An exactly solvable phasefield model of dislocation dynamics

Michael Ortiz
Caltech

In collaboration with: M. Koslowski and A.M. Cuitino

Workshop of Multiscale Modeling of Materials Strength and Failure Bodega Bay, CA, October 7-10, 2001

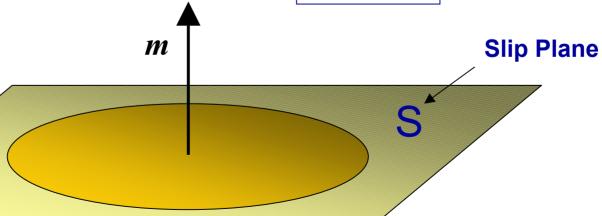
Introduction

- **Objective**: Develop analytically tractable models of the cooperative behavior of large dislocation ensembles (energetics and kinetics):
 - Yield phenomena
 - Hardening, hysteresis
 - Dislocation densities
- Phase field: Representational tool for describing discrete crystallographic slip, dislocation-loop topology.
- Model is exactly solvable, implementation is <u>gridless</u>, complexity governed by number of obstacles.
- Dislocation dynamics without all the dislocations

Energetics

$$E = \int_{S} \phi(\delta) dS + \int \frac{1}{2} c_{ijkl} \beta_{ij}^{e} \beta_{kl}^{e} d^{3}x - \int_{S} t_{i} \delta_{i} dS$$
$$\equiv E^{\text{core}} + E^{\text{int}} + E^{\text{ext}}$$

where:
$$u_{i,j} = \beta_{ij}^e + \beta_{ij}^p$$
, $\beta_{ij}^p = \delta_i \, m_j \, \delta_S$ displacement jump across S: $\delta_i = \llbracket u_i \rrbracket$



Piecewise-quadratic Peierls potential

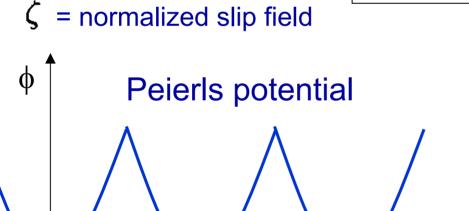
$$\phi(\delta) = \min_{\xi \in \mathbb{Z}} \frac{1}{2} \frac{\mu b^2}{d} |\zeta - \xi|^2$$

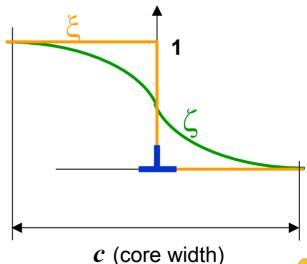
2 b

Constraint slip assumption: $|\delta_i = \zeta b_i|$, $s = t_i b_i/b$

$$\mid \delta_i = \zeta b_i \mid$$

$$s = t_i b_i / b$$





Variational problem

$$E[\zeta|\xi] = \int \frac{\mu b^2}{2d} |\zeta - \xi|^2 d^2 x + \frac{1}{(2\pi)^2} \int \frac{\mu b^2}{4} K|\hat{\zeta}|^2 d^2 k - \int bs \zeta d^2 x$$

Core energy

Elastic interaction External field

Where:
$$K = \frac{k_2^2}{\sqrt{k_1^2 + k_2^2}} + \frac{1}{1 - \nu} \frac{k_1^2}{\sqrt{k_1^2 + k_2^2}}$$

 ξ = integer-valued phase field (slip in *quanta* of Burgers vector)

Problem (no friction, no obstacles): $\inf_{\xi} \inf_{\zeta} E[\zeta|\xi]$

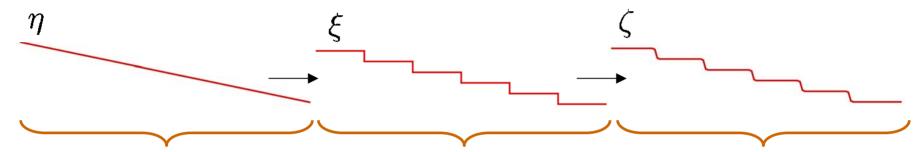
$$\inf_{\xi} \inf_{\zeta} E[\zeta|\xi]$$

Problem is:

- Nonlocal (due to long-range elastic interactions)
- Nonconvex (due to multi-well Peierls potential)
- Nonlinear!

General (exact) analytical solution

• Solution proceeds in three steps:



- 1) Unconstrained slip
- 2) Phase field

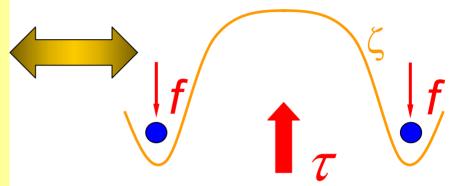
- 3) Slip distribution
- 1. Unconstrained slip distribution: $\hat{\eta} = \frac{2}{Kb}\frac{\hat{s}}{\mu} + 2\pi C\delta_D$
- 2. Phase field (Volterra dislocations): $\xi(\mathbf{x}) = P_{\mathbb{Z}}\eta(\mathbf{x})$
- 3. Core-reguralized slip distribution: $\hat{\zeta} = \frac{\xi + d\hat{s}/\mu b}{1 + Kd/2}$

Global equilibrum: $\langle s \rangle = 0$

Lattice friction, obstacle interaction

Details of Intersection Process

Unfavorable Junction



Favorable Junction

Reaction coordinate

Incremental variational principle:

$$\inf_{\zeta_{n+1}} W[\zeta^{n+1}|\zeta^n]$$

where:
$$W[\zeta^{n+1}|\zeta^n] = E[\zeta^{n+1}] - E[\zeta^n] + \sum_{i=1} f_i |\zeta_i^{n+1} - \zeta_i^n|$$

Solution procedure

1. <u>Stick predictor.</u> Set $\tilde{\eta}_i^{n+1} = \eta_i^n$, and compute the predictor reactions:

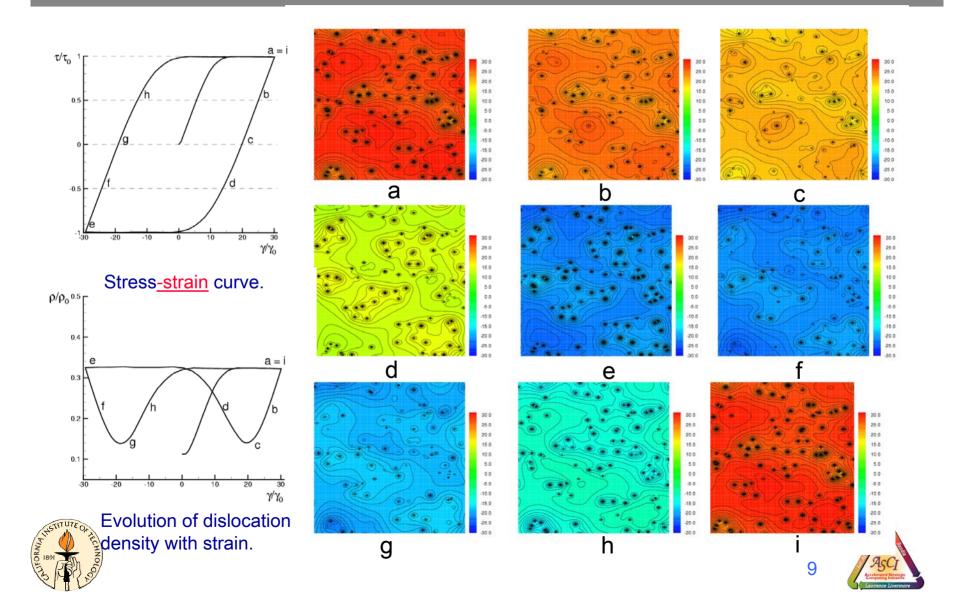
$$ilde{g}_{j}^{n+1} = \sum_{i=1}^{N} G_{ji}^{-1} (C_{n+1} - ilde{\eta}_{i}^{n+1})$$

- 2. <u>Reaction projection</u>. Project \tilde{g}_i^{n+1} onto admissible set: $|g_i| \leq f_i$.
- 3. Phase-field evaluation: $\eta_i^{n+1} = \sum_{j=1}^N G_{ij}g_j^{n+1} + C_{n+1}$
- 4. <u>Post-processing</u>. Compute (analytically):

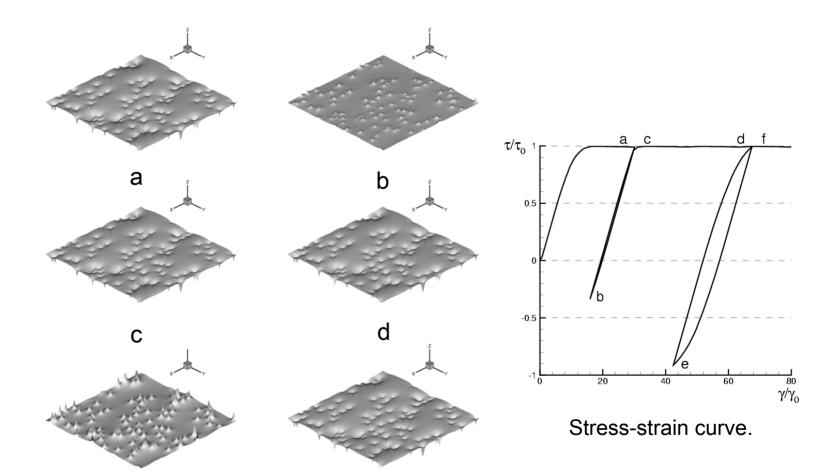
$$\gamma_{n+1} = rac{b}{l} \langle \xi^{n+1} \rangle, \qquad au_{n+1} = \sum_{i=1}^N g_i^{n+1}, \qquad
ho_{n+1} = rac{1}{l} \langle |\nabla \xi^{n+1}| \rangle$$

Calculations are gridless and scale with the number of obstacles

Cyclic loading

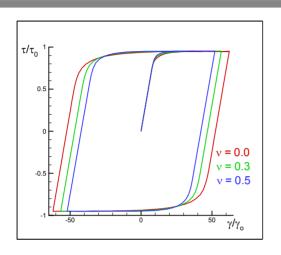


Return-point and fading memory

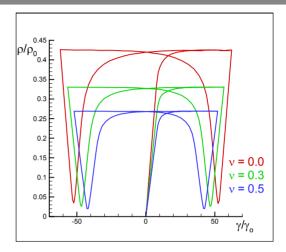


Three dimensional view of the evolution of the slip-field, showing the the switching of the cusps.

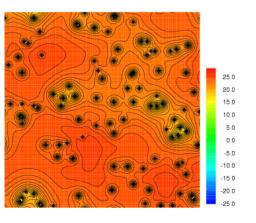
Line-tension anisotropy



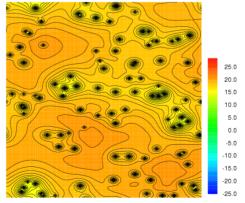
Stress-strain curve.



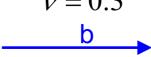
Dislocation density

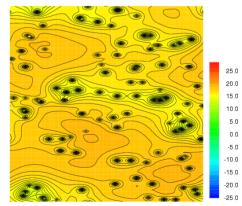


 $\nu = 0.0$



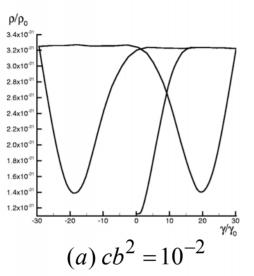
$$v = 0.3$$

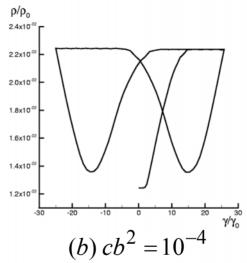


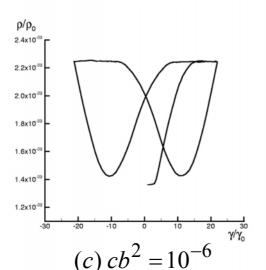


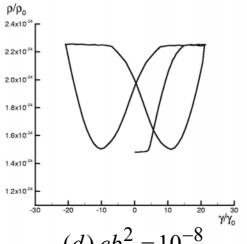
$$v = 0.5$$

Obstacle density, sample size









Summary

- Phase-field representation provides an effective analytical tool for describing the behavior of large dislocation ensembles
- Present model accounts for:
 - Core structure, anisotropic line tension
 - Long-range elastic interactions
 - Interaction with applied field
 - Lattice friction and irreversible interactions with obstacles
- Theory predicts:
 - Dislocation pattern evolution, Orowan loops
 - Cyclic stress-strain curve, Bauschinger effect
 - Evolution of dislocation density
- Theory is exactly solvable, implementation is gridless, complexity governed by number of obstacles

Future directions, challenges

- Full 3D implementation:
 - Parallel array of slip planes per slip system
 - Multiple slip, coupling between slip systems
 - Cross slip
- General (e.g., nonlocal) Peierls potentials
- Anisotropic Peierls stresses
- General dislocation mobility laws, finite temperature
- Statistics of obstacle distribution, strength
- Implementation as constitutive model in FE code
- Preprint: www.solids.caltech.edu/~ortiz

