

(Model-Free) Data-Driven Computing

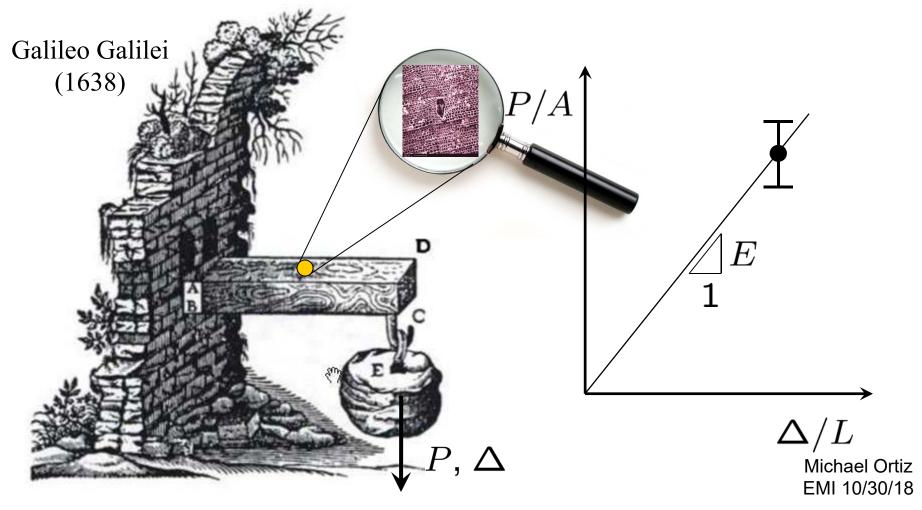
Michael Ortiz
California Institute of Technology and
Rheinische Friedrich-Wilhelms Universität Bonn

Collaborators: T. Kirchdoerfer (Caltech); L. Stainier (Central Nantes); S. Conti, S. Müller (Bonn); R. Eggersmann, S. Reese (RWTH Aachen)

Ernst Mach Institute, EMI Freiburg, Germany, October 31, 2018

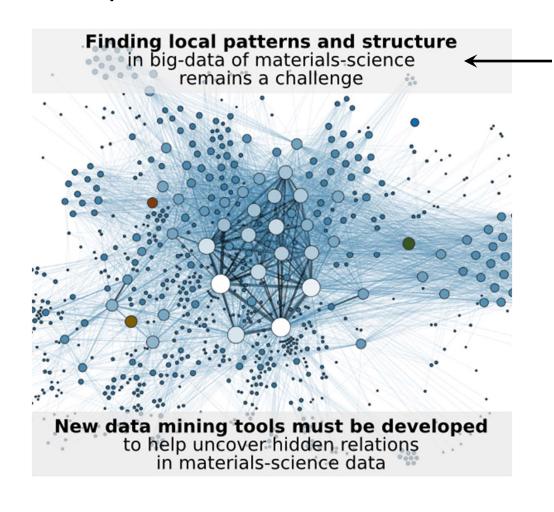
Materials data through the ages...

Traditionally, mechanics of materials has been data starved...



Material data through the ages...

At present, mechanics of materials is data rich!



(E. Munch, 1893)

NOMAD https://www.nomad-coe.eu/

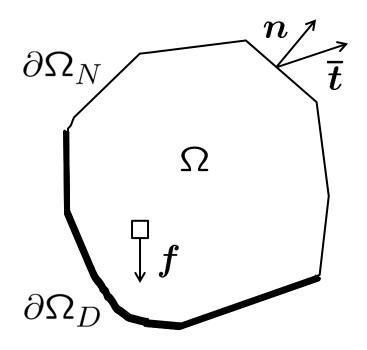
Data Science, Big Data...

Data Science, Big Data...

- Data Science is the extraction of 'knowledge' from large volumes of unstructured data¹
- Data science requires sorting through big-data sets and extracting 'insights' from these data
- Data science uses data management, statistics and machine learning to derive mathematical models for subsequent use in decision making
- Data science influences (non-STEM) fields such as marketing, advertising, finance, social sciences, security, policy, medical informatics...
- But... What's in it for us? (STEM folk)

Where does Data Science intersect with (computational) mechanics?

Anatomy of a field-theoretical STEM problem:



i) Kinematics + Dirichlet:

$$egin{aligned} \epsilon(oldsymbol{u}) &= 1/2(
abla oldsymbol{u} +
abla oldsymbol{u}^T) \ oldsymbol{u} &= ar{oldsymbol{u}}, \quad ext{on } \partial \Omega_D \end{aligned}$$

ii) Equilibrium + Neumann:

$$\begin{array}{l} \operatorname{div} \boldsymbol{\sigma} + \boldsymbol{f} = \boldsymbol{0} \\ \boldsymbol{\sigma} \boldsymbol{n} = \overline{\boldsymbol{t}}, \quad \operatorname{on} \partial \Omega_N \end{array} \right]$$

iii) Material law:
$$\sigma(x) = \sigmaig(\epsilon(x)ig)$$

Where does Data Science intersect with (computational) mechanics?

Anatomy of a field-theoretical STEM problem:

Universal laws!
(Newton's laws,
Schrodinger's eq.,
Maxwell's eqs.,
Einstein's eqs...)
Exactly known!
Uncertainty-free!
(epistemic)

i) Kinematics + Dirichlet:

$$egin{aligned} \epsilon(oldsymbol{u}) &= 1/2(
abla oldsymbol{u} +
abla oldsymbol{u}^T) \ oldsymbol{u} &= ar{oldsymbol{u}}, \quad ext{on } \partial \Omega_D \end{aligned}$$

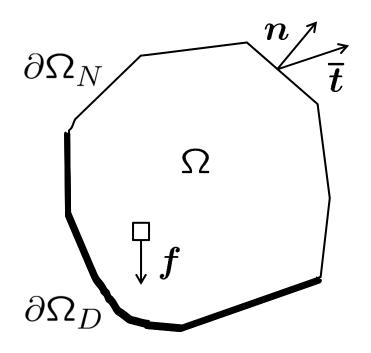
ii) Equilibrium + Neumann:

$$\label{eq:div} \begin{array}{l} \operatorname{div} \sigma + f = 0 \\[0.2cm] \sigma n = \overline{t}, \quad \operatorname{on} \partial \Omega_N \end{array} \bigg]$$

iii) Material law:
$$\sigma(x) = \sigmaig(\epsilon(x)ig)$$

Where does Data Science intersect with (computational) mechanics?

Anatomy of a field-theoretical STEM problem:



i) Kinematics + Dirichlet:

$$egin{aligned} \epsilon(oldsymbol{u}) &= 1/2(
abla oldsymbol{u} +
abla oldsymbol{u}^T) \ oldsymbol{u} &= ar{oldsymbol{u}}, \quad ext{on } \partial \Omega_D \end{aligned}$$

ii) Equilibrium + Neumann:

$$\label{eq:div} \begin{array}{l} \operatorname{div} \boldsymbol{\sigma} + \boldsymbol{f} = \mathbf{0} \\ \boldsymbol{\sigma} \boldsymbol{n} = \overline{\boldsymbol{t}}, \quad \operatorname{on} \partial \Omega_N \end{array}$$

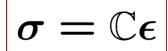
iii) Material law:
$$\sigma(x) = \sigmaig(\epsilon(x)ig)$$

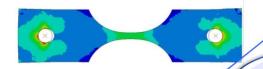
Unknown! Epistemic uncertainty!

Classical Modeling & Simulation

- Need to generate (epistemic) 'knowledge' about material behavior to close BV problems...
- Traditional modeling paradigm: Fit data (a.k.a. regression, machine learning, model reduction, central manifolds...), use calibrated empirical models in BV problems

Classical Modeling & Simulation





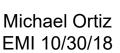
Material data

Modeling funnel

Material model

funnel Simulation

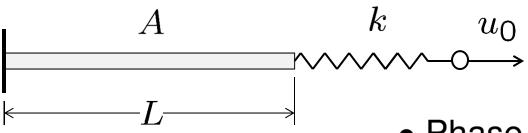
Manufactured data



Data-Driven (model-free) mechanics

- Need to generate (epistemic) 'knowledge' about material behavior to close BV problems...
- Traditional modeling paradigm: Fit data (a.k.a. regression, machine learning, model reduction, central manifolds...), use calibrated empirical models in BV problems
- But: We live in a data-rich world (full-field diagnostics, data mining from first principles...)
- Extreme Data-Driven paradigm (model-free!):
 Use material data directly in BVP (no fitting by any name, no loss of information, no broken pipe between material and manufactured data)
- How?

Elementary example: Bar and spring



Compatibility + equilibrium:

$$\sigma A = k(u_0 - \epsilon L)$$

Constraint set:

$$E = \{ \sigma A = k(u_0 - \epsilon L) \}$$

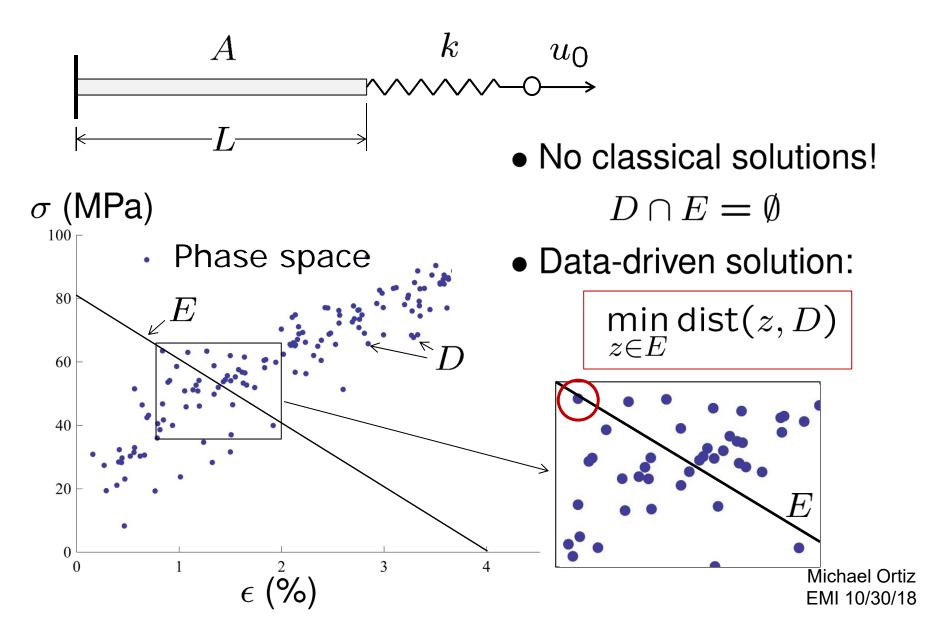
- Material data set: $D \subset Z$
- Classical solution set: $D \cap E$

Phase space

 σ (MPa)

80

Elementary example: Bar and spring



The general Data-Driven (DD) problem

- The Data-Driven paradigm¹: Given,
 D = {fundamental material data},
 E = {compatibility + equilibrium},
 Find: argmin{d(z,D), z ∈ E}
- The aim of Data-Driven analysis is to find the compatible strain field and the equilibrated stress field closest to the material data set
- No material modeling, no data fitting, no V&V...
- Raw fundamental (stress vs strain) material data is used (unprocessed) in calculations
- No assumptions, artifacts, loss of information...

```
<sup>1</sup>T. Kirchdoerfer and M. Ortiz (2015) arXiv:1510.04232. Michael Ortiz <sup>1</sup>T. Kirchdoerfer and M. Ortiz, CMAME, 304 (2016) 81–101 EMI 10/30/18
```

Data-Driven Computing: Issues

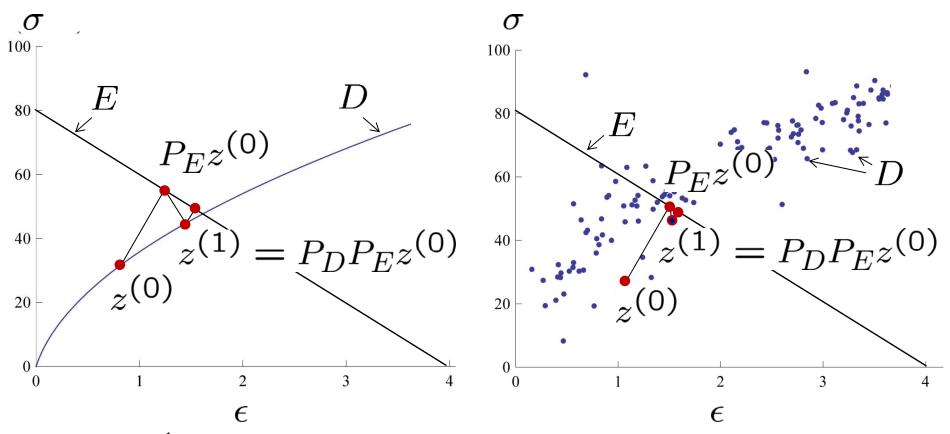
- Data-driven (model-free!) computing: Use material data sets directly in calculations!
- Is the Data-Driven reformulation of classical BVPs (possibly off of noisy data) well-posed?
- Implementation of *Data-Driven solvers*?
- Numerical convergence (iterative solvers, mesh size, time step...)
- Convergence with respect to material data set
- Extension to time-dependent problems
- Extension to history-dependent materials
- Phase-space sampling in high dimension
- Data management, repositories, outlook...

Data-Driven Computing: Issues

- Data-driven (model-free!) computing: Use material data sets directly in calculations!
- Is the Data-Driven reformulation of classical BVPs (possibly off of noisy data) well-posed?
- Implementation of Data-Driven solvers?
- Numerical convergence (iterative solvers, mesh size, time step...)
- Convergence with respect to material data set?
- Extension to time-dependent problems
- Extension to history-dependent materials
- Phase-space sampling in high dimension
- Data management, repositories, outlook...

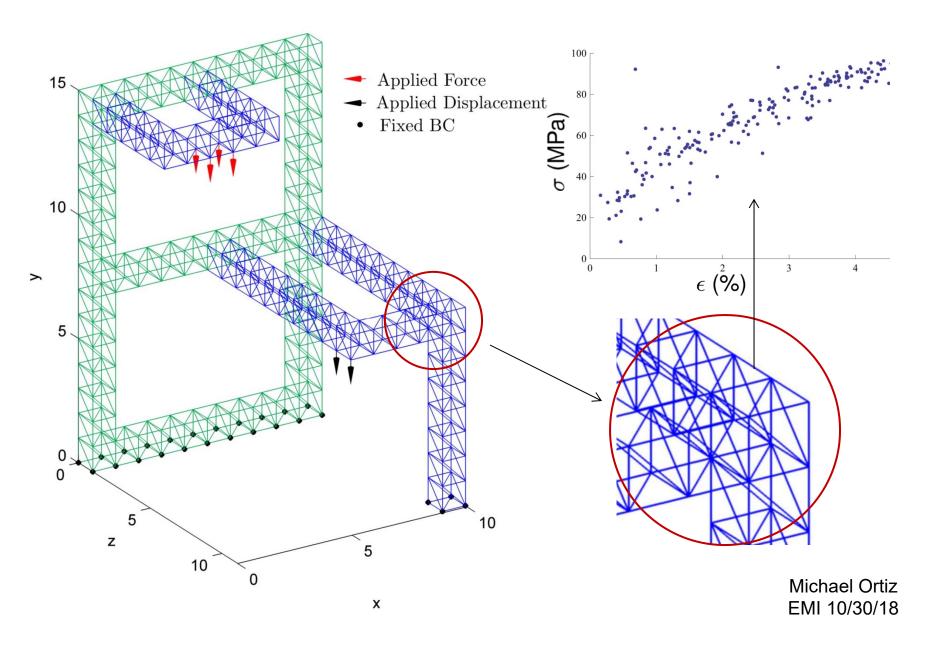
DD solvers: Fixed-point iteration

- Find: $argmin\{d(z,D), z \in E\}$
- Fixed-point iteration¹: $z^{(k+1)} = P_D P_E z^{(k)}$

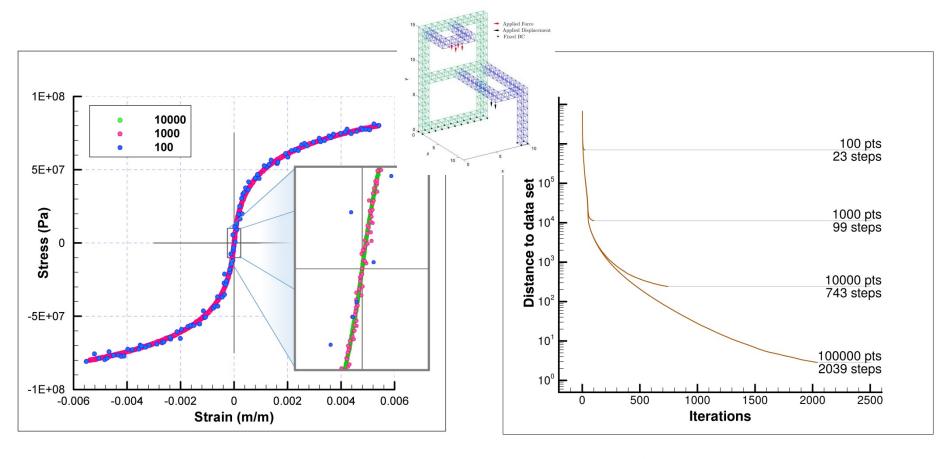


¹T. Kirchdoerfer and M. Ortiz (2015) arXiv:1510.04232. ¹T. Kirchdoerfer and M. Ortiz, *CMAME*, **304** (2016) 81–101

Test case: 3D Truss



Truss test: Convergence of solver



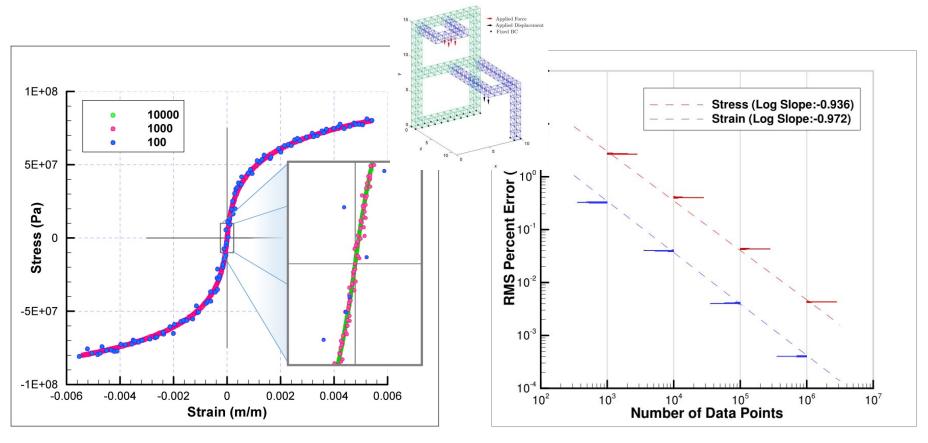
Material-data sets of increasing size and decreasing scatter

Convergence, local data assignment iteration

> Michael Ortiz EMI 10/30/18

T. Kirchdoerfer and M. Ortiz, *CMAME*, **304** (2016) 81–101.

Truss test: Convergence wrt data



Material-data sets of increasing size and decreasing scatter

Convergence with respect to sample size (with initial Gaussian noise)

Data-Driven Computing: Issues

- Data-driven (model-free!) computing: Use material data sets directly in calculations!
- Is the Data-Driven reformulation of classical BVPs (possibly off of noisy data) well-posed?
- Implementation of *Data-Driven solvers*?
- *Numerical convergence* (iterative solvers, mesh size, time step...)
- Convergence with respect to material data set?
- Extension to time-dependent problems
- Extension to history-dependent materials
- Phase-space sampling in high dimension
- Data management, repositories, outlook...

Time-dependent problems: Dynamics

- Time discretization: $t_0, \ldots, t_{k+1} = t_k + \Delta t, \ldots$
- Constraint set (time dependent): $E_{k+1} =$

$$\begin{cases} \epsilon_{e,k+1} = B_e u_{k+1}, & \sum_{e=1}^m w_e B_e^T \sigma_{e,k+1} = f_{k+1}^{\text{ext}} - M a_{k+1} \end{cases}$$
 compatibility dynamic equilibrium

• Newmark algorithm (3-point multistep scheme):

$$u_{k+1} = u_k + \Delta t \, v_k + \Delta t^2 \left((1/2 - \beta) a_k + \beta a_{k+1} \right)$$

$$v_{k+1} = v_k + \Delta t \left((1 - \gamma) a_k + \gamma a_{k+1} \right)$$

T. Kirchdoerfer and M. Ortiz, *IJNME*, **113**(11) (2018) 1697-1710.

Time-dependent problems: Dynamics

- Time discretization: $t_0, \ldots, t_{k+1} = t_k + \Delta t, \ldots$
- Constraint set (time dependent): $E_{k+1} =$

$$\left\{ \epsilon_{e,k+1} = B_e u_{k+1}, \quad \sum_{e=1}^{m} w_e B_e^T \sigma_{e,k+1} = f_{k+1}^{\text{ext}} - M a_{k+1} \right\}$$

Constraint set representation (3-point scheme):

$$E_{k+1} = \{(\epsilon_{k+1}, \sigma_{k+1}) : (u_k, f_k), (u_{k-1}, f_{k-1})\}$$
a Data driven problem: causality

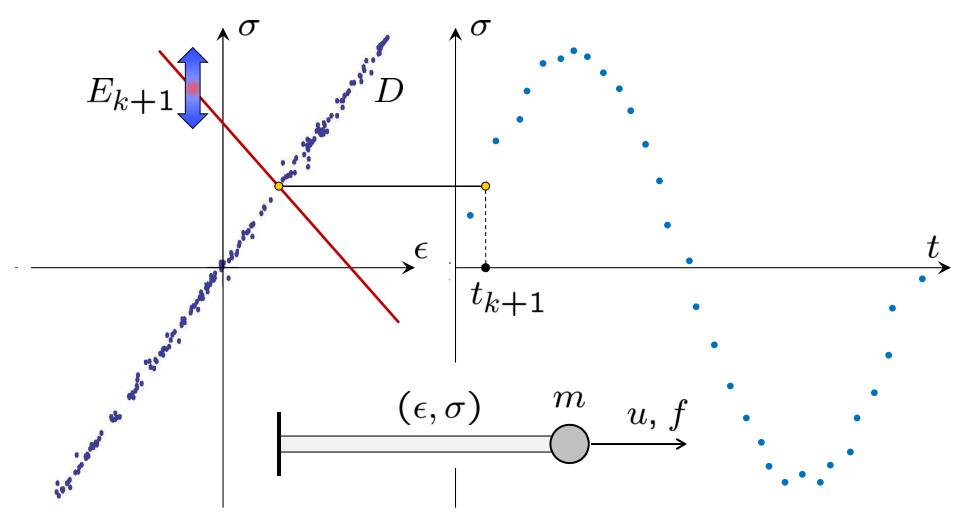
• Data-driven problem:

$$\min_{(\epsilon^*,\sigma^*)\in D} \left(\min_{(\epsilon_{k+1},\sigma_{k+1})\notin E_{k+1}} |(\epsilon_{k+1}-\epsilon^*,\sigma_{k+1}-\sigma^*)|^2 \right)$$

EMI 10/30/18

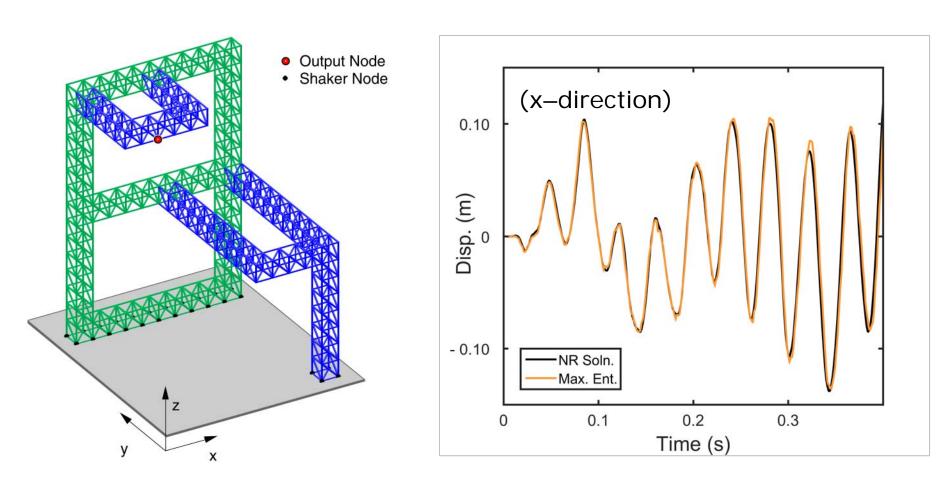
T. Kirchdoerfer and M. Ortiz, *IJNME*, **113**(11) (2018) 1697-1710.

Time-dependent problems: Dynamics



T. Kirchdoerfer and M. Ortiz, *IJNME*, **113**(11) (2018) 1697-1710.

Test case: Truss dynamics



Data-Driven solution vs. direct Newmark solution

T. Kirchdoerfer and M. Ortiz, *IJNME*, **113**(11) (2018) 1697-1710.

Data-Driven Computing: Issues

- Data-driven (model-free!) computing: Use material data sets directly in calculations!
- Is the Data-Driven reformulation of classical BVPs (possibly off of noisy data) well-posed?
- Implementation of *Data-Driven solvers*?
- Numerical convergence (iterative solvers, mesh size, time step...)
- Convergence with respect to material data set?
- Extension to time-dependent problems
- Extension to history-dependent materials
- Phase-space sampling in high dimension
- Data management, repositories, outlook...

Data-driven inelasticity

• Constraint set (time dependent): $E_{k+1} =$

$$\left\{ \epsilon_{e,k+1} = B_e u_{k+1}, \sum_{e=1}^{m} w_e B_e^T \sigma_{e,k+1} = f_{k+1}^{\text{ext}} \right\}$$

History-dependent (local) material data sets:

$$D_{e,k+1} = \left\{ (\epsilon_{e,k+1}, \sigma_{e,k+1}) : \text{past material history} \right\}$$

Data-driven problem:

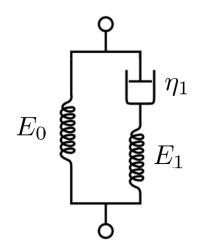
$$\min_{(\epsilon^*,\sigma^*) \notin D_{k+1}} \left(\min_{(\epsilon_{k+1},\sigma_{k+1}) \notin E_{k+1}} |(\epsilon_{k+1}-\epsilon^*,\sigma_{k+1}-\sigma^*)|^2 \right)$$
• Fundamental question: Data representability!

R. Eggersmann, T. Kirchdoerfer, L. Stainier, S. Reese and M. Ortiz, arXiv (2018).

Data-driven viscoelasticity

- Smooth kinetics (linear or nonlinear)
- Allows for differential representation
- · Example: Standard Linear Solid,

$$\sigma + \tau_1 \dot{\sigma} - E_0 \epsilon - (E_0 + E_1) \tau_1 \dot{\epsilon} = 0$$



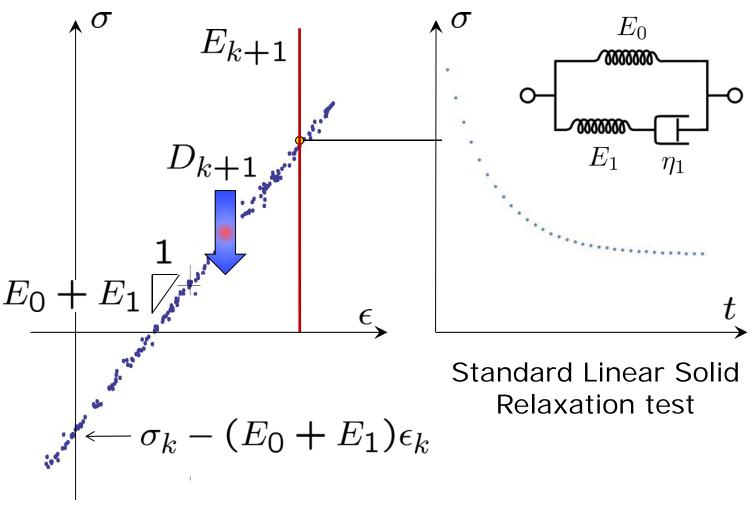
• Time discretization: $D_{k+1} =$

$$\left\{\sigma_{k+1} + \tau_1 \frac{\sigma_{k+1} - \sigma_k}{t_{k+1} - t_k} - E_0 \epsilon_{k+1} - (E_0 + E_1) \tau_1 \frac{\epsilon_{k+1} - \epsilon_k}{t_{k+1} - t_k} = 0\right\}$$

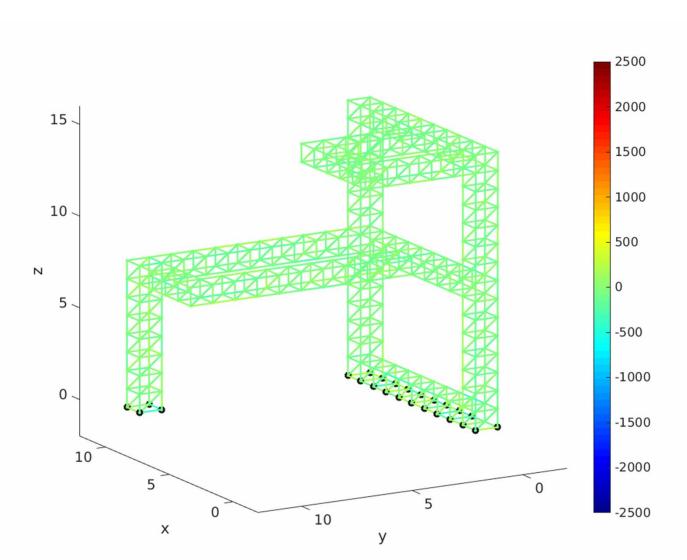
General first-order differential materials:

$$D_{k+1} = \left\{ (\epsilon_{k+1}, \sigma_{k+1}) : (\epsilon_k, \sigma_k) \right\}$$

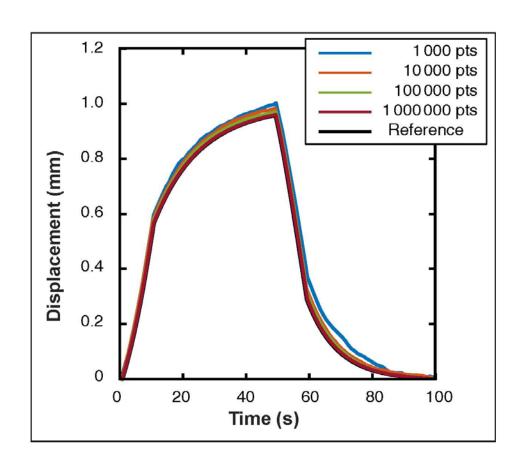
Data-Driven viscoelasticity

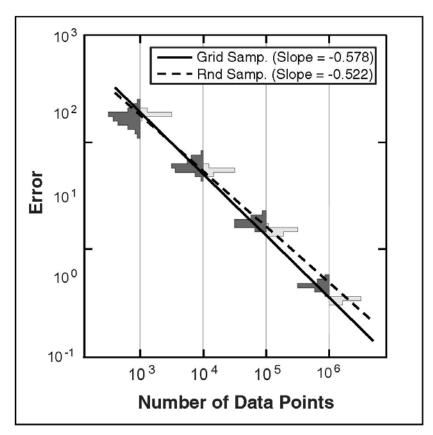


Data-Driven viscoelasticity



Data-Driven viscoelasticity



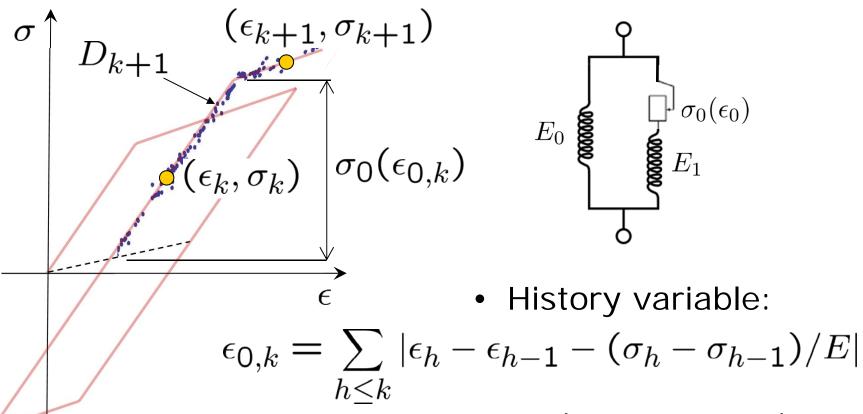


Convergence with respect to the data set

R. Eggersmann, T. Kirchdoerfer, L. Stainier, S. Reese and M. Ortiz, arXiv (2018).

Data-Driven plasticity

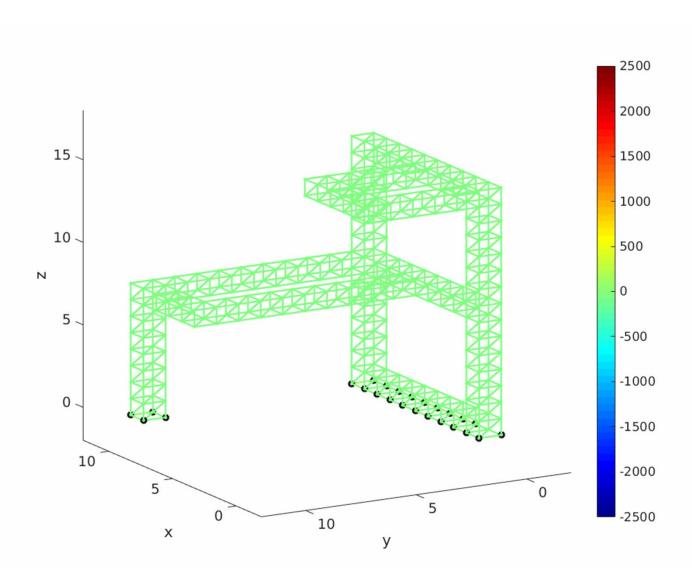
Example: Isotropic/kinematic hardening



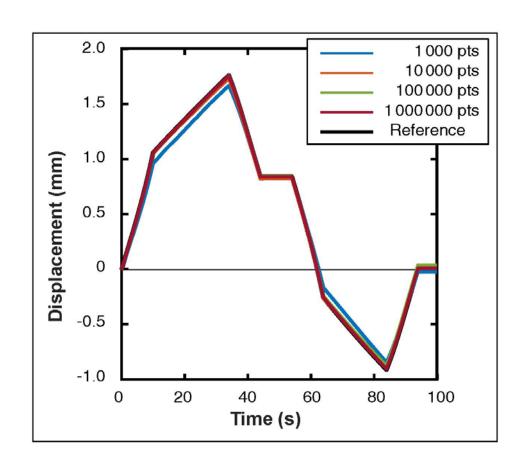
• Material set representation (diff + history):

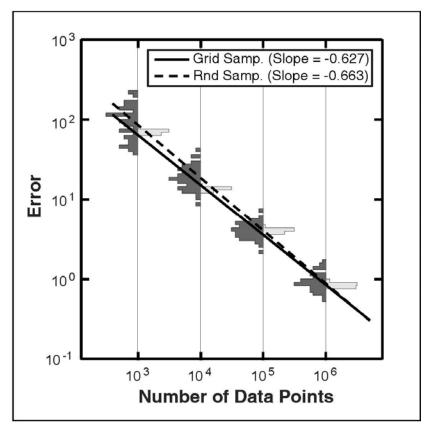
$$D_{k+1} = \left\{ (\epsilon_{k+1}, \sigma_{k+1}) : (\epsilon_k, \sigma_k), \epsilon_{0,k} \right\}_{\substack{\text{Michael Ortiz} \\ \text{EMI } 10/30/18}}$$

Data-Driven plasticity



Data-Driven plasticity



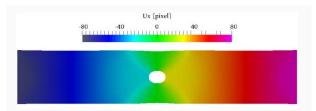


Convergence with respect to the data set

R. Eggersmann, T. Kirchdoerfer, L. Stainier, S. Reese and M. Ortiz, arXiv (2018).

Data-Driven Computing: Issues

- Data-driven (model-free!) computing: Use material data sets directly in calculations!
- Is the Data-Driven reformulation of classical BVPs (possibly off of noisy data) well-posed?
- Implementation of *Data-Driven solvers*?
- Numerical convergence (iterative solvers, mesh size, time step...)
- Convergence with respect to material data set?
- Extension to time-dependent problems
- Extension to history-dependent materials
- Phase-space sampling in high dimension
- Data management, repositories, outlook...



Full-field measurements (DIC), M loading cases:

$$D_{\text{exp}} = \{ (u^{\alpha}, f^{\alpha}), \ \alpha = 1, \dots, M \}.$$

Constraint set:

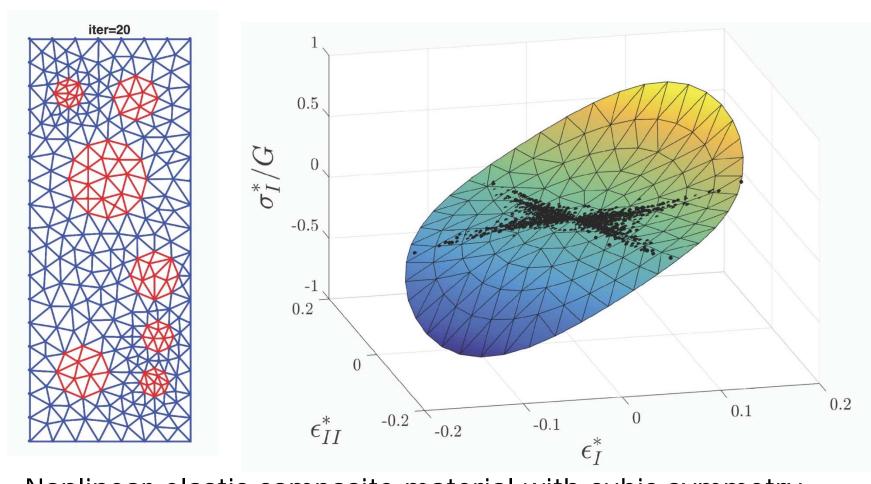
$$E = \bigcup_{\alpha=1}^{M} \{ \epsilon_e = B_e u^{\alpha}, \sum_{e=1}^{m} w_e B_e^T \sigma_e = f^{\alpha} \}$$

- ullet Stresses σ_e^{lpha} cannot be measured directly!
- DD self-consistent material-data identification:

Given
$$D_{\text{exp}}$$
: $\min_{(\boldsymbol{\epsilon}^*, \boldsymbol{\sigma}^*) \in \mathbb{R}^{12N}} \left(\min_{(\boldsymbol{\epsilon}, \boldsymbol{\sigma}) \in E} |(\boldsymbol{\epsilon} - \boldsymbol{\epsilon}^*, \boldsymbol{\sigma} - \boldsymbol{\sigma}^*)|^2 \right)$

J. Rethore, HAL Id: hal-01454432, Feb. 2017.

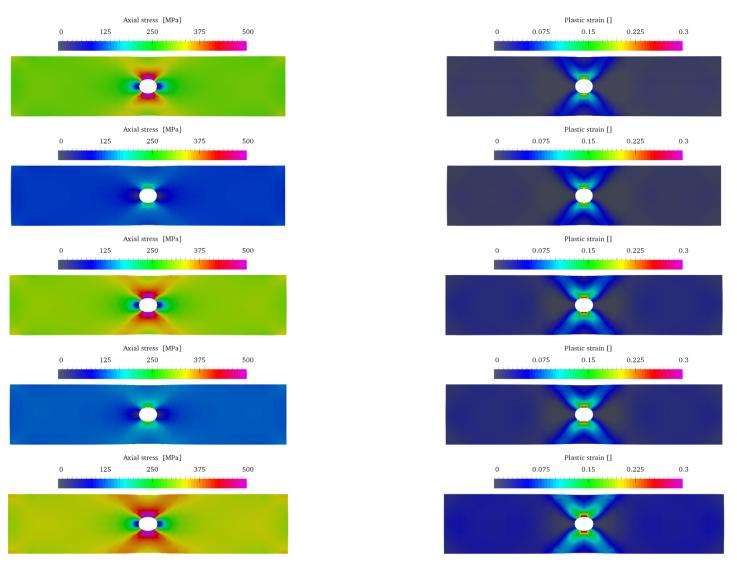
J. Rethore and A. Leygue, HAL Id: hal-01452494, Feb. 2017.



Nonlinear-elastic composite material with cubic symmetry

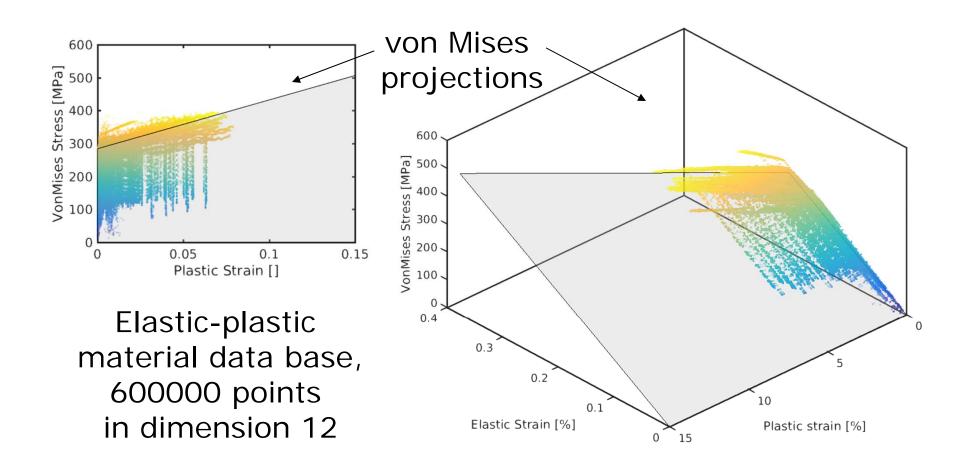
J. Rethore, HAL Id: hal-01454432, Feb. 2017.

J. Rethore and A. Leygue, HAL Id: hal-01452494, Feb. 2017.



J. Rethore, HAL Id: hal-01454432, Feb. 2017.

J. Rethore and A. Leygue, HAL Id: hal-01452494, Feb. 2017.



J. Rethore, HAL Id: hal-01454432, Feb. 2017.

J. Rethore and A. Leygue, HAL Id: hal-01452494, Feb. 2017.

Concluding remarks

- DD solvers provide a new paradigm in computational mechanics that builds directly on material data and bypasses the material modeling step entirely (model-free!)
- DD solvers lend themselves to standardization:
 - Linear initial-strain problem (e.g., FE solver)
 - Linear initial-stress problem (e.g., FE solver)
 - Stress-strain look-up from material data repository
- Objective: Publicly-editable material data repository (Wikimat?):
 - Fundamental data (stress-strain, full-field, DIC)
 - Scripts for interfacing with commercial FE packages

Concluding remarks

- Reliance on fundamental data (stress and strain only, no model-dependent data) makes material data fungible, mergeable, interchangeable...
- Data can be *mined* from lower-scale calculations, used in upper-scale calculations (*DD upscaling*)
- Data can also be extracted from full-field experimental data (TEM, SEM, DIC, EBSD...)
- High-dimensional phase spaces: Self-consistent
 DD material identification!¹ (goal oriented)
- Data-driven computing is likely to be a growth area in an increasingly data-rich world!

Concluding remarks

Thank you!