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Data Science, Big Data… 
What’s in it for us? 

http://olap.com/forget-big-data-lets-talk-about-all-data/ 
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Data Science, Big Data… 
What’s in it for us? 

• Data Science is the extraction of ‘knowledge’ 
from large volumes of unstructured data1 

• Data science requires sorting through big-data 
sets and extracting ‘insights’ from these data 

• Data science uses data management, statistics 
and machine learning to derive mathematical 
models for subsequent use in decision making 

• Data science influences (non-STEM!) fields such 
as marketing, advertising, finance, social 
sciences, security, policy, medical informatics… 

• But… What’s in it for us? 
1Dhar, V., Communications of the ACM, 56(12) (2013) p. 64.  
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Where is Data Science needed  
in Computational Mechanics? 
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Where is Data Science needed  
in Computational Mechanics? 

Universal laws! 
(Newton’s laws, 

Schrodinger’s eq., 
Maxwell’s eqs., 
Einstein’s eqs…) 
Exactly known! 

Uncertainty-free! 
(epistemic) 
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Where is Data Science needed  
in Computational Mechanics? 

Unknown! Epistemic uncertainty! 
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Data Science and material modeling 

• Need to generate (epistemic) ‘knowledge’ about 
material behavior to close BV problems… 

• Traditional modeling paradigm: Fit data (a.k.a. 
regression, machine learning, model reduction, 
central manifolds…), use calibrated empirical 
models in BV problems 
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Material data 

funnel 
Simulation 

Modeling 
funnel 

Material model 

Manufactured data 

Data Science and the classical  
Modeling & Simulation paradigm 

broken  
pipe! 
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Data Science and material modeling 

• But: We live in a data-rich world (full-field 
diagnostics, data mining from first principles…)  

• Data-Driven paradigm: Use material data 
directly in BV (no fitting by any name, no loss 
of information, no broken pipe between material 
data and manufactured data) 

• How? (math talks, nonsense walks…) 
 

• Need to generate (epistemic) ‘knowledge’ about 
material behavior to close BV problems… 

• Traditional modeling paradigm: Fit data (a.k.a. 
regression, machine learning, model reduction, 
central manifolds…), use calibrated empirical 
models in BV problems 
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Phase space 

Elementary example: Bar and spring 
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Phase space 

Elementary example: Bar and spring 
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The general Data-Driven (DD) problem 

• The aim Data-Driven analysis is to find the 
compatible and equilibrated solution that is 
closest to the material data set 

• No material modeling, no data fitting, no V&V… 
• Raw material data is used (unprocessed) in 

calculations (the facts, nothing but the facts…) 
• Are Data-Driven problems well-posed? 

• The Data-Driven problem1: Given, 
– D = {material data},  
– E = {compatibility + equilibrium},  

1T. Kirchdoerfer and M. Ortiz (2015) arXiv:1510.04232.  
1T. Kirchdoerfer and M. Ortiz, CMAME, 304 (2016) 81–101 
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Data-Driven elasticity 

𝜎𝜎 

𝜖𝜖 

S. Conti, S. Müller and M. Ortiz (2017) arXiv:1708:02880 
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Data-Driven elasticity – Well-posedness 

S. Conti, S. Müller and M. Ortiz (2017) arXiv:1708:02880 
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Data-Driven elasticity – Convergence 
with respect to the data set 

S. Conti, S. Müller and M. Ortiz (2017) arXiv:1708:02880 
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𝜇𝜇1 𝜇𝜇2 𝜖𝜖1 𝜖𝜖2 

𝜖𝜖 ̅

𝜎𝜎� 

Data-Driven elasticity - Relaxation 

S. Conti, S. Müller and M. Ortiz (2017) arXiv:1708:02880 
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Data-Driven Problems 

• Data-driven problems represent a complete 
reformulation of the classical problems of 
mechanics (data + differential constraints) 

• Data-driven problems subsume―and are 
strictly larger than―classical problems 

• Data-driven analysis leads to notions of 
convergence of data sets that imply 
convergence of solutions.  

• Data-driven relaxation (micro-macro) is 
fundamentally different from classical 
relaxation of energy functions! 
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Implementation: Trusses 
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Implementation: Trusses 

Standard linear truss problem 
Search over material-data set 



Michael Ortiz 
COMPLAS17 

Implementation: Staggered solver 
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Truss example: Convergence of solver 

Material-data sets 
of increasing size 

and decreasing scatter  

Convergence, 
local data assignment 

iteration 
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Truss example: Convergence wrt data 

Material-data sets 
of increasing size 

and decreasing scatter  

Convergence 
with respect to sample size 
(with initial Gaussian noise)  
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Distance-based DD solvers 

• Distance-based DD solvers exhibit good 
convergence wrt to material data associations 

• Distance-based DD solvers exhibit good 
convergence wrt uniformly converging data 

• But distance-based DD solvers can be overly 
sensitive to outliers in the data (non-uniform 
data convergence) 

• If outliers cannot be ruled out, distance-based 
DD solvers need to be generalized and 
extended… 
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Phase space 

Extension to noisy data sets 
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Phase space 

Extension to noisy data sets 

Outlier! 



Michael Ortiz 
COMPLAS17 

• Max-ent DD problem1:   

Extension to noisy data sets 

• Distance-based DD suffers from a tyranny of the 
outliers (non-uniform convergence) 

• Eliminate by ‘polling’ the data set more widely 
(cluster analysis, max-ent inference…) 

• ‘Thermalize’ distance to material set 𝐷𝐷 = (𝑧𝑧1, … , 𝑧𝑧𝑁𝑁): 

• Solve by simulated annealing! 

1T. Kirchdoerfer and M. Ortiz (2017) arXiv:1702.01574v2 



Michael Ortiz 
COMPLAS17 

Phase space 

Extension to noisy data sets 

Outlier! 
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Truss example: Convergence wrt data 

Material-data sets 
of increasing size 

and decreasing scatter  

Convergence 
with respect to sample size 

(with Gaussian noise)  
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(x–direction) 

Extension to dynamics 

1T. Kirchdoerfer and M. Ortiz (2017) arXiv:1702.01574v2 

• Constraint set: Time-discrete eqs. of motion 
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Concluding remarks 

• Data-driven computing is emerging as an 
alternative paradigm to model-based computing 

• Data-driven computing can reliably supply 
solutions from raw material data sets 

• Data-driven computing is likely to be a growth 
area in an increasingly data-rich world 

• Numerous outstanding questions: 
– Phase-space coverage, importance sampling 
– Building goal-oriented material data bases from 

experiment1 and from first-principles calculations 
– Inelasticity, path dependence… 

1A. Leygue et al. (2017) HAL Id: hal-01452494.  
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Concluding remarks 
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