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Solids under Extreme Conditions

How far can we push Modeling and Simulation?
(and still be predictive)

Hypervelocity impact of bumper shield. 
a) Initial impact flash. b) Debris cloud  

(Ernst-Mach Inst., Freiburg, Germany). 

Hypervelocity impact (5.7 Km/s) of 0.96 mm 
thick aluminum plates by 5.5 mg nylon 6/6 

cylinders (Caltech)  

5 �s 10 �s 
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Hypervelocity impact - Simulation

Impactor 

OTM simulation, 5.2 Km/s,
Nylon/Al6061-T6,
20 million points

Caltech’s hypervelocity 
Impact facility
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Hypervelocity impact - Simulation

OTM simulation, 5.2 Km/s, Nylon/Al6061-T6,
20 million points
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Modeling and Simulation Paradigm

Solvers
(FE, CFD)
Material
Points

Rep.
Volume
Elmts. 

QMU

Ensembles of calculations:
•Statistics (sampling)
•Design Margins 
•Uncertainties (UQ)…
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Solvers
(FE, CFD)
Material
Points

Rep.
Volume
Elmts. 

QMU

Modeling and Simulation Paradigm

Individual calculation:
•Geometry (CAD)
•Boundary conditions
•Initial conditions
•Loads, actions…
•Global solvers…

V 
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Solvers
(FE, CFD)
Material
Points

Rep.
Volume
Elmts. 

QMU

Modeling and Simulation Paradigm

Material points:
•Local material elements
•Insulated from global data
•‘See’ local conditions only 
•Material laws…

   Michael Ortiz
CSGF2012 - 9 



   PSAAP: Predictive Science Academic Alliance Program

Solvers
(FE, CFD)
Material
Points

Rep.
Volume
Elmts. 

QMU

Modeling and Simulation Paradigm

   Michael Ortiz
CSGF2012 - 10



   PSAAP: Predictive Science Academic Alliance Program

The case for multiscale modeling

• Material models ‘sit’ at the core of full system 
simulations, describe the behavior of local 
material elements (independently of global 
geometry, boundary conditions…)

• Simulations are only as good as the material 
models used, never better! (material models are 
a critical ‘predictive’ bottleneck)

• Need high-fidelity material models, up to and 
including extreme conditions of deformation, 
pressure, temperature…

• Only game in town: Multiscale modeling!
   Michael Ortiz
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Multiscale modeling - Strength 

Full-scale 
calculations

mmnm µm 

m
s

µs
ns

Direct numerical simulation of 
polycrystals, effective models

Subgrain structures: 
Hall-Petch scaling, 
martensite… 

Dislocation dynamics: 
Forest hardening, cross slip…

MD: Core energies, kink mobilities… 

QM: Multiphase EoS, transport, plasma…
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Multiscale modeling - Challenges

• The essential difficulty: Vastly disparate scales,
– Atomic level rate-limiting processes: Thermal vibrations, 

lattice defects, transport …
– Macroscopic processes of interest: Ductile fracture, GB 

embrittlement, irradiation damage, aging…
• Time-scale gap: From molecular dynamics (MD) 

(femptosecond) to macroscopic (seconds-years)
• Spatial-scale gap: From lattice defects (Angstroms) to 

macroscopic (mm-m)
• No computational asset/scheme, present or future, 

capable of resolving all length/time scales explicitly and 
concurrently by brute force alone

• Need: Multiscale Modeling & Simulation!
   Michael Ortiz
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Multiscale - Separation of scales
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Multiscale - Separation of scales

same
macroscopic
response!

uniform

?
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Multiscale - Separation of scales

SMA
CuAlNi  

Chu, C. and James, R.D., J. Phys. IV, 1995

same
macroscopic
response!

no deformation
microstructures!

?
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Multiscale - The relaxation scheme
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Macroscopic problem
(e.g., deep drawing)

• Representative volume:
– Pre-evaluate all possible 

microstructures
– Determine ‘most efficient’ 

microstructure
– Compute average properties…

The effective macroscopic model  (in some cases) follows 
from a ‘representative volume’ calculation
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• The relaxed and unrelaxed problems deliver the 
same macroscopic response (they are 
indistinguishable under macroscopic testing)

• All microstructures are pre-accounted for by the 
relaxed problem (no physics lost)

• Microstructures can be reconstructed from the 
solution of the relaxed problem (no loss of 
information: return option!)

• Return option is important when the extreme 
values of the solution, and not just averages, 
are of concern: failure, nucleation, initiation…

P: 

Multiscale - The relaxation scheme
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Example - High Explosives (HE)

Detonation of  high-explosive
(RDX, PETN, HMX)

SEM image of RDX (Kline et al., 2003)
M. J. Cawkwell et al. 

Phys. Rev. B 78, 8014107 2008

• Can subgrain microstructure development (partially) 
explain hot spots, detonation sensitivity?    Michael Ortiz
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HE – The relaxation ‘boomerang’

first-principles
& atomistic 
calculations

material

properties

relaxation

Direct 
Numerical
Simulation

(DNS)
post-processingfull chemistry

boundary

conditions
Direc

emist

boundary

conditions

material

propertiesp

c

Rimoli, J.J. and MO,  Phys. Rev. E, 2010    Michael Ortiz
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PETN – Elastic constants

• Elastic Constants(GPA):
    (Winey and Gupta, 2001)

    C11=17.22   C33=12.17 
    C44=5.04     C66=3.95 
    C12=5.44     C13=7.99

• Elastic constants assumed to 
decrease linearly with  temperature, 
vanish at melting:

a=b=9.380A  and c=6.710A

• Menikoff and Sewell (2002):

where a = 2(�-1/3), � ~ 1.2 = Grüneisen constant

Body Centered Tetragonal Lattice
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PETN – Slip systems

• �c (�) fitted to data of Amuzu et al. (1976) and:

P. Xu, S. Zybin, S. Dasgupta, and W. A. Goddard III, 
private communication
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HE – The relaxation ‘boomerang’
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PETN – Chemistry 

uniform
single-slip
deformations

slip lines:

Hot spots!

1�m 

• Single-step reaction kinetics 
(Caspar et al., 1998):

• Activation energy E and 
rate constant Z from  
Rogers (1975):

R 8.314 J/mol/K
E 196.742x103 J/mol 
Z 6.3 x1019  s-1 

• Temperature computed assuming adiabatic heating,
full conversion of plastic work to heat, heat capacity
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PETN – Plate impact test

Flyer plate

PETN target plate 

Computational domain 

~1 mm

Rimoli, J.J. and MO,  Phys. Rev. E, 2010
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High-Explosives Detonation 
Initiation

Polycrystal model and grain boundaries
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PETN plate impact - Velocity 
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PETN plate impact - temperature 
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PETN plate impact – Subgrain 
microstructures 

Microstructure evolution at selected material points
   Michael Ortiz
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PETN plate impact - temperature and 
reaction evolution at selected hot spot
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PETN plate impact - Number of hot 
spots 
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Reacted molar fraction exceeded    Michael Ortiz
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S.A. Sheffield and R. Engelke (2009)Multiscale model

Exponent ~ 2.91 Exponent ~ 2.01–2.58
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Rimoli, J.J. and MO,  Phys. Rev. E, 2010

PETN plate impact – Pop plots
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Multiscale – The relaxation scheme

• Relaxation: Pre-evaluate the effect of all possible 
microstructure, determine effective behavior.

• Relaxation eliminates fine-scale microstructural 
features from consideration in macroscopic 
calculations, but provides a ‘return option’: The  
microstructures can be reconstructed at post-
processing stage (from macroscopic solution)

• Return option is important when the extreme values of 
the solution, and not just averages, are of concern: 
failure, nucleation, initiation…

• Application to HE initiation, contact with engineering 
test data, would not have been possible without 
multiscale modeling and simulation!
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Multiscale modeling – Fracture 

R. Becker “How Metals Fail”, Science and Technology Review, LLNL, 
July/August 2002 

C. Ruggieri, J. of the Braz. Soc. 
of Mech. Sci. & Eng., Vol. XXVI, 
No. 2 (2004) 190-198.
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Multiscale modeling – Fracture 

length

tim
e

mmnm µm 

m
s

µs
ns

(Picture from
Hans Hermann)

Ductile fracture & fragmentation

Thick-shell model,
porous plasticity

Nanovoid plastic
cavitation

Vacancy 
aggregation 

Vacancy nucleation, binding

Wanted: Cavitation pressure
as a function void size, strain 

rate and temperature!

C. Reina, J. Marian & MO 
Phys. Rev. B 84, 104117 (2011)
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Multiscale modeling -  Fracture 

• Ductile fracture is the end result of: 
– Void nucleation (nanoscale, e.g., second-phase particles)
– Void growth (mesoscale, distributed damage, porosity)
– Void coalescence (macroscale, void sheets, fracture)

• Fracture provides an example of a multiscale process 
where the relaxation scheme fails due to localization of 
damage to failure planes (void sheets)

• Instead of relaxation: Optimal scaling (bounds)
• Optimal scaling gives the fracture energy as a function 

of strength (strain hardening, temperature, strain rate) 
and surface energy (non-local plasticity, size effect)

• Macroscopic fracture and fragmentation modeled by 
material point failure and erosion
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Validation – Explosively driven cap

G.H. Campbell, G. C. Archbold, O. A. Hurricane and P. L. 
Miller, JAP, 101:033540, 2007 

Explosively
driven
steel cap

Optical framing camera records
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Validation – Explosively driven cap

Experiment OTM simulation
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Surface velocity for spot midway between pole and edge

G.H. Campbell, G. C. Archbold, O. A. Hurricane and P. L. 
Miller, JAP, 101:033540, 2007 
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Validation – Explosively driven cap

Recovered fragments
(from OTM simulation)

G.H. Campbell, G. C. Archbold, O. A. Hurricane and P. L. 
Miller, JAP, 101:033540, 2007 
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Validation – Explosively driven cap

Experiment

OTM simulation
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Histograms of equivalent fragment radii

G.H. Campbell, G. C. Archbold, O. A. Hurricane and P. L. 
Miller, JAP, 101:033540, 2007 
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The case for multiscale modeling

• Simulations are only as good as the material 
models used, never better! (material models are 
a critical ‘predictive’ bottleneck)

• Need high-fidelity material models, up to and 
including extreme conditions of deformation, 
pressure, temperature (great Ph.D. theses!)

• No computational asset/scheme, present or 
future, capable of resolving all length/time 
scales explicitly and concurrently by brute force 
alone (exascale beware!)

• Only game in town: Multiscale modeling!
   Michael Ortiz
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Thank you!


