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Introduction

• Cohesive theories of fracture are phenomenological 
continuum theories characterized by two independent 
constitutive descriptions:
– A constitutive law governing the deformation in the bulk.
– A cohesive law governing separation across cohesive 

surfaces.
• The cohesive constitutive law embodies a description 

of the mechanical effects of the separation processes 
and the dissipation associated with them.

• Origins in work of Dugdale (1960) and Barrenblatt 
(1962). Equivalence to Griffith’s criterion shown by 
Willis (1967) and Rice (1968). 
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Introduction (cont’d)

• Cohesive  theories of fracture provide a means of 
addressing certain issues that are difficult to address 
within classical fracture mechanics, including:
– Nucleation in solids with no discernable initial flaws
– Tracking of tortuous crack paths
– Profuse branching, fragmentation
– Small cracks, fully yielded configurations
– Effect of free surfaces, inhomogeneities, interfaces
– Dynamic effects, crack-tip velocity
– Arbitrary loading paths, unloading, overloads
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Introduction (cont’d)

• Cohesive theories of fracture provide a simple means 
of incorporating additional physics into the description 
of separation processes, including:
– Dislocation emission, interplanar potentials (Needleman, 

1990; Beltz and Rice, 1991; Rice, 1992)
– Friction after debonding (Tvergaard, 1990)
– Chemistry, corrosion (Rice et al. 1976; Wang and Rice, 1989)
– Closure (Hutchinson and Budiansky, 1978), hysteresis.

• Cohesive theories of fracture enable the numerical 
simulation of processes and phenomena which are  
difficult to simulate within the framework of classical 
fracture mechanics (Hillerborg, 1976; Needleman, 
1987)
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Cohesive behavior

• Deformation power identity:

• Free energy/unit surface:

• Coleman’s relations:

• Kinetic relations:Schematic of body containing
cohesive surface.

(Ortiz and Pandolfi, 1999)
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Cohesive behavior

• Material frame indifference:

• Uncoupled stretching and 
opening:

• Isotropy:

• Effective opening  displacement 
(Tvergaard, 1990; Camacho
and Ortiz, 1996):

Local reference frame
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Cohesive behavior

• Loading envelop:
– a) Rose-Ferrante
– b) Linear
– c) Bilinear
– d) Exponential 

(Planas and Elices, 
1990)

• Loading/unloading 
irreversibility:
– Linear unloading to 

origin (Camacho 
and Ortiz, 1996) 
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Cohesive elements - 3D

12-node quadratic cohesive elements
(Ortiz and Pandolfi, 1999)
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Cohesive elements - Convergence

• Characteristic size:

• Characteristic time:

Double cantilever specimen

Crack-tip trajectory 
as a function of element size
(Camacho and Ortiz, 1996)
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Cohesive elements - Convergence

Dynamic three-point bend test - Prenotched specimen
Crack-tip trajectory and contours of damage

for coarse and fine meshes
(Ruiz, Pandolfi and Ortiz, 2000)
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Cohesive elements - Convergence

Dynamic three-point bend test - Nucleation
Crack-tip trajectory and contours of damage

for coarse and fine meshes
(Ruiz, Pandolfi and Ortiz, 2000)
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Steel pellet vs. alumina plate

(Camacho and Ortiz, 1996; Field, 1988)
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WHA long rod vs. alumina plate

(Camacho and Ortiz, 1996; Woodward et al., 1994)
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WHA long rod vs. alumina plate

(Camacho and Ortiz, 1996)
(Woodward, 1994)
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WHA long rod vs. confined ceramic plate

(Camacho and Ortiz, 1996; Grace and Rupert, 1994)
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WHA long rod vs. confined ceramic plate

(Camacho and Ortiz, 1996; Grace and Rupert, 1994)
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Failure waves in glass rods

(Brar, Bless and Rosenberg, 1991)
(Repetto, Radovitzky and Ortiz, 2000)
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Failure waves in glass rods

(Repetto, Radovitzky and Ortiz, 2000)
(Brar, Bless and Rosenberg, 1991) (movie)
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Mixed-mode Charpy test

(John and Shah, 1990)

(Guo et al., 1995)
(Ruiz, Pandolfi and Ortiz, 2000)
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Mixed-mode Charpy test

(Ruiz, Pandolfi and Ortiz, 2000)



Michael
Ortiz

Mixed-mode Charpy test

Computed and experimental crack paths.
a) Guo et al., 1995; b) John and Sha, 1990.

(Ruiz, Pandolfi and Ortiz, 2000)
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Mixed-mode Charpy test

Influence of crack offset on crack pattern
(Ruiz, Pandolfi and Ortiz, 2000)
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Drop-weight test - C300 steel 

(Pandolfi, Guduru, Ortiz and Rosakis, 2000)
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Drop-weight test - C300 steel

Crack geometry as a function of time
(Pandolfi, Guduru, Ortiz and Rosakis, 2000)
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Drop-weight test - C300 steel

Computed vs. experimential
crack-tip  trajectory.

Plastic zone and shear-lip formation
(Impact velocity = 10 m/s)

(Pandolfi, Guduru, Ortiz and Rosakis, 2000)
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Ring expansion test - Aluminum

(Grady and Benson, 1983)
(Pandolfi, Krysl and Ortiz, 1999)
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Ring expansion test - Aluminum

Detail of mesh refinement at necks
Active and inactive necks

(Pandolfi, Krysl and Ortiz, 1999)
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Ring expansion test - Aluminum

(Pandolfi, Krysl and Ortiz, 1999)
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Ring expansion test - Aluminum

Number of fragments vs expansion velocity Fragment mass frequency distribution

(Pandolfi, Krysl and Ortiz, 1999)
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Fatigue crack growth - Cohesive models

• Reversible unloading:

• Crack shakes down under 
cyclic loading.

• Loading-reloading hysteresis:

• Crack propagates under 
cyclic loading.

(Nguyen, Repetto and Ortiz, 2000)
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Case study: Al center-crack panel

• Parameters (Al 2024-T351):
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Fatigue crack growth - Long cracks 

Comparison of computed and experimental growth rates.
Initial crack lengths = 10, 20 and 30 mm

(Data from ASTM Standards, Vol. 3.2, 1991)

(Nguyen, Repetto and Ortiz, 2000)

Contours of effective plastic strain.
Initial crack length: a = 15.72 mm
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Fatigue crack growth - Short cracks

• Modified Paris law:

(Dowling, 1977; Kanninen et al., 1981)
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Fatigue crack growth - Overload effect

Effect of single 50% overload on growth rate.
Initial crack length = 10 mm.

(Nguyen, Repetto and Ortiz, 2000)
(Von Euw et al., ASTM STP 513, 1972)
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Issues for further study

• Crack nucleation
• Crack patterns in the presence of profuse branching, 

fragmentation:
– Geometry of crack ensemble (fractal dimension?)
– Energy balance, dissipation
– Convergence of finite-element solutions

• Disparity between atomistic and continuum cohesive strengths, 
critical opening displacements.

• Multiscale modeling:
– Cohesive models and discrete dislocation models
– Chemistry, impurity diffusion

• Transonic cracks
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Stress corrosion cracking

• Cohesive free energy density:

• Limiting values:

• Equilibrium with environment:
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Stress corrosion cracking

• Equilibrium at crack flanks:

• Diffusion equation:

• Impurity flux:
• Chemical potential:

• Elastic energy:
• Diffusion equation:

Impurities
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Stress corrosion cracking

• Segregant embrittlement:  
(Wang and Rice, 1989):

• Effect on cohesive law:

(Steel, 300K, g in KJ/mol; after Wang and Rice, 1989)
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Case study: Hydrogen embrittlement

• Material properties (H, steel):

Center-crack panel geometry.
Initial crack length = 0.25 mm.

Applied stress = 260 MPa.
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Case study: Hydrogen embrittlement

Initial mesh
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Case study: Hydrogen embrittlement

Evolution of
hydrogen concentration (Movie)
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Condensed matter quantum chemistry
(Courtesy of Emily Carter)

• Challenges:
– High dimensionality
– Singular, long-range 

interaction potentials
– Breadth of length & time 

scales
• Ultimate Impact:

– Efficient  & accurate 
simulations of complex 
chemistry

– Mapping to macro-scopic
mechanics

Adsorption of H molecule by Si surface.
(Radehe and Carter, Ann. Rev. Phys. Chem., 1997)
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Issues for further study

• Crack nucleation
• Crack patterns in the presence of profuse branching, 

fragmentation:
– Geometry of crack ensemble (fractal dimension?)
– Energy balance, dissipation
– Convergence of finite-element solutions

• Disparity between atomistic and continuum cohesive strengths, 
critical opening displacements.

• Multiscale modeling:
– Cohesive models and discrete dislocation models
– Chemistry, impurity diffusion

• Transonic cracks
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