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Dedicated to Rodney Hill

• “Dr. Rodney Hill is widely regarded as among 
the foremost contributors to the foundations of 
solid mechanics over the second half of the 
20th century. His early work was central to 
founding the mathematical theory of 
plasticity. This deep interest led eventually to 
general studies of uniqueness and stability
in nonlinear continuum mechanics, work which 
has had a profound influence on the field of 
solid mechanics - theoretical, computational 
and experimental alike - over the past 
decades.” (Excerpted from the ICTAM 2008 
program)
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Classical (convex) plasticity
• Plasticity’s early development focused on 

establishing the elastic limit of materials → 
yield surface, elastic domain (Tresca, Coulomb, 
Föppl, Voigt, Huber, Mohr, Hencky, Prandtl, von 
Mises, Timoshenko…)

• The flow theory was formalized by Bishop, 
Nadai, Hill, Drucker, Prager… 

• Heavy emphasis was placed on ensuring 
existence and uniqueness of solutions of the 
rate problem

• Drucker’s postulates: Convexity of free energy 
(hardening) + convexity of elastic domain
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Irreversible
accommodation of 
shear deformation

by crystallographic slip
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Crystal plasticity – Deformation theory

Irreversible
accommodation of 
shear deformation

by crystallographic slip
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Convex crystal plasticity

But reality looks nothing like!

“How empty is theory in the 
presence of fact!”

-- Mark Twain
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Dislocation structures – Cells

Cell structures in copper
(Mughrabi, H., Phil. Mag., 23 (1971) 869) 
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Dislocation structures – Fatigue 

Labyrinth structure in fatigued copper single crystal
(Jin, N.Y. and Winter, A.T., Acta Met., 32 (1984) 1173-1176)
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Dislocation structures – Lamellar
Dislocation walls

Lamellar structures in shocked Ta
(MA Meyers et al., Metall. Mater. Trans.,

26 (10) 1995, pp. 2493-2501)
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TEM micrograph of 
dislocation cells of 

single copper deformed 
at 75.6MPa

(Mughrabi et al., 1986) 

Cell distribution for 
deformed single crystal of 
copper and determination 
of the fractal dimension

(Haehner et al., 1998).

Dislocation structures – Fractality

The observed cell size distribution is of the form:
N(d) ~ d-D, with fractal dimension D ~ 1.78―1.85
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Dislocation structures – Scaling

Pure nickel cold rolled to 90%
Hansen et al., Mat. Sci. Engin. 

A317 (2001).

Lamellar width and 
misorientation angle as a 
function of deformatation

Hansen et al., Mat. Sci. 
Engin. A317 (2001).

Scaling of lamellar width and 
misorientation angle with deformation
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Dislocation structures – Scaling

Taylor scaling
(SJ Basinski and ZS Basinski,

Dislocations in Solids,
FRN Nabarro (ed.) 

North-Holland, 1979.)

Hall-Petch scaling
(NJ Petch,

J. Iron and Steel Inst.,
174, 1953, pp. 25-28.)

Taylor hardening
(RJ Asaro,

Adv. Appl. Mech.,
23, 1983, p. 1.)

The classical scaling laws of single crystal plasticity
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Non-convex non-local plasticity
• Druckerian (convex) plasticity is inconsistent 

with observation at the subgrain level
• Ubiquitous observation of subgrain dislocation 

structures strongly suggests that single crystal 
plasticity is non-convex

• Robust scaling relations strongly suggest that 
single crystal plasticity in non-local

• Questions:
– What are the physical sources of non-

convexity, non-locality, in single crystals?
– Connection between material stability, well-

posedness of the equilibrium problem, 
microstructure, scaling behavior?
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Non-convexity – Geometrical softening

(Ortiz and Repetto, JMPS, 47(2) 1999, p. 397)

Maxwell stress
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Non-convexity - Strong latent hardening

Lattice
Orientation

Primary
Test

Lattice
Orientation
Secondary 

Test

Primary
Test

Secondary
Test

Latent hardening experiments 
UF Kocks, Acta Metallurgica, 8 (1960) 345

UF Kocks, Trans. Metall. Soc. AIME, 230 (1964) 1160
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Non-convexity - Strong latent hardening

(Saimoto, 1963)

(Ramussen and Pedersen, 1980)

(Jin and Winter, 1984)
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Non-convexity - Strong latent hardening

(Ortiz and Repetto, JMPS, 
47(2) 1999, p. 397)
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Non-convexity - Strong latent hardening

Single crystal energy density is 
non-convex due to geometrical 
softening and strong latent 
hardening → Consequences of 
non-convexity?
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Strong latent hardening & microstructure

(M Ortiz, EA Repetto and L Stainier 
JMPS, 48(10) 2000, p. 2077)

FCC crystal deformed in 
simple shear on (001) 
plane in [110] direction

uniform
double slip

A6+D6

affine
boundary
conditions
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Strong latent hardening & microstructure

(M Ortiz, EA Repetto and L Stainier 
JMPS, 48(10) 2000, p. 2077)

FCC crystal deformed in 
simple shear on (001) 
plane in [110] direction

dislocation walls
boundary layer

A6
D6

A6
D6
A6
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Strong latent hardening & microstructure

(M Ortiz, EA Repetto and L Stainier 
JMPS, 48(10) 2000, p. 2077)

FCC crystal deformed in 
simple shear on (001) 
plane in [110] direction

A6
D6

A6
D6
A6

microstructural
refinement!
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Strong latent hardening & microstructure

(M Ortiz, EA Repetto and L Stainier 
JMPS, 48(10) 2000, p. 2077)

FCC crystal deformed in 
simple shear on (001) 
plane in [110] direction

Winner!A6
D6

A6
D6
A6

microstructural
refinement!
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Strong latent hardening & microstructure

(M Ortiz, EA Repetto and L Stainier 
JMPS, 48(10) 2000, p. 2077)

FCC crystal deformed in 
simple shear on (001) 
plane in [110] direction

Pass to the
limit…

uniform
double slip!

A6+D6
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Strong latent hardening & microstructure

The energy of the limiting 
(uniform) deformation is greater 
than the limit of the energies of 
the microstructures!
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Calculus of variations – Direct method

minimizing 
sequence

Lack of lower coerciveness: uj
is a minimizing sequence that 
contains no convergent sub-
sequence

Lack of lower semi-continuity: 
uj is a minimizing sequence 
but lim uj is not a minimizer
of F(u)

minimizing 
sequence
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Calculus of variations – Direct method

Single crystals are ‘unstable’ 
with respect to microstructure: 
Variational Dirichlet problem 
has no solution in general! 
(“non-attaiment”)
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Microstructure and material stability

Morrey, C.B. Jr., 
“Quasi-convexity and 
the semicontinuity
of multiple integrals,” 
Pacific J. Math., Vol. 2 
(1952) pp. 25-53.
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Microstructure and material stability

uniform deformation microstructure

representative
volume E



Michael Ortiz
ICTAM08

Microstructure and material stability

Material stability (in the sense 
of Morrey) + coercivity ═>
Existence of solutions of the 
variational Dirichlet problem 
(“attainment”)
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Microstructure and material stability

• Single-crystal plasticity is ill-posed due to 
geometrical softening, strong latent hardening

• Single crystals are unstable with respect to 
microstructure (in the sense of Morrey)

• NB: In 3d, the Hill-Hadamard condition is not 
sufficient for material stability (Sverak, V., 
Proc. Roy. Soc. Edinburgh, A120 (1992) 185.)

• How can we make sense of such ill-posed 
problems?
– Minimizing sequences as “solutions”?
– Corresponding macroscopic behavior?
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Calculus of variations and microstructure

De Giorgi, E., “Sulla 
convergenza di alcune
successioni di integrali
del tipo dell’area,” 
Rend. Mat., Vol. 8
(1975) pp. 277-294.
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Calculus of variations and microstructure

uniform deformation microstructure

representative
volume E
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Calculus of variations and microstructure

microstructure

macroscopic 
field
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Relaxation as ‘exact’ multiscale method

• The relaxed problem is well-posed, exhibits no 
microstructure (attainment)

• The relaxed and unrelaxed problems deliver the 
same macroscopic response (e.g., force-
displacement curve)

• All microstructures are pre-accounted for by the 
relaxed problem (no physics lost)

• Microstructures can be reconstructed from the 
solution of the relaxed problem (no loss of 
information)

• Relaxation is the ‘perfect’ multiscale method!
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Relaxation as ‘exact’ multiscale method

• General strategy for computing the relaxation:
– Exhibit a microstructure construction that ‘beats’ 

uniform deformations over representative volumes
– Prove that the material cannot do better (optimality)

• Optimality is difficult to prove in general ═> 
Exact relaxation is known for few material 
models

• However: Inspired constructions (even in the 
absence of a proof of optimality) can explain 
experimental observations of microstructure

• Application to single-crystal plasticity?
– Laminates
– Cell structures
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Constructions – Fence structures

Fence structure in copper 
deformed in single slip

(Steeds, 1966)

Symmetric tilt boundary 
construction
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Constructions – Dipolar dislocation walls

A
B

A

Dipolar dislocation walls

... ...

Geometry of dipolar 
dislocation wall

dislocation 
lines

dislocation 
wall
normal
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Constructions – Dipolar dislocation walls

Only possible dipolar dislocation 
walls are: (001), (110), (111), 
(112), (113)!
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Constructions – Dipolar dislocation walls

Copper single crystal 
fatigued with tensile axis [001] 

showing labyrinth structure
(Jin and Winter, 1984)

Geometry of B4-C3 interface
(M Ortiz and EA Repetto, JMPS, 

47(2) 1999, p. 397)
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Constructions – Dipolar dislocation walls

(101)  wall structure in 
fatigued polycrystalline copper

(Wang and Mughrabi, 1984)

Geometry of B4-C1 interface
(M Ortiz and EA Repetto, JMPS, 

47(2) 1999, p. 397)
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Constructions – Dipolar dislocation walls

(111) wall structure in
fatigued polycrystalline copper

(Yumen, 1989)

Geometry of C5-D4 interface
(M Ortiz and EA Repetto, JMPS, 

47(2) 1999, p. 397)
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Constructions – Dipolar dislocation walls

(131) wall structure 
in fatigued [111] 

copper single crystal
(Lepisto et al., 1986)

Geometry of B4-C5 interface
(M Ortiz and EA Repetto, JMPS, 

47(2) 1999, p. 397)
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Constructions – Dipolar dislocation walls

Simple algebraic construction 
explains the geometry of 
dipolar dislocation walls in 
fatigued fcc crystals!
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Constructions – Cell structures
Cell structures in copper

Mughrabi, Phil. Mag. 23, 869 
(1971)

Ball-bearing kinematical model of 
dislocation cell structures

(Figures 
adapted from 

H.J. Herrmann)
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Constructions – Cell structures

Can dislocation cell structures 
be described as space-filling 
ball-bearing mechanisms?



Michael Ortiz
ICTAM08

Constructions – Cell structures

10 μm

1 cycle RD

2 cycles

d =0.6 μm

10 μm

10 μm

3 cycles

10 μm

4 cycles

Roll bonding of (0002) Mg alloys
M. T. Pérez-Prado, J.A. del Valle, O.A. Ruano, 

Scripta Mater., 51 (2004) 1093-1097.

100 
μm

d = 40  μm

Ductile
zones

Magnesium 
slip  systems:
(0001) [1120]

d RD

(0002)

TD
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Constructions – Cell structures

lattice
rotation

q>1: latent
hardening ratio

Simple shear on basal plane: 
Uniform double slip
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Constructions – Cell structures

Can uniform double slip be 
beaten by dislocation cell 
microstructures?



Michael Ortiz
ICTAM08

Dislocation cell structures
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Dislocation cell structures
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Dislocation cell structures
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Dislocation cell structures
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Constructions – Cell structures

uniform 
double slip

Simple shear on basal plane: 
Uniform double slip vs. cell structure

Winner!
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Constructions – Cell structures

Dislocation cell structures beat 
uniform double slip for 
sufficiently large deformations 
and sufficiently strong latent 
hardening
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TEM micrograph of 
dislocation cells of 

single copper deformed 
at 75.6MPa

(Mughrabi, et.al. 1986) 

Cell distribution for 
deformed single crystal of 
copper and determination 
of the fractal dimension

(Hahner, et.al. 1998).

Dislocation structures – Fractality

Fractal dimension of cuts of 3D sphere packings ~ 1.7―1.9!

(Lind, P.G., Baram, R.M. and Hermman, H.J., 
Phys. Rev. E, 77 (2008) 021304)
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Dislocation structures – Fractality

Dislocation cell construction is 
consistent with the observed 
self-similar structure of 
dislocation cells
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Crystal plasticity – Exact relaxation
• Microstructures may be regarded as ‘failure 

mechanisms’ resulting from material instabilities
• Simple constructions (even in the absence of 

optimality) suffice to explain observed 
microstructures

• Exact relaxation is known for small-strain single 
crystal plasticity (Conti, S. and Ortiz, M., Arch. 
Rat. Mech. Anal., 176 (2005) 103-147)

• Exact relaxation of finite-deformation plasticity 
is known for single slip (S. Conti and F. Theil, 
Arch. Rat. Mech. Anal., 178 (2005) 125-148)

• The general finite-deformation case is open!



Michael Ortiz
ICTAM08

Non-local extension - Scaling

dislocation lines
carry additional

energy

dislocation energy/
unit length(Humphreys and Hirsch ’70)

anisotropic line tension dislocation density
strain 

gradients!
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Nonlocal extension - Scaling

• Consideration of dislocation energies renders the 
energy non-local

• The anisotropic line-tension model follows as a 
rigorous limit of discrete dislocation dynamics 
(Garroni, A. and Müller, S., SIAM J. Math. Anal., 
36 (2005) 1943-1964; ARMA 3 (2006) 535-578)

• Non-attainment problem removed but solutions 
can still exhibit fine oscillations!

• Questions. What is the effect of non-locality on:
– Microstructure and patterning?
– Macroscopic behavior and scaling?
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Nonlocal extension - Scaling

grain

matrix
interface

d

Grain in elastic matrix 
(Conti, S. and Ortiz, M., 
ARMA, 176 (2005) 147)

• Assumptions:
– Cubic grain (d)
– Collinear double slip (τc)
– Antiplane shear deformation (γ)
– Linear isotropic elasticity (G)
– Compliant grain boundary (μ)
– Infinite latent hardening

• Objective: Find optimal 
upper and lower bounds

macroscopic scaling laws!

• Case study: Grain embedded in elastic matrix 
deforming in simple shear
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Optimal scaling – Laminate construction

parabolic hardening +
Hall-Petch scaling

dislocation walls
boundary layer

grain

refinement
with strain!
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Optimal scaling – Branching construction

boundary pile-up

refinement
with strain!
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Optimal scaling – Microstructures

LiF impact
(Meir and Clifton´86)

Laminate BranchingShocked Ta
(Meyers et al ´95)

Dislocation structures corresponding to the 
lamination and branching constructions
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Optimal scaling – Mechanism map

ElasticDe-
bonding

Lamellar Branching

T = dislocation energy
G = shear modulus
γ = deformation
b = Burgers vector
d = grain size 
μ = GB stiffness
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Optimal scaling – Mechanism map

Non-locality introduces a 
lengthscale (size cut-off) but 
can also radically change the 
microstructural pattern (e.g., 
branching)
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Concluding remarks
• Within the framework of deformation theory of 

crystal plasticity there is a strong connection 
between non-convexity, non-locality, subgrain
microstructures and macroscopic scaling relations

• Relaxation constructions match many observed 
sub-grain microstructures

• Scaling relations such as Taylor, Hall-Petch, are a 
manifestation of the non-locality introduced by 
the dislocation line energy 

• Exact relaxations provide ‘perfect’ multiscale 
models for use, e.g., in numerical calculations

• Many problems of interest remain open:
– General relaxation accounting for finite kinematics
– Microstructural evolution for arbitrary loading paths
– …
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Convex vs. nonconvex-plasticity

Convex
plasticity

Non-convex
plasticity



Michael Ortiz
ICTAM08

Concluding remarks

Thank you!
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