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Hypervelocity impact as an example

of acomplex system

Challenge: Predict hypervelocity
Impact phenomena (10Km/s ) with
quantified margins and uncertainties

NASA Ames Research Center

Energy flash from hypervelocity test
at 7.9 Km/s

log p(g/cc)

Hypervelocity impact test bumper shield
(Ernst-Mach Institut, Freiburg Germany)
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Quantification of margins and
uncertainties (QMU)

« Aim: Predict mean performance and uncertainty in the
behavior of complex physical/engineered systems

 Example: Short-term weather prediction,
— Old: Prediction that tomorrow will rain in Coimbra...
— New: Guarantee same with 99% confidence...

« QMU is important for achieving confidence in high-
consequence decisions, designs

e Paradigm shift in experimental science, modeling and
simulation, scientific computing (predictive science):
— Deterministic — Non-deterministic systems
— Mean performance — Mean performance + uncertainties
— Tight integration of experiments, theory and simulation
— Robust design: Design systems to minimize uncertainty
— Resource allocation: Eliminate main uncertainty sources V. Ortia

PSAAP: Predictive Science Academic Alliance Program CMNE11-4



Certification view of QMU

system rfespc;_nse
Inputs - ung on
Ve — ~ G
(Xla v ey XM)
e Random
variables
e Known or

unknown pdfs

e Controllable,
uncontrollable,
unknown-

unknowns System as black box
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performance
measures

A
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e Observables

e Subjectto
performance
specs

e Random due
to randomness
of inputs or of
system
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Certification view of QMU

« Certification = Rigorous guarantee that complex system
will perform safely and according to specifications

« Certification criterion: Probability of
Safe set A failure must be below tolerance,

P[Y € A°] < e

« Alternative (conservative)
certification criterion: Rigorous

upper bound of probability of failure
must be below tolerance,

v P[Y € A°] <|upper bound < ¢

« Challenge: Rigorous, measurable/computable upper
bounds on the probability of failure of systems

PSAAP: Predictive Science Academic Alliance Program
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Concentration of measure (CoM)

« CoM phenomenon (Levy,
1951): Functions over
high-dimensional spaces
with small local oscillations
In each variable are almost
constant

« CoM givesrise to a class
of probability-of-failure
Inequalities that can be
used for rigorous
certification of complex
systems

Paul Pierre Levy (1886-1971)
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The diameter of a function

« Oscillation of a function of one variable: |f

osc(f,E) =sup f(x) — inf f(x) /\/Wlosc
= ) rxek

sup [f(x) — f) )
{

x,x' el

. Function subdiameters: f: E c RY — R,

Di(f,E)= sup osc(f,EN{z}),
fﬁiERN_l
E

Ei:{5817'"7mi—laxi—|—17"°7xN} x1

e Function diameter: : .
N 5 evaluation requires
D(f, E) = 21 D7 (f, E) global optimization!

1=
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McDiarmid’s inequality

McDiarmid, C. (1989) “On the method of bounded differences”. In J. Simmons (ed.), Surveys in
Combinatorics: London Math. Soc. Lecture Note Series 141. Cambridge University Press.
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McDiarmid’s inequality

Theorem [McDiarmid] Suppose that:
){xq1,...,xxN} are independent random variables,

i) f : E c RY — R is integrable.
Then, for every r > O

2
Pl f — ELf]] > r] < exp (—zDQ - E))
where D( f, E) is the diameter of f over E.

~

 Bound does not require distribution of inputs

 Bound depends on two numbers only:
Function mean and function diameter!
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McDiarmid’s inequality and QMU

Corollary A conservative certification criterion is:

E[G] — a)2
PG < a] < exp (—2( [1])% )+) <,

| | Y

Probabillity of failure Upper bound Failure tolerance

e Equivalent statement (confidence factor CF):
K _
CF = M = (ElG] —a)y > 4| log \/I = certification!
U D¢ €
* Rigorous definition of margin (M)

e Rigorous definition of uncertainty (U)

M. Ortiz
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McDiarmid’s inequality and QMU

e CoM Uncertainty Quantification (UQ) ‘does the job’:
— Rigorous upper bounds on PoFs for complex systems
— Rigorous definitions of ‘uncertainty’ and ‘margin’
— Does not require knowledge of input parameters pdfs
— Reduces UQ to determination of:
 Mean performance E[G]
« System diameter Dg

e But determination of response diameter is a global
optimization problem over parameter space: Solution
requires exceedingly many function evaluations

o Strictly experimental implementation is often impractical
« Alternative: Model-Based Uncertainty Quantification!

M. Ortiz
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Model-Based QMU

system response performance
Inputs - fungtlon _ measures
(Xla"'aXM) ol > (Y]_,...,YN)
« Random  Observables
variables o Subject to
 Known or ,’O\ performance
unknown pdfs ) N specs
e Controllable, . \ « Random due
uncontrollable, to randomness
unknown- of inputs or of
unknowns system

System model . Ortiz
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Model-based QMU - Perfect model

System model

e Assume deterministic system (no scatter)
e Assume model is perfect (F=0G)

e Assume that mean performance and system diameter
can be computed exactly

e Then UQ can be carried out entirely in cyber-space,
Nno experiments are required!

M. Ortiz
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Case Study — Steel/Al ballistics

Pressure
Barrel Gun

Light
detector
(velocity )

Target and projectile

-

e Target/projectile materials:
— Target: Al 6061-T6 plates (6"x 67)
— Projectile: S2 Tool steel balls (5/16”)

e Model input parameters (X):

— Plate thickness (0.0327-0.063") | Optimet
— Impact velocity (200-400 m/s) | M'”'%gggsca”
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Case Study — Steel/Al ballistics

operating range
(180-400 m/s)

400 -
60 f \
—~ 350 -
< 30 : e s <
£ ‘cliff gl £ 300 _
E40 \ z
g 20 § 250 - X not perforated
© g @ perforated
8 20 . v 200 -
Y ballistic | || =
S . . (8
L 10 | limi 2 150 - 0
a Ny S o ® X
I S | . % 100 * . | . |
0 100 200 . 300 400 30 40 50 60 70
Impact Velocity (m/s) Plate thickness (milli-inch)
Perforation area vs. impact velocity Perforation/non-perforation
(note small data scatter!) boundary

e System output (Y): Perforation area!

e Certification criterion: Y>0 (lethality) o
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Optimal-Transportation Meshfree
(OTM) model of terminal ballistics

e Optimal transportation theory is a useful tool for

generating geometrically-exact discrete Lagrangians for
flow problems

* Inertial part of discrete Lagrangian measures distance
between consecutive mass densities (in sense of
Wasserstein)

« Discrete Hamilton principle of stationary action:
Variational time integration scheme:
— Symplectic, time reversible, exact conservation
— Variational convergence (I'-convergence, B. Schmidt)

o Extension to inelasticity: Variational constitutive updates

Li, B., Habbal, F. and Ortiz, M., IINME, 83 (2010) 1541-1579

M. Ortiz
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OTM — Spatial discretization

S.

nodal point

}xp,k

material

o Nodes carry field information

M. Ortiz
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@ Matl. points carry matl. state ¢4 1
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OTM — Nodal point set

Steel projectile/aluminum plate: Nodal set M. Ortiz
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OTM — Material point set

Steel projectile/aluminum plate: Material point set . oniz
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OTM — Max-ent interpolation

 Max-ent interpolation is smooth,
meshfree

* Finite-element interpolation is
recovered as a limit

e Rapid decay, short range
e Monotonicity, maximum principle
 (Good mass lumping properties

« Kronecker-delta property at the
boundary:
— Displacement boundary conditions
— Compatibility with finite elements

Arroyo, M. and Ortiz, M., IINME, 65 (2006) 2167-2202

M. Ortiz
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OTM — Spatial discretization

nodal points: x,,

material
} Lpk

PSAAP: Predictive Science Academic Alliance Program

Max-ent interpolation at
material point p determined
by nodes in its local
environment Np

Local environments
determined ‘on-the-fly’ by
range searches

Local environments evolve
continuously during flow
(dynamic reconnection)

Dynamic reconnection
requires no remapping of
history variables!

M. Ortiz
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OTM — Flow chart

(i) Explicit nodal coordinate update:
t — _
11 = xr+ (e — ) v+ k1 K 1ML 1&) N

(i) Material point update:

position: Tpk+1 = (Pk—;»k—]—l(g: ,k)

deformation: Fp?k+1 = V(pgﬂé;c+1(33‘ ,k)Fp,k
volume: 7 B S
density:

(iif) Constitutive update at material points I

(iv) Reconnect nodal and material points (range searches),
recompute max-ext shape functions

M. Ortiz
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OTM — Seizing contact

linear
bodky 1 bodky 2 momentum
r ) 1 \ cancellation!

Np

O hodes
@ material points
Seizing contact (infinite friction)
IS obtained for free in OTM!
(as in other material point methods) M. Ortiz
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OTM - Fracture & fragmentation

— Schmidt, B., Fraternali, F. and Ortiz,
M., SIAM J. Multiscale Model. Simul.,
7(3) (2009) 1237-1366.

OTM implentation: Variational
erosion of material points (by ¢-
neighborhood construction),

Ge Z Gc
Alternatively: Material point failure

+ comminution:

h2 . . .
W — Pandolfi, A., Conti, S. and Ortiz, M.
~Nn —— u da:‘ ] ] ] ] ]
Ge K| /K. (Vu) IMPS, 54 (2006) 1972-2003
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OTM - Fracture & fragmentation

Explosive

Stainless Steel

_Q

Detonator

[Campbell et al., 2007]

PSAAP: Predictive Science Academic Alliance Program



OTM - Fracture & fragmentation

Explosive

Stainless Steel

_Q

Detonator

[Campbell et al., 2007]

PSAAP: Predictive Science Academic Alliance Program



OTM — Terminal ballistics

V =365 m/s

\/
S2 tool steel projectile

I

Al6061-T6 plate
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OTM — Terminal ballistics

V =365 m/s

\/
S2 tool steel projectile

I

Al6061-T6 plate
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OTM — Terminal ballistics

V = 2500 m/s

\4

440C steel projectile

I

Al6061-T6 plate

M. Ortiz
PSAAP: Predictive Science Academic Alliance Program CMNE11- 31



OTM — Terminal ballistics
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OTM — Terminal ballistics
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OTM — Terminal ballistics

M. Ortiz
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Case Study | — Steel/Al ballistics

e McDiarmid inequality:

POF = P[F < a] < e—2CF”
M _ (E[F] — a)_|_

CF = —
U Dp
thickness 4.33 mm?
~ Model velocity 4.49 mm?
ClamerenbE total 6.24 mm?
47.77 mm?

Model mean E[F]

Confidence factor M/U 7.66

0

addl

L ¢

operating range
(180-400 m/s)

[ |

§ E b,
W ; ‘d--s;é.".”:;z

|

100 200 300 400
Impact Velocity (m/s)

Steel/Al ballistics
response function

« Lethality can be certified with ~ 10-°1 confidence!

 Number of response function evaluations ~ 2,000

PSAAP: Predictive Science Academic Alliance Program
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Uncertainty quantification ‘crimes’

 Models are inexact in general!
 How does lack of model fidelity contribute to uncertainty?

 Is rigorous model-based certification possible in the face
of modeling error?

 Mean performance E[F] cannot be computed exactly for
complex systems

* Instead, mean performance E[F] is approximated by
empirical mean:

1 .
E[Gl~ — > Y'=(Y)
m .
1=1
 What is the effect of the empirical mean approximation on
uncertainty guantification?

M. Ortiz
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UQ crime and punishment

e Two functions that describe the system:
— Experiment: G(X)
— Model: F(X)

McDiarmid bound monotonic in diameter
Triangular inequality: Dg < Dp+ Dp_g

}F(X)-G(X) = Modeling-error function

e Conservative certification criterion:
B 2
(<Y> a,—I-oz)_l_) <e

(Dp + Dp_g)?

¢ o= Um_%(— log e’)% : Margin hit (emp. mean)

* D Model diameter (variability of model)

* D s Modeling error (badness of model)

PSAAP: Predictive Science Academic Alliance Program CMNE11- 37
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Model-based QMU — McDiarmid

i
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/- Working assumptions:

— F-G far more regular than F
or G alone

— Global optimization for D¢ g
converges fast (e.g. BFGS)

— Evaluation of D 5 requires
few experiments

M. Ortiz
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Model-based QMU — McDiarmid

« Calculation of Dr requires
exercising model only

e Uncertainty Quantification
burden mostly shifted to
modeling and simulation!

Evaluation of D, ; requires

(few) experiments

Rigorous certification not
achievable by modeling
and simulation alone!

PSAAP: Predictive Science Academic Alliance Program
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Case Study — OTM modeling error

607 OTM simulations
- } experimental
[qV)
E OTM simulations
= 0
5 E | |
~ > perforation
4= 250+
9 o |
g Q
5 >
@
Q } OTM simulations
experimental no perforation
velocity (m/s) thickness (thousands of an inch)

Measured vs. computed perforation area

M. Ortiz
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Sample UQ Analysis — Ballistic range

thickness 4.33 mm?

Model velocity 4.49 mm?2
ClamerenbE total 6.24 mm?
thickness 4.96 mm?

Modeling velocity 2.16 mm?2
error De.g total 5.41 mm?

Uncertainty D + D,  11.65mm*
Empirical mean <Y> 47.77 mm?
Margin hit a (¢=0.1%) 417 mm?

Confidence factor M/U 3.74

Perfora
[
o

0

L ¢

operating range
(180-400 m/s)

. mmn EEw smiEl AhO8
EmnETe RN e
A B vy

il _

100 200 300 400
Impact Velocity (m/s)

e Perforation can be certified with ~ 1-1012 confidence!
e Total number of experiments ~ 50 — Approach feasible!

PSAAP: Predictive Science Academic Alliance Program
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Beyond McDiarmid - Extensions

* A number of extensions of McDiarmid may be required
In practice:
— Some input parameters cannot be controlled
— There are unknown input parameters (unknown unknowns)
— There is experimental scatter (G defined in probability)
— McDiarmid may not be tight enough (convergence?)
— Model itself may be uncertain (epistemic uncertainty)
— Data may not be available ‘on demand’ (legacy data)

o Extensions of McDiarmid that address these challenges
Include:
— Martingale inequalities (unknown unknowns, scatter...)
— Partitioned McDiarmid inequality (convergent upper bounds)
— Optimal Uncertainty Quantification (OUQ)
— Optimal models (least epistemic uncertainty)

M. Ortiz
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Concluding remarks...

« QMU represents a paradigm shift in predictive science:
— Emphasis on predictions with quantified uncertainties
— Unprecedented integration between simulation and experiment

QMU supplies a powerful organizational principle in
predictive science: Theorems run entire centers!

QMU raises theoretical and practical challenges:

— Tight and measureable/computable probability-of-failure upper
bounds (need theorems!)

— Efficient global optimization methods for highly non-convex,
high-dimensionality, noisy functions

— Effective use of massively parallel computational platforms,
heterogeneous and exascale computing

— High-fidelity models (multiscale, effective behavior...)
— Experimental science for UQ (diagnostics, rapid-fire testing...)...

M. Ortiz
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Concluding remarks...

Thank you!
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