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Introduction

• Objective: Develop analytically tractable models of the 
cooperative behavior of large dislocation ensembles (energetics
and kinetics):
– Yield phenomena
– Hardening, hysteresis
– Dislocation densities

• Phase field: Representational tool for describing discrete 
crystallographic slip, dislocation-loop topology.

• Model is exactly solvable, implementaton is gridless, complexity 
governed by number of obstacles.

• Dislocation dynamics without all the dislocations
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Energetics
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displacement jump across S:
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Piecewise-quadratic Peierls potential
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Constraint slip assumption: ,
= normalized slip field

Peierls potential
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Variational problem

Core energy Elastic interaction External field

= integer-valued phase field (slip in quanta of Burgers vector)

Where:

Problem (no friction, no obstacles):

Problem is:
• Nonlocal (due to long-range elastic interactions)

• Nonconvex (due to multi-well Peierls potential)

• Nonlinear!
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General (exact) analytical solution
• Solution proceeds in three steps:

1) Unconstrained slip 2) Phase field 3) Slip distribution

1. Unconstrained slip distribution:

2. Phase field (Volterra dislocations):

3. Core-reguralized slip distribution:

Global equilibrum:
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Lattice friction, obstacle interaction

Reaction coordinate

Favorable Junction

Unfavorable Junction

Details of Intersection Process

ζ

τ
f f

Incremental variational principle:

Irreversibility, path dependency, hysteresis

where:
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Solution procedure

Calculations are gridless 
and scale with the number of obstacles
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Cyclic loading

Stress-strain curve.
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Evolution of dislocation 
density with strain.
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Return-point and fading memory
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Stress-strain curve.

Three dimensional view of the evolution of the 
slip-field, showing the the switching of the 
cusps.
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Line-tension anisotropy
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Obstacle density, sample size

22 10)( −=cba 42 10)( −=cbb

62 10)( −=cbc 82 10)( −=cbd
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Summary
• Phase-field representation provides an effective analytical tool for 

describing the behavior of large dislocation ensembles
• Present model accounts for:

– Core structure, anisotropic line tension
– Long-range elastic interactions
– Interaction with applied field
– Lattice friction and irreversible interactions with obstacles

• Theory predicts:
– Dislocation pattern evolution, Orowan loops
– Cyclic stress-strain curve, Bauschinger effect
– Evolution of dislocation density

• Theory is exactly solvable, implementation is gridless, complexity 
governed by number of obstacles
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Future directions, challenges

• Full 3D implementation:
– Parallel array of slip planes per slip system
– Multiple slip, coupling between slip systems
– Cross slip

• General (e.g., nonlocal) Peierls potentials
• Anisotropic Peierls stresses
• General dislocation mobility laws, finite temperature
• Statistics of obstacle distribution, strength
• Implementation as constitutive model in FE code
• Preprint: www.solids.caltech.edu/~ortiz
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