

• Scale invariance: If y = C xα, then (x,y) iff 
(λx, λαy), law of corresponding states 

• Universality:  
– Exponents are material-independent (‘universal’) 
– Systems displaying identical scaling behavior are 

likely to obey the same fundamental dynamics 
• Experimental master curves, data collapse 
• Examples: 

– Critical phenomena (second-order transitions) 
– Materials science (Taylor, Hall-Petch, creep laws…) 
– Continuum mechanics (hydrodynamic, fracture…) 
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Optimal scaling 

• Originally applied to branched microstructures in 
martensite (Kohn-Müller 92, 94; Conti 00) 

• Applications to micromagnetics (Choksi-Kohn-
Otto 99), thin films (Belgacem et al 00)... 
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Naïve model: Local plasticity 

Ti 

Eleiche & Campbell (1974) 

sub-linear 
energy growth! 
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Naïve model: Local plasticity 

• Energies with sublinear growth relax to 0. 
• For hardening exponents in the range of 

experimental observation, local plasticity yields 
no useful information regarding ductile fracture 
properties of materials! 

• Need additional physics, structure… 
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Strain-gradient plasticity 

W. Nix & H. Gao (1998) 

N. Fleck et al. (1993) 

• The yield stress of metals is 
observed to increase in the 
presence of strain gradients  

• Deformation theory of strain-
gradient plasticity: 

• Strain-gradient effects may be 
expected to oppose localization 

• Growth of W with respect to the 
second deformation gradient? 
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Strain-gradient plasticity 

Fence structure  
in copper 

(J.W. Steeds, Proc. Roy. Soc. London,  
A292, 1966, p. 343) 

Dislocation wall 
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Strain-gradient plasticity & fracture 

• For metals, local plasticity exhibits sub-linear 
growth, strain-gradient plasticity linear growth  

• Question: Can ductile fracture be understood as 
the result of a competition between sublinear 
growth and strain-gradient plasticity? 

• Mathematical model: Minimize 

Heller, A.,  
How Metals Fail,  

Science & Technology 
Review Magazine,  

Lawrence Livermore 
National Laboratory, 

pp. 13-20, July/August, 
2002  
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Optimal scaling – Ductile fracture 
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Optimal scaling – Ductile fracture 
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Sketch of proof – Upper bound 

Heller, A., Science & Technology Review Magazine,  
LLNL, pp. 13-20, July/August, 2002  

void 
sheet 

void 
sheet 
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Sketch of proof – Upper bound 

void 

void growth! 



Michael Ortiz 
IUTAM 06/14 

Optimal scaling – Ductile fracture 

• Optimal (matching) upper and lower bounds: 

• Bounds apply to classes of materials having the 
same growth, specific model details immaterial 

• Energy scales with area (L2): Fracture scaling! 
• Energy scales with power of opening 

displacement (δ): Cohesive behavior! 
• Lower bound degenerates to 0 when the 

intrinsic length (ℓ) decreases to zero… 
• Bounds on specific fracture energy: 
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Fracture of polymers 

T. Reppel, T. Dally, T. and K. Weinberg, 
Technische Mechanik, 33 (2012) 19-33. 

Crazing in 800 nm polystyrene  
thin film (C. K. Desai et al., 2011) 

• Polymers undergo 
entropic elasticity and 
damage due to chain 
stretching and failure 

• Polymers fracture by 
means of the crazing 
mechanism consisting of 
fibril nucleation, 
stretching and failure 

• The free energy density 
of polymers saturates in 
tension once the majority 
of chains are failed: p=0! 

• Crazing mechanism is 
incompatible with strain-
gradient elasticity… 
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Fracture of polymers 
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Sketch of proof – Upper bound 

crazing 

craze 
sheet 

Crazing in 800 nm polystyrene  
thin film (C. K. Desai et al., 2011) 
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Sketch of proof – Upper bound 
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Optimal scaling – Crazing 

• Optimal (matching) upper and lower bounds: 

• Fractional strain-gradient elasticity supplies 
bounded energies for crazing mechanism 

• Energy scales with area (L2): Fracture scaling! 
• Energy scales with power of opening 

displacement (δ): Cohesive behavior! 
• Lower bound degenerates to 0 when the 

intrinsic length (ℓ) decreases to zero… 
• Bounds on specific fracture energy: 
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Concluding remarks 

• Ductile fracture can indeed be understood as the 
result of the competition between sublinear growth 
and (possibly fractional) strain-gradient effects 

• Optimal scaling laws are indicative of a well-defined 
specific fracture energy, cohesive behavior, and 
provide a (multiscale) link between macroscopic 
fracture properties and micromechanics (intrinsic 
micromechanical length scale, void-sheet and 
crazing mechanisms…) 

• Ductile fracture can be efficiently implemented 
through material-point erosion schemes… 
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Concluding remarks 

Thanks! 
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