

Model-Based Rigorous Uncertainty Quantification in Complex Systems

M. Ortiz
California Institute of Technology

Congress on Numerical Methods in Engineering (CMNE 2011)

University of Coimbra Coimbra, Portugal, June 17, 2011

ASC/PSAAP Centers

Hypervelocity impact as an example of a complex system

Challenge: Predict *hypervelocity impact* phenomena (10Km/s) with *quantified margins and uncertainties*

Hypervelocity impact test bumper shield (Ernst-Mach Institut, Freiburg Germany)

NASA Ames Research Center Energy flash from hypervelocity test at 7.9 Km/s

M. Ortiz

Quantification of margins and uncertainties (QMU)

- Aim: Predict mean performance and uncertainty in the behavior of complex physical/engineered systems
- Example: Short-term weather prediction,
 - Old: Prediction that tomorrow will rain in Coimbra...
 - New: Guarantee same with 99% confidence...
- QMU is important for achieving confidence in highconsequence decisions, designs
- **Paradigm shift** in experimental science, modeling and simulation, scientific computing (**predictive science**):
 - Deterministic → Non-deterministic systems
 - Mean performance → Mean performance + uncertainties
 - Tight integration of experiments, theory and simulation
 - Robust design: Design systems to minimize uncertainty
 - Resource allocation: Eliminate main uncertainty sources

Certification view of QMU

system inputs (X_1,\ldots,X_M)

response function

performance measures

$$(Y_1,\ldots,Y_N)$$

- Random variables
- Known or unknown pdfs
- Controllable, uncontrollable, unknownunknowns

System as black box

- Observables
- Subject to performance specs
- Random due to randomness of inputs or of system

Certification view of QMU

 Certification = Rigorous guarantee that complex system will perform safely and according to specifications

 Certification criterion: Probability of failure must be below tolerance,

$$\mathbb{P}[Y \in A^c] \le \epsilon$$

Alternative (conservative)
 certification criterion: Rigorous
 upper bound of probability of failure
 must be below tolerance,

$$\mathbb{P}[Y \in A^c] \le \text{upper bound} \le \epsilon$$

 Challenge: Rigorous, measurable/computable upper bounds on the probability of failure of systems

Concentration of measure (CoM)

Paul Pierre Levy (1886-1971)

- CoM phenomenon (Levy, 1951): Functions over high-dimensional spaces with small local oscillations in each variable are almost constant
- CoM gives rise to a class of probability-of-failure inequalities that can be used for rigorous certification of complex systems

The *diameter* of a function

Oscillation of a function of one variable:

$$\operatorname{osc}(f, E) = \sup_{x \in E} f(x) - \inf_{x \in E} f(x)$$

$$= \sup_{x, x' \in E} |f(x) - f(x')|$$

$$= \sup_{x, x' \in E} |f(x) - f(x')|$$

Function subdiameters: $f: E \subset \mathbb{R}^N \to \mathbb{R},$ $D_i(f, E) = \sup_{\widehat{x}_i \in \mathbb{R}^{N-1}} \operatorname{osc}(f, E \cap \{\widehat{x}_i\}),$

$$\hat{x}_i = \{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_N\}$$

$$D(f,E) = \sqrt{\sum_{i=1}^{N} D_i^2(f,E)} \quad \begin{array}{l} \text{evaluation requires} \\ \text{global optimization!} \\ \text{M. Ortize} \end{array}$$

M. Ortiz

McDiarmid's inequality

ON THE METHOD OF BOUNDED DIFFERENCES

Colin McDiarmid

(1.2) <u>Lemma</u>: Let $X_1,...,X_n$ be independent random variables, with X_k taking values in a set A_k for each k. Suppose that the (measurable) function $f: \Pi A_k \to \mathbb{R}$ satisfies

$$|f(\underline{\mathbf{x}}) - f(\underline{\mathbf{x}}')| \leq c_{\mathbf{k}}$$

whenever the vectors $\underline{\mathbf{x}}$ and $\underline{\mathbf{x}}'$ differ only in the kth co-ordinate. Let Y be the random variable $f[X_1,...,X_n]$. Then for any t>0,

$$P(|Y - E(Y)| \ge t) \le 2exp\left[-2t^2/\Sigma c_k^2\right].$$

McDiarmid, C. (1989) "On the method of bounded differences". In J. Simmons (ed.), Surveys in Combinatorics: London Math. Soc. Lecture Note Series 141. Cambridge University Press.

CMNE11-9

McDiarmid's inequality

Theorem [McDiarmid] Suppose that:

i) $\{x_1, \ldots, x_N\}$ are independent random variables,

ii) $f:E\subset\mathbb{R}^N o\mathbb{R}$ is integrable.

Then, for every $r \geq 0$

$$\mathbb{P}[|f - \mathbb{E}[f]| \ge r] \le \exp\left(-2\frac{r^2}{D^2(f, E)}\right),\,$$

where D(f, E) is the diameter of f over E.

- Bound does not require distribution of inputs
- Bound depends on two numbers only:
 Function *mean* and function *diameter!*

McDiarmid's inequality and QMU

Corollary A conservative certification criterion is:

$$\mathbb{P}[G \le a] \le \exp\left(-2\frac{(\mathbb{E}[G] - a)_+^2}{D_G^2}\right) \le \epsilon,$$

Probability of failure

Upper bound Failure tolerance

Equivalent statement (confidence factor CF):

$$\mathrm{CF} \equiv \frac{M}{U} \equiv \frac{(\mathbb{E}[G] - a)_{+}}{D_{G}} \geq \sqrt{\log \sqrt{\frac{1}{\epsilon}}} \Rightarrow \text{certification!}$$

- Rigorous definition of margin (M)
- Rigorous definition of uncertainty (*U*)

McDiarmid's inequality and QMU

- CoM Uncertainty Quantification (UQ) 'does the job':
 - Rigorous upper bounds on PoFs for complex systems
 - Rigorous definitions of 'uncertainty' and 'margin'
 - Does not require knowledge of input parameters pdfs
 - Reduces UQ to determination of:
 - Mean performance E[G]
 - System diameter D_G
- But determination of response diameter is a global optimization problem over parameter space: Solution requires exceedingly many function evaluations
- Strictly experimental implementation is often impractical
- Alternative: Model-Based Uncertainty Quantification!

Model-Based QMU

system inputs

$$(X_1,\ldots,X_M)$$

response function

F

performance measures

$$(Y_1,\ldots,Y_N)$$

- Random variables
- Known or unknown pdfs
- Controllable, uncontrollable, unknownunknowns

- Observables
- Subject to performance specs
- Random due to randomness of inputs or of system

Model-based QMU - Perfect model

- Assume deterministic system (no scatter)
- Assume model is perfect (F=G)
- Assume that mean performance and system diameter can be computed exactly
- Then UQ can be carried out entirely in cyber-space, no experiments are required!

Case Study – Steel/Al ballistics

- Target: Al 6061-T6 plates (6"x 6")
- Projectile: S2 Tool steel balls (5/16")
- Model input parameters (X):
 - Plate thickness (0.032"-0.063")
 - Impact velocity (200-400 m/s)

Target and projectile

Case Study - Steel/Al ballistics

Perforation area *vs.* impact velocity (note small data scatter!)

Perforation/non-perforation boundary

- System output (Y): Perforation area!
- Certification criterion: Y>0 (lethality)

M. Ortiz

Optimal-Transportation Meshfree (OTM) model of terminal ballistics

- Optimal transportation theory is a useful tool for generating geometrically-exact discrete Lagrangians for flow problems
- Inertial part of discrete Lagrangian measures distance between consecutive mass densities (in sense of Wasserstein)
- Discrete Hamilton principle of stationary action:
 Variational time integration scheme:
 - Symplectic, time reversible, exact conservation
 - Variational convergence (Γ-convergence, B. Schmidt)
- Extension to inelasticity: Variational constitutive updates

Li, B., Habbal, F. and Ortiz, M., IJNME, 83 (2010) 1541-1579

OTM – Spatial discretization

OTM — Nodal point set

Steel projectile/aluminum plate: Nodal set

M. Ortiz CMNE11-19

OTM — Material point set

Steel projectile/aluminum plate: Material point set

M. Ortiz CMNE11- 20

OTM — Max-ent interpolation

- Max-ent interpolation is smooth, meshfree
- Finite-element interpolation is recovered as a limit
- Rapid decay, short range
- Monotonicity, maximum principle
- Good mass lumping properties
- Kronecker-delta property at the boundary:
 - Displacement boundary conditions
 - Compatibility with finite elements

Arroyo, M. and Ortiz, M., IJNME, 65 (2006) 2167-2202

OTM — Spatial discretization

- Max-ent interpolation at material point p determined by nodes in its local environment Np
- Local environments determined 'on-the-fly' by range searches
- Local environments evolve continuously during flow (dynamic reconnection)
- Dynamic reconnection requires no remapping of history variables!

M. Ortiz

OTM — Flow chart

(i) Explicit nodal coordinate update:

$$x_{k+1} = x_k + (t_{k+1} - t_k)(v_k + \frac{t_{k+1} - t_{k-1}}{2}M_k^{-1}f_k)$$

position:
$$x_{p,k+1} = \varphi_{k\to k+1}(x_{p,k})$$

deformation:
$$F_{p,k+1} = \nabla \varphi_{k\to k+1}(x_{p,k}) F_{p,k}$$

volume:
$$V_{p,k+1} = \det \nabla \varphi_{k\to k+1}(x_{p,k}) V_{p,k}$$

density:
$$\rho_{p,k+1} = m_p/V_{p,k+1}$$

(iv) Reconnect nodal and material points (range searches), recompute max-ext shape functions

OTM — Seizing contact

Seizing contact (infinite friction) is obtained for free in OTM! (as in other material point methods)

M. Ortiz

OTM — Seizing contact

Seizing contact (infinite friction) is obtained for free in OTM! (as in other material point methods)

M. Ortiz CMNE11- 25

OTM - Fracture & fragmentation

$$G_\epsilon \sim rac{h^2}{|K_\epsilon|} \int_{K_\epsilon} W(
abla u) \, dx - ext{Pandolfi, A., Conti, S. and Ortiz, M., JMPS, 54 (2006) 1972-2003}$$

Proof of convergence of variational element erosion to **Griffith fracture:**

- Schmidt, B., Fraternali, F. and Ortiz, M., SIAM J. Multiscale Model. Simul., **7**(3) (2009) 1237-1366.
- OTM implentation: Variational erosion of material points (by εneighborhood construction),

$$G_{\epsilon} \geq G_c$$

- Alternatively: Material point failure + comminution:

M. Ortiz

OTM - Fracture & fragmentation

[Campbell et al., 2007]

OTM - Fracture & fragmentation

[Campbell et al., 2007]

Case Study I – Steel/Al ballistics

McDiarmid inequality:

PoF =
$$\mathbb{P}[F \le a] \le e^{-2CF^2}$$

$$CF = \frac{M}{U} = \frac{(\mathbb{E}[F] - a)_{+}}{D_{F}}$$

Model diameter <i>D_F</i>	thickness	4.33 mm ²
	velocity	4.49 mm ²
	total	6.24 mm ²
Model mean E[F]		47.77 mm ²
Confidence factor M/U		<u>7.66</u>

- Lethality can be certified with ~ 10⁻⁵¹ confidence!
- Number of response function evaluations ~ 2,000

M. Ortiz

Uncertainty quantification 'crimes'

- Models are inexact in general!
- How does lack of model fidelity contribute to uncertainty?
- Is rigorous model-based certification possible in the face of modeling error?
- Mean performance E[F] cannot be computed exactly for complex systems
- Instead, mean performance E[F] is approximated by empirical mean:

$$\mathbb{E}[G] \approx \frac{1}{m} \sum_{i=1}^{m} Y^{i} \equiv \langle Y \rangle$$

 What is the effect of the empirical mean approximation on uncertainty quantification?

UQ crime and punishment

- Two functions that describe the system:
 - Experiment: G(X)- Model: F(X)- Model: F(X)
- McDiarmid bound monotonic in diameter
- Triangular inequality: $D_G \leq D_F + D_{F-G}$
- Conservative certification criterion:

$$\mathbb{P}[G \le a] \le \exp\left(-2\frac{(\langle Y \rangle - a + \alpha)_+^2}{(D_F + D_{F-G})^2}\right) \le \epsilon,$$

- $\alpha = Um^{-\frac{1}{2}}(-\log \epsilon')^{\frac{1}{2}}$: Margin hit (emp. mean)
- D_F: Model diameter (variability of model)
- D_{F-G}: Modeling error (badness of model)

Model-based QMU - McDiarmid

F-G $_{0.5}$ $_{-0.5}$ $_{-1.5}$ X

Working assumptions:

- F-G far more regular than F
 or G alone
- Global optimization for D_{F-G} converges fast (e.g. BFGS)
- Evaluation of D_{F-G} requires few experiments

M. Ortiz

Model-based QMU - McDiarmid

- Calculation of D_F requires exercising model only
- Uncertainty Quantification burden mostly shifted to modeling and simulation!

- Evaluation of D_{F-G} requires (few) experiments
- Rigorous certification not achievable by modeling and simulation alone!

Case Study – OTM modeling error

Measured vs. computed perforation area

Sample UQ Analysis – Ballistic range PSAAP

Model diameter <i>D_F</i>	thickness	4.33 mm ²
	velocity	4.49 mm ²
	total	6.24 mm ²
Modeling error D _{F-G}	thickness	4.96 mm ²
	velocity	2.16 mm ²
	total	5.41 mm ²
Uncertainty $D_F + D_{F-G}$		11.65 mm ²
Empirical mean <y></y>		47.77 mm ²
Margin hit α (ϵ '=0.1%)		4.17 mm ²
Confidence factor M/U		3.74

- Perforation can be certified with ~ 1-10⁻¹² confidence!
- Total number of experiments ~ 50 → Approach feasible!

M. Ortiz

Beyond McDiarmid - Extensions

- A number of extensions of McDiarmid may be required in practice:
 - Some input parameters cannot be controlled
 - There are unknown input parameters (unknown unknowns)
 - There is experimental scatter (G defined in probability)
 - McDiarmid may not be tight enough (convergence?)
 - Model itself may be uncertain (epistemic uncertainty)
 - Data may not be available 'on demand' (legacy data)
- Extensions of McDiarmid that address these challenges include:
 - Martingale inequalities (unknown unknowns, scatter...)
 - Partitioned McDiarmid inequality (convergent upper bounds)
 - Optimal Uncertainty Quantification (OUQ)
 - Optimal models (least epistemic uncertainty)

Concluding remarks...

- QMU represents a paradigm shift in predictive science:
 - Emphasis on predictions with quantified uncertainties
 - Unprecedented integration between simulation and experiment
- QMU supplies a powerful organizational principle in predictive science: Theorems run entire centers!
- QMU raises theoretical and practical challenges:
 - Tight and measureable/computable probability-of-failure upper bounds (need theorems!)
 - Efficient global optimization methods for highly non-convex, high-dimensionality, noisy functions
 - Effective use of massively parallel computational platforms, heterogeneous and exascale computing
 - High-fidelity models (multiscale, effective behavior...)
 - Experimental science for UQ (diagnostics, rapid-fire testing...)...

Concluding remarks...

M. Ortiz CMNE11-44