Line Tension as the Dilute Limit of Discrete Dislocations

M.P. Ariza and M. Ortiz California Institute of Technology

7th International Congress on Industrial and Applied Mathematics (ICIAM11) Vancouver, Canada July 18-22, 2011

Introduction

- Linear-elastic dislocations in crystals: Energy is nonlocal, long-range elastic interactions
- Line-tension approximation: Energy ~ dislocation length
- Successful at describing kinetics of dislocation motion, hardening...
- Why does line-tension work?
- When does it work?

Discreteness of crystallographic slip

Crystallographic slip occurs on discrete slip planes characteristic of each crystal class

Crystallographic slip occurs through (low-energy) lattice-invariant deformations

Slip traces on Cu crystal surface (AFM, C. Coupeau)

Crystallographic slip and dislocations

Energy of linear-elastic dislocations

• All segment pairs interact through elastic field: $O(N^2)!$ • Self-energy of segments divergent logarithmically! el Ortiz

The line-tension approximation

• Approximate: $E \propto L!$

(Humphreys and Hirsch '70)

Dislocation motion through random obstacle array (Foreman, A.J.E., Makin, M.J., *Phil. Mag.*, **14** (1966) 911)

• Hardening: $\tau_c \sim c^{1/2} \gamma^{1/2}$, where: $c \equiv$ obstacle density, $\gamma \equiv$ slip strain

Line tension predicts observed scaling!

Why does line tension work?

- The problem: To determine the low-energy configurations of linear-elastic dislocations
- The model: Discrete dislocations on discrete lattices interacting through discrete Green's functions (well-defined segment self-energies!)
- The results:
 - The asymptotic behavior of the stored energy in the dilute limit (in the sense of Γ-convergence) is given by the line-tension approximation (long-range interactions between dislocation segments can be neglected in the limit!)
 - ii. Kinetic Montecarlo solver based on the limiting energy

iii. Application dislocation junctions

Lattice cell complexes

Elementary dislocation loops

- Shown dislocation loops, their symmetry-group orbits and their translates form a basis for all closed discrete dislocation loops
- There is an elementary loop per atomic bond (1-cell) of lattice

- Atomic bonds (1-cells) of bcc lattice
- Bonds define 7 Bravais lattices (4 diagonal + 3 cubic atomic bonds)

7 types of elementary loops!

Elementary dislocation loops

bcc dislocation loop basis

Elementary dislocation segments

- Elementary dislocation loops can further be decomposed into elementary dislocation segments
- There is an elementary segment per face (2-cell) of lattice
- Face (2-cell) basis for bcc lattice
- Faces define 12 Bravais lattices

12 types of elementary segments!

Discrete dislocation densities

- Discrete dislocation density α :
 - Assign Burgers vectors to elementary loops
 - Add up algebraically all 'loaded' loops

Discrete dislocation densities

Complex discrete dislocation line generated through a sequences of flips

Discrete dislocations – Elastic energy

• Elastic energy: $E(\alpha) = \frac{1}{2} \sum_{i} \sum_{j} \langle \Gamma(x_j - x_i) b_i, b_j \rangle$

interaction energy between pair of elementary dislocation segments

- Kernel Γ follows from lattice force constants
- For large |r|, $\Gamma(r) \sim |r|^{2-n}$, $n \ge 3$; $\log |r|$, n = 2
 - Long-range elastic interactions: $O(N^2)!$

Dislocation densities are dilute

- Dislocation densities in plastically deformed crystals are fairly dilute, even at saturation
- Exploit this feature to simplify elastic energy!

Dislocation densities are dilute

- Initial dislocation density
 ~ 10¹⁰ cm⁻²
- Saturation dislocation density ~ 25 x 10¹⁰ cm⁻²
- Initial mean distance between dislocations ~ 100 nm (278 lattice constants)
- Mean distance between dislocations at saturation
 ~ 20 nm (56 lattice constants)
- Investigate *dilute limit*!

Total dislocation density vs. applied stress in single-crystal and polycrystalline copper in the deformation range of $\epsilon \leq 0.4$

D. Breuer, P. Klimanek and W. Pantleon, *J. Appl. Cryst.*, **33** (2000) 1284-1294.

Toy example – Square lattice

Screw-dislocation bundle

Square lattice complex

• Discrete dislocations (2-forms over C):

$$\mathcal{D}^{2}(C;\mathbb{R}) \equiv \{\alpha = \sum_{r \in a\mathbb{Z}^{2}} b_{r} \delta_{r}, \ b_{r} \in \mathbb{R}\}\$$

Coboundary operator (div): $d\alpha = \sum_{r \in a\mathbb{Z}^2} b_r = 0$ Michael Ortiz ICIAM11

Toy example – Square lattice

- Dislocation dipole: $d\alpha = \sum_{r \in a\mathbb{Z}^2} b_r = b b = 0$
- If $d\alpha = 0 \Rightarrow \alpha$ linear combination of elementary dipoles
- Discrete Helmholtz decomposition theorem!

The dilute limit – Scheme I

Sequence of increasingly dilute quadrupoles

- Weak limit: $\langle \alpha_h, \varphi \rangle \to 0$, \forall test functions $\varphi \Rightarrow \alpha_h \to 0$!
- All dislocations 'go off' to infinity in the limit!

The dilute limit – Scheme II

Sequence of increasingly dilute quadrupoles

• Lattice refinement $\Rightarrow C_h$, $a_h = \epsilon_h a$, $\epsilon_h = 2^{-h}$, $h \in \mathbb{N}$

• Identify $\alpha_0 \sim \alpha_1 \sim \alpha_2 \dots \Rightarrow$ dilute dislocation!

Square lattice – Dilute dislocations

Sequence of increasingly dilute quadrupoles

- Space of DDDs: $X=\{\alpha=\sum_{r\in a\mathbb{Q}^2}b_r\delta_r,\ \|\alpha\|<+\infty\}$ Inner product: $\langle\alpha',\alpha''\rangle=\sum_{r\in a\mathbb{Q}^2}b_r'b_r''$
- Coboundary operator: $d \alpha = \sum_{r \in a \mathbb{Q}^2} b_r$

Michael Ortiz ICIAM11

J.R. Munkres, *Elements of Algebraic Topology*, Perseus (1984)

The dilute limit – Scheme II

Sequence of increasingly dilute dislocation loops

- Lattice refinement $\Rightarrow C_h$, $a_h = \epsilon_h a$, $\epsilon_h = 2^{-h}$, $h \in \mathbb{N}$
- Identify $\alpha_0 \sim \alpha_1 \sim \alpha_2 \ldots \Rightarrow$ dilute dislocation!

The dilute limit - Scheme II

Segment refinement for cubic lattice

The dilute limit – Scheme II

Sequence of increasingly *dilute* quadrupoles

For every dilute dislocation density (DDD),
 there is a sufficiently fine lattice that carries it

The space of DDDs $\sim l^2$

The dilute limit – Line tension

- Refinement generates a sequence of energies $E_h(\alpha)$
- Expect $E_h(\alpha)$ to diverge as $\epsilon_h^{2-n} \log \epsilon_h^{-1}$
- Example: dipole, $E_h \sim \frac{\mu b^2}{2\pi} \log \epsilon_h^{-1}$

• Scaled energy:
$$F_h(\alpha) = \frac{1}{\epsilon_h^{2-n} \log \epsilon_h^{-1}} E_h(\alpha)$$

Thm Γ - $\lim_{h\to\infty} F_h = \sum_r \langle Kb_r, b_r \rangle$ (wrt weak convergence) prelogarithmic energy factor

No long-range interactions in limit

Line tension hichael Ortiz ICIAM11

Example – Graphene quadrupole

M.P. Ariza, M. Ortiz and R. Serrano, Int. J. Fracture (2010) DOI 10.1007/s10704-010-9527-0

Line tension – Dislocation junctions

- a) Dislocation lines on planes a and b collide at A.
- b) Junction bounded by two 3-nodes B and C is formed.

Network of ½<111> screw dislocations forming <001> screw junctions

Atomistic simulations of Bulatov and Cai (2002)

V.V. Bulatov and W. Cai, *PRL*, **89** (2002) 115501. H. Matsui and H. Kimura, *Mater. Sci. Eng.*, **24** (1976) 247.

Kinetic Monte Carlo implementation

Energy-minimizing junction configuration

Snapshots of kMC calculation of energy minimizing configuration of junction, using line-tension approximation

Energy-minimizing junction configuration

Snapshots of kMC calculation of energy minimizing configuration of junction, using line-tension approximation

Energy-minimizing junction configuration

Atomistic simulations of Bulatov and Cai (2002)

Energy-minimizing configuration of junction, computed using line-tension approximation

Concluding remarks

- The computation of the elastic energy is greatly simplified in the dilute limit: No long-range interactions, *line tension*!
- Dilute discrete dislocation models are wellsuited for kMC implementation: Tables of segments, elementary loops, flips...
- Approach advantageous with respect to full $O(N^2)$ elastic-energy calculations, e.g., for simulations of dislocation dynamics and forest hardening
- Caveat: Not clear mathematically that linetension approximation can be applied in the presence of kinetics, time-evolution...