Prediction and Multiscale Modeling of Corrosion and Wear

M. Ortiz

California Institute of Technology
In collaboration with E.A. Carter
(Princeton University)

Opening plenary lecture given at the 17th US Army Symposium on Solid Mechanics Baltimore, MD, April 2-3, 2007

Typical 360° magnifying borescope micrograph of LCCr/ 8 rpm/zone six charge-related second-quarter-life land and groove erosion near the bore origin (Sopoka, Rickarda and Dunn, *Wear* **258**:2005, 659–670)

Land erosion Groove erosion

Typical magnifying borescope micrograph of HC-Cr/1 rph/zone six charge related midlife erosion at the 12:00 bore origin. (Sopoka, Rickarda and Dunn, *Wear* **258**:2005, 659–670)

Typical SEM cross-sectional micrograph of HC-Cr/zone six charge related of land and groove substrate erosion through a micro-crack at the 12:00 bore origin (Sopoka, Rickarda and Dunn, *Wear* **258**:2005, 659–670)

Metallographic section of the electroplated Cr-on-steel 120 mm tube following 118 cannon firings (Underwood, Vigilante, Mulligan and Todaro, *ASME Trans.* **128**:2006, 168–172)

General schematic of the thermal–chemical–mechanical erosion mechanisms (Sopoka, Rickarda and Dunn, *Wear* **258**:2005, 659–670)

- Gun-bore wear involves the simultaneous operation of three factors:
 - Thermal: heating, thermal gradient, thermal stress cracks, radiation, surface melting.
 - Chemical: reacting flow, gaswall reactions, corrosion.
 - Mechanical: cracking, ablation, spallation.
- resulting in:
 - Micro and macro-pitting.
 - Condemnation.

The larger picture: Model-based certification

- Ultimate objective: Certification of complex systems by a rigorous quantification of design margins and performance uncertainties
- Performance of complex systems is difficult to quantify based on testing alone
- Model-based certification: Develop physics-based, highfidelity models enabling rigorous quantification of performance uncertainties with a small number of tests
- System behavior often occurs on multiple length and time scales, requiring multiscale modeling
- Ultimate goal: Knob-free (first-principles) predictive simulation.

Wear – Multiscale modeling

Sopoka et al., Wear, 258, 659 (2005) Gaudett a& Scully, Metall. Mat. Trans., 25, 775 (1994) Wang et al., Phys. Rev. B, 68, 224101 (2003) ms Yamaguchi et al., Science, 309, 393 (2005) Jiang and Carter, *Phys. Rev. B*, **70**, 064102 (2004) M1 Abrams Mesoscale: Macroscale: - plasticity - diffusionM1 Abrams Main Battle Tank - wear rates - life assessment - fracture 20KU X2,888 18Fm - certification Nanoscale: - impurity absorption, mobility - grain-boundary decohesion ns - lattice defects, dislocations - chemical reactions nm μm mm M. Ortiz length

USAS17

Model problem – Hydrogen embrittlement

- Possible mechanisms for step 3:
 - Hydrogen-enhanced decohesion (HED)

- Hydrogen-enhanced localized plasticity (HELP)
- Hydrogen-related phase changes (HRPC)

HE – Multiscale model

Continuum diffusion, FE stress analysis

Continuum plasticity, resolved plastic zone

Renormalized cohesive law

First-principles cohesive law

mm

μm

nm

length

M. Ortiz USAS17

Cohesive laws – First principles

Jarvis, Hayes and Carter, Chem. Phys. Chem., 1 (2001) 55.

Cohesive laws – – First principles

Jarvis, Hayes and Carter, Chem. Phys. Chem., 1 (2001) 55.

Cohesive laws – First principles

- Ab initio cohesive laws:
 - Peak stress ~ theoretical strength
 - Critical opening displacement ~ atomic lattice spacing
 - Critical energy release rate ~ Relaxed surface energy
 - Cohesive length ~ atomic lattice spacing
 - Mesh resolution requirement ~ atomic lattice spacing
- Continuum stresses limited by yield stress, mesh size
- Cannot embed first-principles cohesive laws directly in continuum calculations
- Must upscale (coarse-grain, renormalize) the firstprinciples cohesive law to continuum scale

Cohesive laws – Upscaling

- N interatomic planes, first-principles cohesive law
 - Rice-Beltz elastic correction

Cohesive law – Upscaling

Ab-initio cohesive law

Renormalized cohesive law

$$\bar{\sigma}_c = \sigma_c/\sqrt{N}, \quad \bar{\delta}_c = \delta_c\sqrt{N}, \quad \bar{C} = C/N$$

Nguyen and Ortiz, *J. Mech. Phys.Solids*, **50** (2002) 1727. Hayes, Ortiz and Carter, *Phys. Rev. B*, **69** (2004) 172104 Braides, Lew and Ortiz, *Arch. Rational Mech. Anal.*, **180** (2006) 151.

Cohesive law – Upscaling

Ab-initio cohesive law

Renormalized cohesive law

Metal, semiconductor, and ionic ceramic all fall on same universal curve

Cohesive laws – Upscaling

- Continuum cohesive law attains asympotically a universal asymptotic form independent of the form of the atomistic cohesive law
- The renormalized peak stress scales as: σ_c/\sqrt{N}
- The renormalized COD scales as: $\delta_c \sqrt{N}$
- Surface energy is preserved under renormalization
- The only information from the atomistic cohesive law that passes to the continuum is: i) Initial slope; ii)
 Surface energy
- The renormalized cohesive zone size is automatically resolved by mesh size

HE – Multiscale model

Renormalized Continuum diffusion, Continuum plasticity, First-principles FE stress analysis resolved plastic zone cohesive law cohesive law $X = H_2, H_2S, H^+...$ Zoom of the CRACK TIP REGION μm mm nm M. Ortiz length

USAS17

Segregation-enhanced decohesion

$$2\gamma(\theta) = -\Delta H_s + 2\gamma(0) + E_{ad}$$

(Jarvis, Hayes and Carter, *Chem. Phys. Chem.*, **1**, *55*, 2001)

Θ_{H}	$-\Delta H_s$	2γ (0)	\mathbf{E}_{ad}	2γ (θ)
(ML)	(J/m^2)	(J/m^2)	(J/m^2)	(J/m^2)
0	0	4.856	0	4.856
0.25	-0.427	4.856	-0.748	3.681
0.50	-0.854	4.856	-1.516	2.486
1.00	-1.708	4.856	-2.550	0.598

M. Ortiz USAS17

Hydrogen-enhanced decohesion of Fe(110)

First-principles calculations of coverage dependence of suface energy in Fe(110) (Jarvis, Hayes and Carter, *Chem. Phys. Chem.*, **1**, *55*, 2001)

Cohesive law – Effect of H coverage

Coverage *vs.* cohesive strength (Jiang and Carter, Phys. Rev. B, **67** (2003) 214103; Surf. Sci., **547** (2003) 85)

Coverage *vs.* cohesive law (Serebrinsky, Carter and Ortiz, *J. Mech. Phys. Solids*, **52** (2004) 2403)

$$\tau(\delta, \theta) = \tau_c(\theta)(1 - \delta/\delta_c)$$

$$\tau_c(\theta) = \tau_c(0)(1 - 1.0467\theta + 0.1687\theta^2)$$

HE – Hydrogen diffusion

- Diffusion equation: $C_{,t} \text{div}(MC \text{grad}\mu) = 0$
- Chemical potential: $\mu = \mu_0(T) + RT \log(C/C_0) pV$
- Surface coverage: $\Gamma = \Gamma^s/[1 + C^{-1} \exp(\triangle g/RT)]$
- Boundary conditions: (Langmuir-McLean)

Hydrogen absorption into Fe

Hydrogen absorption paths and energies into Fe(100) and Fe(110) (Jiang and Carter, Phys. Rev. B, 67, 214103 (2003); Surf. Sci., 547, 85 (2003); Phys. Rev. B, 70, 064102 (2004)) USAS17

M. Ortiz

Hydrogen diffusion in strained Fe

$$D(T) = D_0 \exp(-(\Delta E + \Delta Z P E)/k_B T)$$

Hops between T-sites::

Volumetric deformation:

$$m{F} = \left[egin{array}{cccc} 1+\epsilon & 0 & 0 \ 0 & 1+\epsilon & 0 \ 0 & 0 & 1+\epsilon \end{array}
ight]$$

ε (%)	D ₀ (10 ⁻⁷ m ² /s)	ΔE (eV)	Δ E+ Δ ZPE (eV)
-2	1.872	0.095	0.044
-1	1.814	0.094	0.046
0	1.818	0.092	0.044
1	1.730	0.092	0.048
2	1.680	0.091	0.050

(Ramasubramaniam and Carter, in progress)

M. Ortiz USAS17

HE - Case Study

Material: AISI 4340 (Q&T) highstrength steel in seawater

- E = 210 GPa
- v = 0.3
- σ_{v0} = 1000 1600 Mpa
- N = 0.042 0.087
- $K_c = 45 150 \text{ MPa m}^{1/2}$
- $\tau_C = 4000 6400 \text{ Mpa}$
- $V = 7.116e-6 \text{ m}^3 / \text{ mol}$

Impurity (hydrogen)

- $D(T_{amb}) = 1.0 \times 10^{-10} \text{ m}^2/\text{s}$
- $\Delta V = 2.0 \times 10^{-6} \text{ m}^3/\text{mol}$
- Load: Applied P (corresp. K)
- Environment
 - T = 300-450 K
 - $C_{eq,0} = 0.1-10 \text{ ppm wt} = 5.5 \text{ x}$ $(10^{-6} - 10^{-4})$

USAS17

Center crack panel geometry.

Finite-Element Analysis

Solution method: staggered procedure,

- BC Crack flanks:
 - Equilibrium impurity coverage on crack flanks: C=C_{eq}(p)
 - At the cohesive zone: $J_n=0$.
- BC at external boundaries: C=0.
- IC: C=C_{eq}(p) on crack flanks; C=0 elsewhere.

HE – Hydrogen concentration

HE – Hydrogen concentration

HE - Plastic strain

HE - Plastic strain

HE – Propagation velocity

- Calculated curves reproduce existence of threshold K_{ISCC} and plateau V_{P,II}.
- Trends agree with experiments, considering the large scatter.

HE - Threshold K_{ISCC} vs. σ_y

(Serebrinsky, Carter and Ortiz, J. Mech. Phys. Solids, **52** (2004) 2403)

- Calculated curve reproduces experimental trend.
- For high σ_y calculations approach upper experimental bound.
- Crack morphology changes from transgranular at low σ_y to intergranular at high σ_v .
- At high σ_y, a stronger effect of H on grain boundaries (not accounted for) would improve agreement. Likewise for t_i vs. K_i.

HE - Plateau $V_{P,II}$ vs. σ_y

(Serebrinsky, Carter and Ortiz, J. Mech. Phys. Solids, **52** (2004) 2403)

- Results for several high strength steels in various media included.
- Calculated curve reproduces experimental trend.
- For high σ_y, a stronger effect of H on grain boundaries (not accounted for) would improve agreement in slope.
- For low σ_y there is a paucity of data.

HE - V_{P,II} vs. temperature

- Several high strength steels included.
- Calculated curve reproduces increasing (Arrhenius) part.
- Calculated activation energy for V_{P,II}, Q_V, is similar to that taken for D_{eff}, Q_D 40kJ/mol.
- Fall in V_{P,II} (generally observed) at high T not reproduced.

Concluding remarks

- Multiscale model (chem + mech) predicts well HE in structural steels at low temperatures (< 100°C)
- Model does not predict well:
 - High-temperature behavior
 - Aluminum alloys
- Unknown unknowns! HELP? HRPC? Others?
- Model still empirical and incomplete at the mesoscale
- Unmodelled length scales:
 - Interaction between dislocations and H:
 - Solution hardening
 - Pipe diffusion
 - Polycrystalline structure: Grains and grain boundaries
- When is enough enough?

Experimental validation, uncertainty quantification! ... ortiz

