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Outline

• The case for multiscale simulation
• The case for multiscale modeling
• The lengthscale hierarchy of polycrystalline 

metals
• The quasicontinuum method
• Phase-field dislocation dynamics
• Subgrid models of martensite
• Subgrid models of dislocation structures
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Machining – Experimental Validation

(Courtesy of IWH, Switzerland)

(Courtesy of Third Wave Systems Inc)
Chip Morphology Validation

(Marusich and Ortiz, IJNME ´95)

FE simulation
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Machining – Experimental Validation

AL7010

Courtesy of BAE Systems

Cutting Force Validation Residual Stress Validation

Al 7050

(Courtesy of Third Wave Systems Inc)

• General trends predicted, but discrepancies 
remain!



Michael Ortiz
GRC 07/04

Validation and Verification

• Fidelity of simulation codes is critically limited 
by uncertainties in engineering (empirical) 
material models

• Main sources of error and uncertainty
– Discretization errors (spatial + temporal)
– Uncertainties in data:

• Material properties
• Model geometry
• Loading and boundary conditions…

– Empiricism of constitutive models

• Need to reduce uncertainty in engineering 
constitutive models for codes to be predictive!
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Limitations of empirical models

• Conventional engineering plasticity models fail to 
predict earing in deep drawing

• Prediction of earing requires consideration of 
polycrystalline structure, texture development

Deep-drawn cup

Ears

Grain structure of polycrystalline W 
(Courtesy of Clyde Briant)
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Limitations of empirical models

• Conventional plasticity models fail to predict 
scaling, size effects.

Hall-Petch scaling
(NJ Petch,

J. Iron and Steel Inst.,
174, 1953, pp. 25-28.) Dislocation pile-up

at Ti grain boundary
(I. Robertson)

Lamellar structure
in shocked Ta

(MA Meyers et al´95)
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The case for multiscale computing

• Empirical models fail because they do not 
properly account for microstructure

• The empirical approach does not provide a 
systematic means of eliminating uncertainty 
from material models

• Instead, concurrent multiscale computing: 
– Model physics at first-principles level, fine lengthscales
– Compute on multiple lengthscales simultaneously
– Fully resolve the fine scales

• Bypasses the need to model at coarse 
lengthscales
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Metal plasticity - Multiscale modeling
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Multiscale computing - Feasibility

• Computing power is growing rapidly, but…

ASCI computing systems roadmap
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Multiscale computing – Feasibility

• Computing power is growing rapidly, but 
109 << 1023

Ta quadrupole
(T. Arias ´00)

FCC ductile fracture
(F.F. Abraham ´03)

Au nanoindentation
(Knap and Ortiz ´03)

(Courtesy F.F. Abraham)
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Multiscale computing – Feasibility

Polycrystalline W (Courtesy of C. Briant)

(A.M. Cuitiño and R. Radovitzky ´02)

Single-crystal
plasticity model

Grain-boundary
sliding model
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Multiscale computing – Feasibility

(A.M. Cuitiño and R. Radovitzky ´03)

Cold-rolled @ 42%
polycrystalline Ta

Pole
figureExperimental 

cold-rolled texture
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Multiscale computing – Feasibility

Coarse mesh
192 elmts/grain

Intermediate mesh
1536 elmts/grain

Fine mesh
12288 el/grain

(A.M. Cuitiño and R. Radovitzky ´03)

DNS of polycrystals: Convergence

• Numerical convergence extremely slow!
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Multiscale computing - Feasibility

• ~ 109 elements at our disposal (106

elements/processor x 1000 processors) 
• ~ 1000 elements/coordinate direction
• ~ 20 elements/grain/direction (8000 

elements/grain) 
• ~ 50 grains/direction (125K grains)
• ~ 2.5 mm specimen for 50 µm grains
• Not enough for complex engineering 

simulations!
• Subgrain scales still unresolved, need 

modeling!
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Metal plasticity - Multiscale modeling
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The case for multiscale modeling

• It is not possible to fully resolve material and 
deformation microstructures in complex 
engineering applications directly by brute force

• Instead, multiscale modeling: 
– Identify relevant structures and mechanisms at all 

lengthscales
– Bridge lengthscales by: 

• Building models of effective behavior (coarse 
graining)

• Computing material parameters from first principles 
(parameter passing)

• Approaches?
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Multiscale modeling - Approaches
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Multiscale modeling - Approaches
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Quasicontinuum - Reduction
Tadmor, Ortiz and Phillips,Phil. Mag. A, 76 (1996) 1529. 
Knap and Ortiz, J. Mech. Phys. Solids, 49 (2001) 1899.
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Quasicontinuum – Cluster sums

Merging of clusters near atomistic limit
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Quasicontinuum - Adaptivity

Longest-edge bisection
of tetrahedron (1,4,a,b)
along longest edge (a,b)
and of ring of tetrahedra

incident on (a,b)
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QC - Nanoindentation of [001] Au

• Nanoindentation of 
[001] Au, 2x2x1 
micrometers

• Spherical indenter, R=7 
and 70 nm

• Johnson EAM potential
• Total number of atoms 

~ 0.25 10^12
• Initial number of nodes 

~ 10,000
• Final number of nodes 

~ 100,000

Detail of initial computational mesh

(Knap and Ortiz, PRL 90 2002-226102)

(Movie)
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QC - Nanoindentation of [001] Au

7 nm indenter, depth = 0.92 nm
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QC - Nanoindentation of [001] Au

7 nm indenter, depth = 0.92 nm
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QC - Nanoindentation of [001] Au

70 nm indenter, depth = 0.75 nm
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QC - Nanoindentation of [001] Au

70 nm indenter, depth = 0.75 nm
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QC - Nanovoid cavitation in Al 

(Marian, Knap and Ortiz ´04)

Close-up of internal void

• 72x72x72 cell sample
• Initial radius R=2a 
• Ercolessi and Adams 

(Europhys. Lett. 26, 
583, 1994) EAM 
potential.

• Total number of atoms 
~16x106

• Initial number of nodes 
~ 34,000
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QC - Nanovoid cavitation in Al

Initial elastic 
regime, following 
the interatomic
potential’s shape

Initial elastic 
regime, following 
the interatomic
potential’s shape

1st yield point1st yield point

Hardening regime: 
dislocation locking

Hardening regime: 
dislocation locking

2nd yield point: possible material 
failure (under investigation)

2nd yield point: possible material 
failure (under investigation)
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QC - NanovoidNanovoid cavitationcavitation in Alin Al

α β

γ δ

δα
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DA
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βγ

Dislocation structures, first yield point
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QC - NanovoidNanovoid cavitationcavitation in Alin Al

Dislocation structures, hardening stage

Dislocation types:

A - Conventional
½〈110〉{111}

B - Anomalous
½〈110〉{001}
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QC QC -- NanovoidNanovoid cavitationcavitation in Alin Al

Dislocation structures, second yield point
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Unconfined plastic 
flow carried by 
conventional
½〈110〉{111}

dislocations
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Quasicontinuum

• The Quasicontinuum method is an example of a 
multiscale method based on:
– Kinematic constraints (coarse-graining)
– Clusters (sampling)
– Adaptivity (spatially adapted resolution)

• The Quasicontinuum method is an example of a 
concurrent multiscale computing: it resolves 
continuum and atomistic lengthscales
concurrently during same calculation

• Challenges:
– Dynamics (internal reflections)
– Finite temperature (heat conduction)
– Transition to dislocation dynamics
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Multiscale modeling - Approaches
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Phase-field dislocation dynamics

dislocation line

(Burgers 
circuit)

(slip area)
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Phase-field dislocation dynamics

(Humphreys and Hirsch ’70)

Impenetrable obstacles
(pinning)

Obstacles of finite strength
(dissipative interaction)
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Phase-field dislocation dynamics

0 1 2
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Phase-field dislocation dynamics
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Phase-field dislocation dynamics

0 1 2
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Phase-field dislocation dynamics

Stress-strain curve

a b c

d e f

g h i
Dislocation density

(Movie)
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Phase-field dislocation dynamics

Miguel (2001) simulation
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Phase-field dislocation dynamics

• Dislocation dynamics approaches rely on 
analytical solutions of linear elasticity to reduce 
the dimensionality of the problem from 3 
(crystal) to 1 (dislocation lines): semi-inverse 
approach

• Phase-field dislocation dynamics with pairwise
Peierls potential reduces dimensionality further, 
from 3 (crystal) to 0 (point obstacles)

• Challenges: 
– Large three-dimensional ensembles 
– Atomistic dislocation cores
– Dislocation reactions, junctions
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Multiscale modeling - Approaches
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Twinning - Microstructures

(Cu-Al-Ni, C. Chu and R. D. James)
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Crystal plasticity - Microstructures

Labyrinth structure in fatigued
copper single crystal
(Jin and Winter ´84)

Nested bands in copper single crystal
fatigued to saturation

(Ramussen and Pedersen ´80)

Dipolar dislocation walls
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Crystal plasticity - Microstructures

• Lamellar structures are universally found on the 
micron scale in highly-deformed crystals

• These microstructures are responsible for the 
soft behavior of crystals and for size effects

Dislocation walls

Lamellar dislocation structure
in 90% cold-rolled Ta

(Hughes and Hansen ´97)

Dislocation walls

Lamellar structure
in shocked Ta

(Meyers et al ´95)
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sequential laminate
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Nematic elastomers - Lamination

Central region of 
sample at 

moderate stretch
(Courtesy of Kunder

and Finkelmann)

Blandon et al. ´93
De Simone and Dolzmann ´00
De Simone and Dolzmann ´02

(Courtesy of de Simone and Dolzmann)
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Solid/solid transitions in iron

• Commonly observed solid/solid transitions in 
Fe:
– α(bcc) → ε(hcp) at p = 13 GPa, coexisting phases p < 

20 GPa
– ε(hcp) → α(bcc) at p ~ 16 GPa, coexisting phases p > 

5 GPa
(Bundy, 1964)

γ(fcc)

α(bcc) ε(hcp)Te
m

pe
ra

tu
re

 (°
C

)

Pressure (Kbar)
Phase diagram for Fe

ε platelets in 0.1%C steel
shocked to 20 GPa

(Bowden and Kelly, 1967)
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Phase transitions in Fe – Effect of shear

Initial model with 7 total variants (1 bcc/6 hcp)

Hydrostatic Compression Shear Compression
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Phase transitions in Fe – Effect of shear
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Phase transitions in Fe – Effect of shear

mixed states

Approximate
Experimental

Value

• Shear lowers bcc to hcp transition pressure. 
• bcc to hcp transition path involves mixed states 

in the form of rank-1 and rank-3 laminates

rank-1 
laminates

rank-3 
laminates
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ECAP – Lamination

X1

X2

x1

x2

Die Exit

Shear Plane ϕ

Die Entry

Evolution of microstructure
(sequential lamination)

(Sivakumar and Ortiz ´03)

(Beyerlein et al ‘03)
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Crystal plasticity – size effects

LiF impact
(Meir and Clifton´86)

Laminate Branching

Hall-Petch effect!

Shocked Ta
(Meyers et al ´95)
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Subgrid microstructures - Lamination

• Sequential lamination supplies microstructures 
‘on demand’ and is another example of 
concurrent multiscale computing

• Sub-grid microstructural information is 
recovered locally at the Gauss-point level

• But: Effective response is known explicitly in 
very few cases (e.g., nematic elastomers)

• Instead: Consider easy-to-generate special 
microstructures, such as sequential laminates
– Off-line (Dolzmann ´99; Dolzmann & Walkington ´00)
– Concurrently with the calculations (Aubry et al. ´03)
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Summary and conclusions

• The multiscale modeling paradigm provides a 
systematic means of eliminating empiricism and 
uncertainty from material models

• Present computing capacity is not sufficient to 
integrate entire multiscale hierarchies into large-
scale engineering simulations

• There remains a need for modeling at all 
lengthscales, including:
– subgrid models of microstructure (a la sequential 

lamination)
– analytical methods, algorithms, for computing effective 

behavior, coarse graining
– Kinetics, dynamics, rare events… 
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