

Multiscale Modeling of Materials: Linking Microstructure and Macroscopic Behavior

Michael Ortiz

DOE CSGF Conference Krell Institute, July 27, 2012

Solids under Extreme Conditions

How far can we push Modeling and Simulation? (and still be predictive)

Hypervelocity impact of bumper shield. a) Initial impact flash. b) Debris cloud (Ernst-Mach Inst., Freiburg, Germany).

Hypervelocity impact (5.7 Km/s) of 0.96 mm thick aluminum plates by 5.5 mg nylon 6/6 cylinders (Caltech)

Hypervelocity impact - Simulation

Caltech's hypervelocity Impact facility

OTM simulation, 5.2 Km/s, Nylon/Al6061-T6, 20 million points

Hypervelocity impact - Simulation

OTM simulation, 5.2 Km/s, Nylon/Al6061-T6, 20 million points

Rep. Volume Elmts.

- Boundary conditions
- Initial conditions
- Loads, actions...
- •Global solvers...

QMU

Solvers (FE, CFD)

Material Points

Rep. Volume Elmts.

Material points:

- Local material elements
- Insulated from global data
- 'See' local conditions only
- Material laws...

Solvers (FE, CFD)

Material Points

Rep.
Volume «
Elmts.

Michael Ortiz CSGF2012 - 10

The case for multiscale modeling

- Material models 'sit' at the core of full system simulations, describe the behavior of local material elements (independently of global geometry, boundary conditions...)
- Simulations are only as good as the material models used, never better! (material models are a critical 'predictive' bottleneck)
- Need high-fidelity material models, up to and including extreme conditions of deformation, pressure, temperature...
- Only game in town: Multiscale modeling!

Multiscale modeling - Strength

Multiscale modeling - Challenges

- The essential difficulty: Vastly disparate scales,
 - Atomic level rate-limiting processes: Thermal vibrations, lattice defects, transport ...
 - Macroscopic processes of interest: Ductile fracture, GB embrittlement, irradiation damage, aging...
- Time-scale gap: From molecular dynamics (MD) (femptosecond) to macroscopic (seconds-years)
- Spatial-scale gap: From lattice defects (Angstroms) to macroscopic (mm-m)
- No computational asset/scheme, present or future, capable of resolving all length/time scales explicitly and concurrently by brute force alone
- Need: <u>Multiscale Modeling & Simulation!</u>

Multiscale - Separation of scales

PSAAP: Predictive Science Academic Alliance Program

Multiscale - Separation of scales

Multiscale - Separation of scales

Multiscale - The relaxation scheme

The effective macroscopic model (in some cases) follows from a 'representative volume' calculation

Macroscopic problem (e.g., deep drawing)

- Representative volume:
 - Pre-evaluate all possible microstructures
 - Determine 'most efficient' microstructure
 - Compute average properties...

Multiscale - The relaxation scheme

- The relaxed and unrelaxed problems deliver the same macroscopic response (they are indistinguishable under macroscopic testing)
- All microstructures are pre-accounted for by the relaxed problem (no physics lost)
- Microstructures can be reconstructed from the solution of the relaxed problem (no loss of information: return option!)
- Return option is important when the extreme values of the solution, and not just averages, are of concern: failure, nucleation, initiation...

Example - High Explosives (HE)

Detonation of high-explosive (RDX, PETN, HMX)

SEM image of RDX (Kline *et al.*, 2003)

M. J. Cawkwell et al.

Phys. Rev. B **78**, **8**014107 2008

 Can subgrain microstructure development (partially) explain hot spots, detonation sensitivity?

Michael Ortiz

HE – The relaxation 'boomerang'

Rimoli, J.J. and MO, Phys. Rev. E, 2010

Michael Ortiz CSGF2012 - 20

PETN – Elastic constants

Body Centered Tetragonal Lattice

 Elastic Constants(GPA): (Winey and Gupta, 2001)

$$C_{11}$$
=17.22 C_{33} =12.17 C_{44} =5.04 C_{66} =3.95 C_{12} =5.44 C_{13} =7.99

 Elastic constants assumed to decrease linearly with temperature, vanish at melting:

$$C_{ij}(\theta, p) = \frac{\theta - \theta_{\text{melt}}(p)}{\theta_0 - \theta_{\text{melt}}(p)}$$

Menikoff and Sewell (2002):

$$\theta_{\text{melt}}(p) = \theta_{\text{melt}}(p_0) \left(1 + a \frac{\Delta V}{V_0}\right)$$

where a = $2(\Gamma-1/3)$, $\Gamma \sim 1.2$ = Grüneisen constant

PETN – Slip systems

c = 6.710Å

• $\tau_c(\theta)$ fitted to data of Amuzu *et al.* (1976) and:

a = b = 9.380Å

Slip System	В3	B4	A1	A2	В6	A5
sα	±[111]	±[111]	±[111]	±[111]	± [110]	±[110]
m ^a	(110)	(110)	(110)	(110)	(110)	(110)
τ _c [GP a]	1.0	1.0	1.0	1.0	2.0	2.0

P. Xu, S. Zybin, S. Dasgupta, and W. A. Goddard III,

HE – The relaxation 'boomerang'

Rimoli, J.J. and MO, Phys. Rev. E, 2010

PETN – Chemistry

 Single-step reaction kinetics (Caspar et al., 1998):

$$\frac{d\lambda}{dt} = Z(1 - \lambda) \exp\left(-\frac{ER}{\theta}\right)$$

Activation energy E and rate constant Z from Rogers (1975):

R	8.314 J/mol/K			
Ε	196.742x10 ³ J/mol			
Z	$6.3 \times 10^{19} \text{ s}^{-1}$			

 Temperature computed assuming adiabatic heating, full conversion of plastic work to heat, heat capacity

single-slip

deformations

1µm

PETN – Plate impact test

PETN target plate

Rimoli, J.J. and MO, Phys. Rev. E, 2010

High-Explosives Detonation Initiation

Polycrystal model and grain boundaries

PETN plate impact - Velocity

PETN plate impact - temperature

PETN plate impact – Subgrain microstructures

Microstructure evolution at selected material points

PETN plate impact - temperature and reaction evolution at selected hot spot

PETN plate impact - Number of hot spots

PETN plate impact – Pop plots

Impact velocity (m/s)

Multiscale model

S.A. Sheffield and R. Engelke (2009)

Rimoli, J.J. and MO, Phys. Rev. E, 2010

Multiscale – The relaxation scheme

- Relaxation: Pre-evaluate the effect of all possible microstructure, determine effective behavior.
- Relaxation eliminates fine-scale microstructural features from consideration in macroscopic calculations, but provides a 'return option': The microstructures can be reconstructed at postprocessing stage (from macroscopic solution)
- Return option is important when the extreme values of the solution, and not just averages, are of concern: failure, nucleation, initiation...
- Application to HE initiation, contact with engineering test data, would not have been possible without multiscale modeling and simulation!

Multiscale modeling – Fracture

R. Becker "How Metals Fail", Science and Technology Review, LLNL, July/August 2002

C. Ruggieri, J. of the Braz. Soc. of Mech. Sci. & Eng., Vol. XXVI, No. 2 (2004) 190-198.

Multiscale modeling – Fracture

Multiscale modeling - Fracture

- Ductile fracture is the end result of:
 - Void nucleation (nanoscale, e.g., second-phase particles)
 - Void growth (mesoscale, distributed damage, porosity)
 - Void coalescence (macroscale, void sheets, fracture)
- Fracture provides an example of a multiscale process where the relaxation scheme fails due to localization of damage to failure planes (void sheets)
- Instead of relaxation: Optimal scaling (bounds)
- Optimal scaling gives the fracture energy as a function of strength (strain hardening, temperature, strain rate) and surface energy (non-local plasticity, size effect)
- Macroscopic fracture and fragmentation modeled by material point failure and erosion

Optical framing camera records

G.H. Campbell, G. C. Archbold, O. A. Hurricane and P. L.

PSAAP: Predictive Science Academic Alliance Miller JAP, 101:033540, 2007

Surface velocity for spot midway between pole and edge

G.H. Campbell, G. C. Archbold, O. A. Hurricane and P. L.

PSAAP: Predictive Science Academic Alliance Miller JAP, 101:033540, 2007

G.H. Campbell, G. C. Archbold, O. A. Hurricane and P. L.

PSAAP: Predictive Science Academic Alliance Tille In JAP, 101:033540, 2007

Histograms of equivalent fragment radii

G.H. Campbell, G. C. Archbold, O. A. Hurricane and P. L.

PSAAP: Predictive Science Academic Alliance Willerm JAP, 101:033540, 2007

The case for multiscale modeling

- Simulations are only as good as the material models used, never better! (material models are a critical 'predictive' bottleneck)
- Need high-fidelity material models, up to and including extreme conditions of deformation, pressure, temperature (great Ph.D. theses!)
- No computational asset/scheme, present or future, capable of resolving all length/time scales explicitly and concurrently by brute force alone (exascale beware!)
- Only game in town: Multiscale modeling!

Thank you!