Line Tension as the Dilute Limit of Discrete Dislocations M.P. Ariza and M. Ortiz California Institute of Technology 7th International Congress on Industrial and Applied Mathematics (ICIAM11) Vancouver, Canada July 18-22, 2011 #### Introduction - Linear-elastic dislocations in crystals: Energy is nonlocal, long-range elastic interactions - Line-tension approximation: Energy ~ dislocation length - Successful at describing kinetics of dislocation motion, hardening... - Why does line-tension work? - When does it work? # Discreteness of crystallographic slip Crystallographic slip occurs on discrete slip planes characteristic of each crystal class Crystallographic slip occurs through (low-energy) lattice-invariant deformations Slip traces on Cu crystal surface (AFM, C. Coupeau) # Crystallographic slip and dislocations # Energy of linear-elastic dislocations • All segment pairs interact through elastic field: $O(N^2)!$ • Self-energy of segments divergent logarithmically! el Ortiz ## The line-tension approximation • Approximate: $E \propto L!$ (Humphreys and Hirsch '70) Dislocation motion through random obstacle array (Foreman, A.J.E., Makin, M.J., *Phil. Mag.*, **14** (1966) 911) • Hardening: $\tau_c \sim c^{1/2} \gamma^{1/2}$, where: $c \equiv$ obstacle density, $\gamma \equiv$ slip strain Line tension predicts observed scaling! # Why does line tension work? - The problem: To determine the low-energy configurations of linear-elastic dislocations - The model: Discrete dislocations on discrete lattices interacting through discrete Green's functions (well-defined segment self-energies!) - The results: - The asymptotic behavior of the stored energy in the dilute limit (in the sense of Γ-convergence) is given by the line-tension approximation (long-range interactions between dislocation segments can be neglected in the limit!) - ii. Kinetic Montecarlo solver based on the limiting energy iii. Application dislocation junctions # Lattice cell complexes # Elementary dislocation loops - Shown dislocation loops, their symmetry-group orbits and their translates form a basis for all closed discrete dislocation loops - There is an elementary loop per atomic bond (1-cell) of lattice - Atomic bonds (1-cells) of bcc lattice - Bonds define 7 Bravais lattices (4 diagonal + 3 cubic atomic bonds) 7 types of elementary loops! # Elementary dislocation loops bcc dislocation loop basis # Elementary dislocation segments - Elementary dislocation loops can further be decomposed into elementary dislocation segments - There is an elementary segment per face (2-cell) of lattice - Face (2-cell) basis for bcc lattice - Faces define 12 Bravais lattices 12 types of elementary segments! ### Discrete dislocation densities - Discrete dislocation density α : - Assign Burgers vectors to elementary loops - Add up algebraically all 'loaded' loops ## Discrete dislocation densities Complex discrete dislocation line generated through a sequences of flips # Discrete dislocations – Elastic energy • Elastic energy: $E(\alpha) = \frac{1}{2} \sum_{i} \sum_{j} \langle \Gamma(x_j - x_i) b_i, b_j \rangle$ interaction energy between pair of elementary dislocation segments - Kernel Γ follows from lattice force constants - For large |r|, $\Gamma(r) \sim |r|^{2-n}$, $n \ge 3$; $\log |r|$, n = 2 - Long-range elastic interactions: $O(N^2)!$ #### Dislocation densities are dilute - Dislocation densities in plastically deformed crystals are fairly dilute, even at saturation - Exploit this feature to simplify elastic energy! ### Dislocation densities are dilute - Initial dislocation density ~ 10¹⁰ cm⁻² - Saturation dislocation density ~ 25 x 10¹⁰ cm⁻² - Initial mean distance between dislocations ~ 100 nm (278 lattice constants) - Mean distance between dislocations at saturation ~ 20 nm (56 lattice constants) - Investigate *dilute limit*! Total dislocation density vs. applied stress in single-crystal and polycrystalline copper in the deformation range of $\epsilon \leq 0.4$ D. Breuer, P. Klimanek and W. Pantleon, *J. Appl. Cryst.*, **33** (2000) 1284-1294. ## Toy example – Square lattice Screw-dislocation bundle Square lattice complex • Discrete dislocations (2-forms over C): $$\mathcal{D}^{2}(C;\mathbb{R}) \equiv \{\alpha = \sum_{r \in a\mathbb{Z}^{2}} b_{r} \delta_{r}, \ b_{r} \in \mathbb{R}\}\$$ Coboundary operator (div): $d\alpha = \sum_{r \in a\mathbb{Z}^2} b_r = 0$ Michael Ortiz ICIAM11 # Toy example – Square lattice - Dislocation dipole: $d\alpha = \sum_{r \in a\mathbb{Z}^2} b_r = b b = 0$ - If $d\alpha = 0 \Rightarrow \alpha$ linear combination of elementary dipoles - Discrete Helmholtz decomposition theorem! #### The dilute limit – Scheme I Sequence of increasingly dilute quadrupoles - Weak limit: $\langle \alpha_h, \varphi \rangle \to 0$, \forall test functions $\varphi \Rightarrow \alpha_h \to 0$! - All dislocations 'go off' to infinity in the limit! ### The dilute limit – Scheme II Sequence of increasingly dilute quadrupoles • Lattice refinement $\Rightarrow C_h$, $a_h = \epsilon_h a$, $\epsilon_h = 2^{-h}$, $h \in \mathbb{N}$ • Identify $\alpha_0 \sim \alpha_1 \sim \alpha_2 \dots \Rightarrow$ dilute dislocation! ## Square lattice – Dilute dislocations Sequence of increasingly dilute quadrupoles - Space of DDDs: $X=\{\alpha=\sum_{r\in a\mathbb{Q}^2}b_r\delta_r,\ \|\alpha\|<+\infty\}$ Inner product: $\langle\alpha',\alpha''\rangle=\sum_{r\in a\mathbb{Q}^2}b_r'b_r''$ - Coboundary operator: $d \alpha = \sum_{r \in a \mathbb{Q}^2} b_r$ Michael Ortiz ICIAM11 J.R. Munkres, *Elements of Algebraic Topology*, Perseus (1984) #### The dilute limit – Scheme II Sequence of increasingly dilute dislocation loops - Lattice refinement $\Rightarrow C_h$, $a_h = \epsilon_h a$, $\epsilon_h = 2^{-h}$, $h \in \mathbb{N}$ - Identify $\alpha_0 \sim \alpha_1 \sim \alpha_2 \ldots \Rightarrow$ dilute dislocation! ## The dilute limit - Scheme II Segment refinement for cubic lattice #### The dilute limit – Scheme II Sequence of increasingly *dilute* quadrupoles For every dilute dislocation density (DDD), there is a sufficiently fine lattice that carries it The space of DDDs $\sim l^2$ ## The dilute limit – Line tension - Refinement generates a sequence of energies $E_h(\alpha)$ - Expect $E_h(\alpha)$ to diverge as $\epsilon_h^{2-n} \log \epsilon_h^{-1}$ - Example: dipole, $E_h \sim \frac{\mu b^2}{2\pi} \log \epsilon_h^{-1}$ • Scaled energy: $$F_h(\alpha) = \frac{1}{\epsilon_h^{2-n} \log \epsilon_h^{-1}} E_h(\alpha)$$ Thm Γ - $\lim_{h\to\infty} F_h = \sum_r \langle Kb_r, b_r \rangle$ (wrt weak convergence) prelogarithmic energy factor No long-range interactions in limit Line tension hichael Ortiz ICIAM11 ## Example – Graphene quadrupole M.P. Ariza, M. Ortiz and R. Serrano, Int. J. Fracture (2010) DOI 10.1007/s10704-010-9527-0 ## Line tension – Dislocation junctions - a) Dislocation lines on planes a and b collide at A. - b) Junction bounded by two 3-nodes B and C is formed. Network of ½<111> screw dislocations forming <001> screw junctions Atomistic simulations of Bulatov and Cai (2002) V.V. Bulatov and W. Cai, *PRL*, **89** (2002) 115501. H. Matsui and H. Kimura, *Mater. Sci. Eng.*, **24** (1976) 247. # Kinetic Monte Carlo implementation # Energy-minimizing junction configuration Snapshots of kMC calculation of energy minimizing configuration of junction, using line-tension approximation # Energy-minimizing junction configuration Snapshots of kMC calculation of energy minimizing configuration of junction, using line-tension approximation # Energy-minimizing junction configuration Atomistic simulations of Bulatov and Cai (2002) Energy-minimizing configuration of junction, computed using line-tension approximation # Concluding remarks - The computation of the elastic energy is greatly simplified in the dilute limit: No long-range interactions, *line tension*! - Dilute discrete dislocation models are wellsuited for kMC implementation: Tables of segments, elementary loops, flips... - Approach advantageous with respect to full $O(N^2)$ elastic-energy calculations, e.g., for simulations of dislocation dynamics and forest hardening - Caveat: Not clear mathematically that linetension approximation can be applied in the presence of kinetics, time-evolution...