

universität**bonn**

Data-Driven Computational Mechanics (II)

Michael Ortiz California Institute of Technology and Rheinische Friedrich-Wilhelms Universität Bonn

> COMPLAS 2017 Barcelona, September 5, 2017

Data Science, Big Data... What's in it for us?

Data Science, Big Data... What's in it for us?

- Data Science is the extraction of 'knowledge' from large volumes of unstructured data¹
- Data science requires sorting through big-data sets and extracting 'insights' from these data
- Data science uses data management, statistics and machine learning to derive mathematical models for subsequent use in decision making
- Data science influences (non-STEM!) fields such as marketing, advertising, finance, social sciences, security, policy, medical informatics...
- But... What's in it for us?

Where is Data Science needed in Computational Mechanics?

Anatomy of a field-theoretical STEM problem:

i) Kinematics + Dirichlet:

$$egin{aligned} \epsilon(oldsymbol{u}) &= 1/2(
abla oldsymbol{u} +
abla oldsymbol{u}^T) \ oldsymbol{u} &= ar{oldsymbol{u}}, \quad ext{on } \partial \Omega_D \end{aligned}$$

ii) Equilibrium + Neumann:

$$\left. \begin{array}{l} \operatorname{div} \sigma + f = 0 \\ \sigma n = \overline{t}, \ \ \operatorname{on} \partial \Omega_N \end{array} \right|$$

iii) Material law:
$$\sigma(x) = \sigmaig(\epsilon(x)ig)$$

Where is Data Science needed in Computational Mechanics?

Anatomy of a field-theoretical STEM problem:

Universal laws!
(Newton's laws,
Schrodinger's eq.,
Maxwell's eqs.,
Einstein's eqs...)
Exactly known!
Uncertainty-free!
(epistemic)

i) Kinematics + Dirichlet:

$$egin{aligned} \epsilon(u) &= 1/2(
abla u +
abla u^T) \ u &= ar{u}, \quad ext{on } \partial \Omega_D \end{aligned}$$

ii) Equilibrium + Neumann:

$$\begin{array}{l} \operatorname{div} \sigma + f = 0 \\ \sigma n = \overline{t}, \quad \operatorname{on} \partial \Omega_N \end{array} \right]$$

iii) Material law:
$$\sigma(x) = \sigmaig(\epsilon(x)ig)$$

Where is Data Science needed in Computational Mechanics?

Anatomy of a field-theoretical STEM problem:

i) Kinematics + Dirichlet:

$$egin{aligned} \epsilon(oldsymbol{u}) &= 1/2(
abla oldsymbol{u} +
abla oldsymbol{u}^T) \ oldsymbol{u} &= ar{oldsymbol{u}}, \quad ext{on } \partial \Omega_D \end{aligned}$$

ii) Equilibrium + Neumann:

$$\begin{array}{l} \operatorname{div} \sigma + f = 0 \\ \sigma n = \overline{t}, \ \ \operatorname{on} \partial \Omega_N \end{array} \Big]$$

iii) Material law:
$$\sigma(x) = \sigmaig(\epsilon(x)ig)$$

Unknown! Epistemic uncertainty!

Data Science and material modeling

- Need to generate (epistemic) 'knowledge' about material behavior to close BV problems...
- Traditional modeling paradigm: Fit data (a.k.a. regression, machine learning, model reduction, central manifolds...), use calibrated empirical models in BV problems

Data Science and the classical Modeling & Simulation paradigm

Material data

Modeling funnel

Material model

funnel Simulation

Manufactured data

Data Science and material modeling

- Need to generate (epistemic) 'knowledge' about material behavior to close BV problems...
- Traditional modeling paradigm: Fit data (a.k.a. regression, machine learning, model reduction, central manifolds...), use calibrated empirical models in BV problems
- But: We live in a data-rich world (full-field diagnostics, data mining from first principles...)
- Data-Driven paradigm: Use material data directly in BV (no fitting by any name, no loss of information, no broken pipe between material data and manufactured data)
- How? (math talks, nonsense walks...)

Elementary example: Bar and spring

- Phase space: $\{(\epsilon, \sigma)\} \equiv Z$
- Compatibility + equilibrium:

$$\sigma A = k(u_0 - \epsilon L)$$

Constraint set:

$$E = \{ \sigma A = k(u_0 - \epsilon L) \}$$

- Material data set: $D \subset Z$
- Classical solution set: $D \cap E$

Elementary example: Bar and spring

No classical solutions!

$$D \cap E = \emptyset$$

The general Data-Driven (DD) problem

- The Data-Driven problem¹: Given,
 D = {material data},
 E = {compatibility + equilibrium},
 Find: argmin{d(z,D), z ∈ E}
- The aim Data-Driven analysis is to find the compatible and equilibrated solution that is closest to the material data set
- No material modeling, no data fitting, no V&V...
- Raw material data is used (unprocessed) in calculations (the facts, nothing but the facts...)
- Are Data-Driven problems well-posed?

Data-Driven elasticity

Definition (Phase space)

$$Z = \{ \epsilon \in L^2(\Omega; \mathbb{R}_{\text{sym}}^{n \times n}) \} \times \{ \sigma \in L^2(\Omega; \mathbb{R}_{\text{sym}}^{n \times n}) \}.$$

Definition (Constraint set)

i) Compatibility,

$$\epsilon = 1/2(\nabla u + \nabla u^T),$$

 $u = g, \text{ on } \Gamma_D.$

ii) Equilibrium,

$$\operatorname{div}\sigma + f = 0,$$

$$\sigma\nu = h, \quad \text{on } \Gamma_N.$$

Definition (Material data set)

Hooke's law (linear) $D = \{ \sigma = \mathbb{C}\epsilon \}.$

Hooke's law (monotone) $D = \{\sigma = \sigma(\epsilon)\}.$

Michael Ortiz COMPLAS17

Data-Driven elasticity – Well-posedness

Theorem (Existence and uniqueness)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded, Lipschitz. Let $\overline{\Gamma}_D \cap \overline{\Gamma}_N = \partial \Omega$, $\mathcal{H}^{n-1}(\overline{\Gamma}_N \setminus \Gamma_N) = \mathcal{H}^{n-1}(\overline{\Gamma}_D \setminus \Gamma_D) = 0$ and $\Gamma_D \neq \emptyset$. Assume: i) $\mathbb{C} \in L(\mathbb{R}^{n \times n}_{\mathrm{sym}})$, $\mathbb{C}^T = \mathbb{C}$, $\mathbb{C} > 0$.

ii)
$$f \in L^2(\Omega; \mathbb{R}^n)$$
, $g \in H^{1/2}(\partial\Omega; \mathbb{R}^n)$, $h \in H^{-1/2}(\partial\Omega; \mathbb{R}^n)$.

Then, the Data-Driven problem

$$\min\{d(z,D), z \in E\}$$

has a unique solution. Moreover, the Data-Driven solution satisfies

$$\sigma = \mathbb{C}\epsilon$$
.

Remark: Theorem extends to general monotone functions

Michael Ortiz COMPLAS17

Data-Driven elasticity – Convergence with respect to the data set

Theorem

Suppose D monotone graph, $\rho_h \downarrow 0$ and $t_h \downarrow 0$ such that:

- i) Fine approximation: $d(\xi, D_h) \leq \rho_h$, $\forall \xi \in D$.
- ii) Uniform approximation: $d(\xi, D) \leq t_h$, $\forall \xi \in D_h$.

Then, $(\epsilon_h, \sigma_h) \to (\epsilon, \sigma)$.

Data-Driven elasticity - Relaxation

Theorem (DD Relaxation)

$$D \equiv \{ \text{double well} \} \Rightarrow \{ (\bar{\epsilon}, \bar{\sigma}) \} = \overline{D}.$$

• Constraint set:

i)
$$\sigma(x) = \bar{\sigma}A$$
.

ii)
$$\bar{\epsilon} = \int \epsilon(x) dx$$
.

Data set (double well):

Michael Ortiz COMPLAS17

Data-Driven Problems

- Data-driven problems represent a complete reformulation of the classical problems of mechanics (data + differential constraints)
- Data-driven problems subsume—and are strictly larger than—classical problems
- Data-driven analysis leads to notions of convergence of data sets that imply convergence of solutions.
- Data-driven relaxation (micro-macro) is fundamentally different from classical relaxation of energy functions!

Implementation: Trusses

Implementation: Trusses

- Degrees of freedom: $(u_i)_{i=1}^n$
- Phase space: $\{(\epsilon_e, \sigma_e)_{e=1}^m\} \equiv X$, with norm

$$|(\boldsymbol{\epsilon}, \boldsymbol{\sigma})| = \sum_{e=1}^{m} w_e \left(\mathbb{C} \epsilon_e^2 + \mathbb{C}^{-1} \sigma_e^2 \right)$$

- ullet Constraint set: $E = \{ \epsilon = Bu, \ B^T \sigma = f \}$
- Data-driven problem:

$$\min_{(\boldsymbol{\epsilon}^*, \boldsymbol{\sigma}^*) \in D} \left(\min_{(\boldsymbol{\epsilon}, \boldsymbol{\sigma}) \in E} |(\boldsymbol{\epsilon} - \boldsymbol{\epsilon}^*, \boldsymbol{\sigma} - \boldsymbol{\sigma}^*)|^2 \right)$$
Standard linear truss problem

Search over material-data set

Implementation: Staggered solver

i) Mechanical step: $\min_{(\epsilon,\sigma)\in E}|(\epsilon-\epsilon^{*(k)},\sigma-\sigma^{*(k)})|^2$

ii) Data association step:

Truss example: Convergence of solver

Material-data sets of increasing size and decreasing scatter

Convergence, local data assignment iteration

COMPLAS17

Truss example: Convergence wrt data

Material-data sets of increasing size and decreasing scatter

Convergence
with respect to sample size
(with initial Gaussian noise)

Michael Ort

Michael Ortiz COMPLAS17

Distance-based DD solvers

- Distance-based DD solvers exhibit good convergence wrt to material data associations
- Distance-based DD solvers exhibit good convergence wrt uniformly converging data
- But distance-based DD solvers can be overly sensitive to *outliers* in the data (non-uniform data convergence)
- If outliers cannot be ruled out, distance-based DD solvers need to be generalized and extended...

- Distance-based DD suffers from a tyranny of the outliers (non-uniform convergence)
- Eliminate by 'polling' the data set more widely (cluster analysis, max-ent inference...)
- 'Thermalize' distance to material set $D = (z_1, ..., z_N)$:

$$d_{\beta}(z, D) = -\frac{1}{\beta} \log \left(\sum_{i=1}^{N} e^{-(\beta/2)d^{2}(z, z_{i})} \right)$$

- Max-ent DD problem¹: $argmin\{d_{\beta}(z,D), z \in E\}$
- Solve by simulated annealing!

Truss example: Convergence wrt data

Material-data sets of increasing size and decreasing scatter

Convergence
with respect to sample size
(with Gaussian noise)

Michael Ortiz
COMPLAS17

Extension to dynamics

Constraint set: Time-discrete eqs. of motion

Michael Ortiz COMPLAS17

Concluding remarks

- Data-driven computing is emerging as an alternative paradigm to model-based computing
- Data-driven computing can reliably supply solutions from raw material data sets
- Data-driven computing is likely to be a growth area in an increasingly data-rich world
- Numerous outstanding questions:
 - Phase-space coverage, importance sampling
 - Building goal-oriented material data bases from experiment¹ and from first-principles calculations
 - Inelasticity, path dependence...

Concluding remarks

