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Introduction

Objective: Develop analytically tractable models of the
cooperative behavior of large dislocation ensembles (energetics
and kinetics):

— Yield phenomena
— Hardening, hysteresis
— Dislocation densities

Phase field: Representational tool for describing discrete
crystallographic slip, dislocation-loop topology.

Model is exactly solvable, implementaton is gridless, complexity
governed by number of obstacles.

Dislocation dynamics without all the dislocations




Energetics
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Piecewise-quadratic Peierls potential
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Variational problem
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§ = integer-valued phase field (slip in quanta of Burgers vector)

Problem (no friction, no obstacles): irglf irclf E[C|€]

Problem is:
* Nonlocal (due to long-range elastic interactions)

* Nonconvex (due to multi-well Peierls potential)

* Nonlinear! 5




General (exact) analytical solution

 Solution proceeds in three steps:
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1) Unconstrained slip 2) Phase field 3) Slip distribution
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1. Unconstrained slip distribution: 7 = il + 27Cop
Kbu
2. Phase field (Volterra dislocations):| £(x) = Pzn(x)
. e . &+ds/ub
3. Core-reguralized slip distribution: =
J P C = 1Y Kd)2

Global equilibrum:  {s) =0




Lattice friction, obstacle interaction

Details of Intersection Process
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Irreversibility, path dependency, hysteresis




Solution procedure

1. Stick predictor. Set 7™ = 5P, and compute the predictor reactions:
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2. Reaction projection. Project §*t' onto admissible set: |g;| < fi.

3. Phase-field evaluation: n*t' = Z;\;l G g;”l + Chi1

4. Post-processing. Compute (analytically):
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Calculations are gridless
and scale with the number of obstacles s
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Evolution of dislocation
density with strain.

Cyclic loading




Return-point and fading memory

Thregdimensional view of the gvolution of the
slip-field, showing the the switching of the
cusps. 10




Line-tension anisotropy
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Obstacle density, sample size
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Summary

« Phase-field representation provides an effective analytical tool for
describing the behavior of large dislocation ensembles
*  Present model accounts for:
— Core structure, anisotropic line tension
— Long-range elastic interactions
— Interaction with applied field
— Lattice friction and irreversible interactions with obstacles

* Theory predicts:
— Dislocation pattern evolution, Orowan loops
— Cyclic stress-strain curve, Bauschinger effect
— Evolution of dislocation density

* Theory is exactly solvable, implementation is gridless, complexity
governed by number of obstacles




Future directions, challenges

Full 3D implementation:

— Parallel array of slip planes per slip system
— Multiple slip, coupling between slip systems
— Cross slip

General (e.g., nonlocal) Peierls potentials
Anisotropic Peierls stresses

General dislocation mobility laws, finite temperature
Statistics of obstacle distribution, strength
Implementation as constitutive model in FE code
Preprint: www.solids.caltech.edu/~ortiz
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