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The Genesis of the program: Mathematicians and 
engineers puzzle over microplasticity… 

? 
? 

? ? 

? 

? 

? 

? 

? 

? 

? 
? 

? 



Michael Ortiz 
HIM 05/15 

Lattice  
defects 

Dislocation  
dynamics 

Subgrain 
structures 

length 

tim
e 

mm nm µm 

m
s 

µs
 

ns
 

Polycrystals 

Application 

Foundational theory:  
Atomistic models (QM, MD, SM…) 

The framework: Multiscale physics 

Objectives: Increase fidelity of 
material models, reduce  
empiricism and uncertainty 
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Copper single crystal 
(Mughrabi, Phil. Mag. 23, 869, 1971) 

 

The question: Evolving microstructures 

90% cold-rolled Ni (Hansen, Huang and Hughes,  
Mat. Sci. Engin. A 317, 3, 2001) 

 

Copper single crystal 
(Mughrabi, Phil. Mag. 23, 869, 1971) 

 

Copper single crystal 
(Mughrabi, Phil. Mag. 23, 869, 1971) 
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The promise: Nonlinear analysis 

Can analysis shed light on the 
experimental record? (e.g., can some of 

the observed microstructures be 
understood as energy minimizers?) 

 
Can analysis inform modeling and 

simulation? (e.g., homogeneization, 
multiscale modeling, relaxation, 

acceleration…) 
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Ten Years Later… 

The well-understood setting:  
Rate-independent, proportional loading 

and local behavior (deformation theory of 
plasticity + relaxation) 

 
Still open: 

Rate-dependent, non-proportional loading 
and non-local or localized behavior  
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Crystal plasticity – Linearized kinematics 
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Crystal plasticity – Deformation theory 

minimize pointwise! 

1A. Mielke and M. Ortiz, ESAIM COCV, 14 (2008) 494. 



Michael Ortiz 
HIM 05/15 

Crystal plasticity – Deformation theory 
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Crystal plasticity – Non-convexity1 

1M. Ortiz and E. A. Repetto, JMPS, 47(2) 1999, p. 397. 
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Crystal plasticity – Relaxation1 

(Crone and Shield, JMPS, 2002) 

(Rice, Mech. Mat., 1987) 

ideal plasticity slip-line energy 

laminates 

1S. Conti and M. Ortiz, ARMA, 176 (2005), pp. 103–147 
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Crystal plasticity – Lamellar structures 
Dislocation walls 

Lamellar dislocation structure 
in 90% cold-rolled Ta 

(DA Hughes and N Hansen, Acta Materialia, 
44 (1) 1997, pp. 105-112) 

Dislocation walls 

Lamellar structure 
in shocked Ta 

(MA Meyers et al.,  
Metall. Mater. Trans., 

26 (10) 1995, pp. 2493-2501) 

Lamellar dislocation structures at large strains 
S. Conti, G. Dolzmann and C. Kreisbeck, Math. Models 

Methods Appl. Sci., 23(11) (2013) 2111. 
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Polycrystals – Concurrent multiscale (C3) 

nodal 
forces 

nodal 
displacements 

average 
stress 

average 
deformation 

local 
deformation 

local 
stress 

Problem: Too slow! 
Need to accelerate! 



Michael Ortiz 
HIM 05/15 

Acceleration: Phase-space interpolation 

RVE problem 

• Simplicial interpolation in high-dimensional spaces1 

• One single RVE calculation per boundary crossing 
• Speed-up = #steps/simplex @ constant accuracy 

1Chien, M.J. and Kuh, E., IEEE Transactions, 1978; 25(11):938–940. 
Klusemann, B. and Ortiz, M., IJNME, 10.1002/nme.4887, 2015. 
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Acceleration: Phase-space interpolation 
• Dynamic extension of tensile 

neo-Hookean specimen 
• Explicit Newmark integration 
• Hexahedral finite elements 
• Quadratic: 𝑊𝑊 𝐹𝐹 → 𝑊𝑊ℎ 𝐹𝐹   

Klusemann, B. and Ortiz, M., IJNME, 10.1002/nme.4887, 2015. 
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Ten Years Later… 

The well-understood setting:  
Rate-independent, proportional loading 

and local behavior (deformation theory of 
plasticity + relaxation) 

 
Still open: 

Rate-dependent, non-proportional loading 
and non-local behavior  
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Pitfalls 

‘Standard program’ may fail due to: 
 

Non-proportional loading (unloading, cycling 
loading, change of loading path direction) leading 

to microstructure evolution 
 

Departures from volume scaling (size effect, 
domain dependence, localization) leading to 
failure of homogeneization and relaxation 
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Crystal plasticity – Scaling laws 

Classical scaling laws of crystal plasticity 

Taylor scaling 
(SJ Basinski and ZS Basinski, 

Dislocations in Solids, 
FRN Nabarro (ed.)  

North-Holland, 1979.) 

Hall-Petch scaling 
(NJ Petch, 

J. Iron and Steel Inst., 
174, 1953, pp. 25-28.) 

Taylor hardening 
(RJ Asaro, 

Adv. Appl. Mech., 
23, 1983, p. 1.) 
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Crystal plasticity – Effect of boundaries 

LiF plate impact experiment. 
Dislocation pile-ups at surfaces  

and grain boundaries  
(G Meir and RJ Clifton, J. Appl. Phys.,  

59 (1) 1986, pp. 124-148) 
 

Dislocation 
pile ups 

Dislocation pile-up 
at Ti grain boundary 

(I. Robertson) 

Dislocation pile-ups  
at grain boundaries, surfaces 
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Crystal plasticity – Size effect 

X1 

X2 

x1 

x2 

Die Exit 

Shear Plane 
ϕ 

Die Entry 
Equal Channel  

Angular 
Extrusion 
process 

(Beyerlein, Lebensohn  
and Tome, LANL, 2003) 

Route C Route A 

Increasing deform
ation 

Evolution of dislocation structures in 
Cu specimen. Lamellar width: 
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Crystal plasticity – Size effect 

Pure nickel cold rolled to 90% 
Hansen et al. Mat. Sci. Engin. 

A317 (2001). 

Lamellar width and 
misorientation angle as a 
function of deformatation 

Hansen et al. Mat. Sci. Engin. 
A317 (2001). 

Scaling of lamellar width and 
misorientation angle with deformation 
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Non-local microplasticity 

Scaling laws such as Hall-Petch suggest the 
existence of an intrinsic material length scale 

 
Modeling assumption: Account for dislocation 
self-energy using a line-tension approximation 

 
The resulting deformation-theoretical energy is 

non-local (specifically, depends on 𝛻𝛻𝛻𝛻) 
 

Intrinsic length-scale: Burgers vector 
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Crystal plasticity – Linearized kinematics 



Michael Ortiz 
HIM 05/15 

Crystal plasticity – Optimal scaling 

• Upper bounds determined by construction 
• Lower bounds: Rigidity estimates, ansatz-free 

lower bound inequalities (Kohn and Müller ’92, 
’94; Conti ’00) 

S. Conti and M. Ortiz, ARMA, 176 (2005), pp. 103–147 
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Optimal scaling – Laminate construction 

parabolic hardening + 
Hall-Petch scaling 

dislocation walls 
boundary layer 

grain 

S. Conti and M. Ortiz, ARMA, 176 (2005), pp. 103–147 
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Optimal scaling – Branching construction 

boundary pile-up 

S. Conti and M. Ortiz, ARMA, 176 (2005), pp. 103–147 
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Optimal scaling – Microstructures 

LiF impact 
(Meir and Clifton´86) 

Laminate Branching Shocked Ta 
(Meyers et al ´95) 

Dislocation structures corresponding to the  
lamination and branching constructions 

S. Conti and M. Ortiz, ARMA, 176 (2005), pp. 103–147 
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Optimal scaling – Phase diagram 

 Elastic 
 

Rigid 
 

Lamellar Branching 

T = dislocation energy 
G = shear modulus 
γ = deformation 
b = Burgers vector 
d = grain size  
μ = GB strength 

S. Conti and M. Ortiz, ARMA, 176 (2005), pp. 103–147 
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Polycrystals – Concurrent multiscale (C3) 

nodal 
forces 

nodal 
displacements 

average 
stress 

average 
deformation 

local 
deformation 

local 
stress 

Problem: Relaxation 
is domain dependent! 
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Pitfalls 

‘Standard program’ mail fail due to: 
 

Non-proportional loading (unloading, cycling 
loading, change of loading path direction) leading 

to microstructure evolution 
 

Departures from volume scaling (size effect, 
domain dependence, localization) leading to 
failure of homogeneization and relaxation 
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Localization – Fracture scaling 
brittle ductile 

(Courtesy NSW HSC online) 

Fracture surface in SA333 steel, 
room temp., dε/dt=3×10-3s-1 
(S.V. Kamata, M. Srinivasa and P.R.  
Rao, Mater. Sci. Engr. A, 528 (2011)  
4141–4146) 
 

• Ductile fracture in metals 
occurs by void nucleation, 
growth and coalescence  

• Fractography of ductile-
fracture surfaces exhibits 
profuse dimpling, vestige 
of microvoids 

• Ductile fracture entails 
large amounts of plastic 
deformation (vs. surface 
energy) and dissipation. 
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Localization – Fracture scaling 

• Fracture energy scales with 
crack area: 𝐸𝐸 ~ 𝐿𝐿2 

• A number of ASTM 
engineering standards are 
in place to characterize 
ductile fracture properties 
(J-testing, Charpy test) 

• In general, the specific 
fracture energy for ductile 
fracture is greatly in 
excess of that required for 
brittle fracture… 

Charpy energy of A508 steel2  

Void sheet in copper disk1 

1Heller, A., Science & Technology,  
LLNL, pp. 13-20, July/August, 2002 

2Tanguy et al., Eng. Frac. Mechanics, 2005  
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Naïve model: Local plasticity 

Ti 

Eleiche & Campbell (1974) 
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Naïve model: Local plasticity 

• Energies with sublinear growth relax to 0. 
• For hardening exponents in the range of 

experimental observation, local plasticity yields 
no useful information regarding ductile fracture 
properties of materials! 

• Need additional physics, structure… 
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Strain-gradient plasticity 

W. Nix & H. Gao (1998) 

N. Fleck et al. (1993) 

• The yield stress of metals is 
observed to increase in the 
presence of strain gradients  

• Deformation theory of strain-
gradient plasticity: 

• Strain-gradient effects may be 
expected to oppose localization 

• Question: Can fracture scaling 
be understood as the result of 
strain-gradient plasticity? 
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Strain-gradient plasticity 

Fence structure  
in copper 

(J.W. Steeds, Proc. Roy. Soc. London,  
A292, 1966, p. 343) 

Dislocation wall 
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Optimal scaling – Ductile fracture 
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Optimal scaling – Ductile fracture 

Fracture! 

L. Fokoua, S. Conti and M. Ortiz, ARMA, 212 (2014) pp. 331-357. 
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Optimal scaling – Upper bound 

Heller, A., Science & Technology Review Magazine,  
LLNL, pp. 13-20, July/August, 2002  

void 
sheet 

void 
sheet 

L. Fokoua, S. Conti and M. Ortiz, ARMA, 212 (2014) pp. 331-357. 
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void growth! 

Optimal scaling – Upper bound 

void 

fracture! 
L. Fokoua, S. Conti and M. Ortiz, ARMA, 212 (2014) pp. 331-357. 
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Numerical implementation 
Material-point erosion 

• 𝜖𝜖-neighborhood construction: 
Choose ℎ ≪ 𝜖𝜖 ≪ 𝐿𝐿 

• Erode material point if 
  

 
 

●  For linear elasticity, proof of Γ-
convergence to Griffith fracture 

  
 

 

 𝜖𝜖-neighborhood  
construction 

1Schmidt, B., et al., SIAM Multi. Model., 7 (2009) 1237. 
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Application to hypervelocity impact 

Impactor 

Hypervelocity impact (5.7 Km/s) of 
0.96 mm thick aluminum plates by 5.5 

mg nylon 6/6 cylinders (Caltech)   

5 μs 10 μs 

Pandolfi, A., Li, B. & Ortiz, M. , Int. J. Fract., 184 (2013) 3. 
Pandolfi, A. & Ortiz, M. , IJNME, 92 (2012) 694. 

Li, B., Stalzer, M. & Ortiz, M., IJNME, 100 (2014) 40. 
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Application to hypervelocity impact 

Impactor 

Hypervelocity impact (5.7 Km/s) of 
0.96 mm thick aluminum plates by 5.5 

mg nylon 6/6 cylinders (Caltech)   

5 μs 10 μs 

Pandolfi, A., Li, B. & Ortiz, M. , Int. J. Fract., 184 (2013) 3. 
Pandolfi, A. & Ortiz, M. , IJNME, 92 (2012) 694. 

Li, B., Stalzer, M. & Ortiz, M., IJNME, 100 (2014) 40. 



Michael Ortiz 
HIM 05/15 

Fracture of polymers 

T. Reppel, T. Dally, T. and K. Weinberg, 
Technische Mechanik, 33 (2012) 19-33. 

Crazing in 800 nm polystyrene  
thin film (C. K. Desai et al., 2011) 

• Polymers undergo 
entropic elasticity and 
damage due to chain 
stretching and failure 

• Polymers fracture by 
means of the crazing 
mechanism consisting of 
fibril nucleation, 
stretching and failure 

• The free energy density 
of polymers saturates in 
tension once the majority 
of chains are failed: p=0! 

• Crazing mechanism is 
incompatible with strain-
gradient elasticity… 
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Fracture of polymers - Topology 

fibrils 

Formation of fibers from solid polymer 
entails a topological transition 

S. Heyden el al., JMPS, 74 (2015) 175. 
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Fracture of polymers 

S. Conti and M. Ortiz, ARMA (submitted for publication). 
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Optimal scaling – Upper bound 

crazing 

craze 
sheet 

Crazing in 800 nm polystyrene  
thin film (C. K. Desai et al., 2011) 

S. Conti and M. Ortiz, ARMA (submitted for publication). 
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Optimal scaling – Upper bound 

S. Conti and M. Ortiz, ARMA (submitted for publication). 



Michael Ortiz 
HIM 05/15 

Taylor-anvil tests on polyurea 

Shot #854:  
R0 = 6.3075 mm,  
L0 = 27.6897 mm,  

v = 332 m/s 
 

Experiments conducted by W. Mock, Jr. and J. Drotar, 
at the Naval Surface Warfare Center (Dahlgren Division) 

Research Gas Gun Facility, Dahlgren, VA 22448-5100, USA 

S. Heyden el al., JMPS, 74 (2015) 175. 
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Experiments and simulations 

Shot #861:  
R0 = 6.3039 mm,  
L0 = 27.1698 mm,  

v = 424 m/s 
 

Experiments conducted by W. Mock, Jr. and J. Drotar, 
at the Naval Surface Warfare Center (Dahlgren Division) 

Research Gas Gun Facility, Dahlgren, VA 22448-5100, USA 

S. Heyden el al., JMPS, 74 (2015) 175. 
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Concluding remarks 

Can analysis shed light on the 
experimental record? (e.g., can some of 

the observed microstructures be 
understood as energy minimizers?) 

 
Can analysis inform modeling and 

simulation? (e.g., homogeneization, 
multiscale modeling, relaxation, 

acceleration…) 
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Ten Years Later… 

The well-understood setting:  
Rate-independent, proportional loading 

and local behavior (deformation theory of 
plasticity + relaxation) 

 
Still open: 

Rate-dependent, non-proportional loading 
and non-local or localized behavior  
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The Apotheosis of the program: Mathematicians and 
engineers still puzzle over microplasticity… 
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Thanks! 
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