An Overview of Variational Integrators

A. Lew, M. West Stanford University

J. Marsden, M. Ortiz

Caltech

Variational Integrators

- What?
 - Theory to generate space and time integrators
- □ Why?
 - Conservation properties
 - Linear and angular momenta, energy, symplecticity, *J*-and *L*-integrals... (Discrete Noether's theorem). Get the definition of the discrete conserved quantity as well.
 - Pervasive applications
 - Elasticity, Fluids, Electromagnetism, General Relativity, Collisions, dissipative systems
 - Get the "physics" right
 - Get key statistical quantities right even in the face of chaotic dynamics (e.g., temperature)
- How much?
- TO SOLON HATTING THE STATE OF T
- No extra cost than traditional approach
 - High-order, similar accuracy vs. cost, implicit/explicit ...

Biased References

- On Variational Integrators:
 - Veselov [1988]
 - ➤ Moser and Veselov [1991]
 - Marsden and Wedlandt [1997]
 - ➤ Kane, Marsden, Ortiz [1999]
 - ➤ Marsden and West [2001]
 - Lew, Marsden, Ortiz, West [2003]
 - Fetecau, Marsden, Ortiz, West [2003]
 - Lew, Marsden, Ortiz, West [2004]
- ☐ Closely related:
 - Gonzalez and Simo [1996]
 - Gonzalez [1996]
 - ➤ Simo, Tarmow and Wang [1992]

Outline

First, some illustrative examples

Then, the theory.....

Conservation Properties Example

Helicopter Blades

- Asynchronous Variational Integrators (AVI)
 - A possibly-different time step per element
 - Subcycling: T. Hughes, T, Belytschko, W. K. Liu, P. Smolinsky,....
- □ Classical test example: Armero and Romero[2001], Bottasso and Bauchau [2001]
- In Lew, Marsden, Ortiz and West [2004]

Rigid Case

Soft Case

Energy conservation

Energy behavior characteristic of Variational Integrators

EAN TO THE STATE OF THE STATE O

Accuracy

Convergence of AVIs proved in Lew, Marsden, Ortiz and West [2004].

Convergence behavior of AVI

Computing what matters

☐ Get statistical quantities right, such as temperature, even in the face of chaotic dynamics and errors in the computation of individual trajectories

ODE Example

- Compute the temperature, time averaged kinetic energy, of a system of interacting particles in the plane.
- System of 16 point masses, 4 x 4, in the plane joined by springs. The system starts from the regular configuration with random initial velocities.

Computing what matters

Average kinetic energy as a function of time and time step size for a 4th order non-symplectic Runge-Kutta and a 1st order variational integrator.

Computing what matters

Error due to the finite time averaging

VI4 is always better, and VI1 is better than RK4 for large time steps!

Temperature error as a function of computational cost comparison between a 1st(VI1) and 4th(VI4) order variational integrator and a 4th order non-symplectic Runge-Kutta (RK4). The three plots correspond to different averaging time lengths

Chaotic dynamics

■ Some caption here

Symplecticity

■ Some caption here

VI For Elastodynamics

☐ Lagrangian mechanics

Lagrangian density

$$\mathcal{L}(\varphi,\dot{\varphi}) = \frac{1}{2}\rho_0|\dot{\varphi}|^2 - W(\nabla_X\varphi)$$

Action

ion
$$S[\varphi] = \int_{B_0 \times (t_i, t_f)} \mathcal{L} \, dt \, \, dX$$

Hamilton's variational principle

$$\delta S = 0$$

Same formulation for Electromagnetism, Fluids, General Relativity, etc.

Variational Formulation

☐ Discrete Lagrangians

$$L_d^{K,j} \approx \int_{K,j} \mathcal{L} \, dt dX$$

☐ Discrete Action Sum

$$S_d = \sum_{K,j} L_d^{K,j}$$

Variational Formulation

☐ Discrete Variational Principle:

"The discrete motion renders the Discrete Action Sum stationary with respect to admissible spatial variations of the nodal trajectories"

More precisely,

Conservation Properties

Disc. Linear Momentum

$$S_{d}(\mathcal{X} + \mathbf{v}) = S_{d}(\mathcal{X})$$

$$\downarrow \downarrow$$

$$\sum_{\mathbf{x}_{i,a} \in \mathcal{X}} D_{i,a} S_{d}(\mathcal{X}) = 0$$

$$\downarrow \downarrow$$

DEL equations, N.B.C

$$-\sum_{\boldsymbol{x}_{i,a}\in\boldsymbol{\mathcal{X}_r}}D_{i,a}S_d = \sum_{\boldsymbol{x}_{i,a}\in\boldsymbol{\mathcal{X}_b}}D_{i,a}S_d$$

☐ Disc. Angular Momentum

This is the discrete Noether's theorem!

Number of Updates

Contour plot of log(number of updates) for each element after 150 revolutions

Local Energy Behavior

- □ A local energy balance equation is obtained as the Euler-Lagrange equation conjugate to the elemental time step.
- □ Local energy conservation and time-adaptivity

Examples: Collision

□Some remarks about the formulation

Example: Dissipative systems

- □ Lagrange-d'Alembert pple.
- ■Weak dissipative systems

Contained Detonation

The End

AVI in a nutshell

