Prof. Oscar P. Bruno

Oscar P. Bruno
Professor of Applied and Computational Mathematics
Research Overview
Prof. Bruno's work focuses on development of accurate, high-performance numerical PDE solvers that can faithfully model realistic scientific and engineering configurations. Major theoretical and computational difficulties arise in associated areas of PDE theory, numerical analysis and computational science as a result of intricate and/or singular geometries as well as solution singularities, resonances, nonlinearities, high-frequencies, dispersion, etc. Recently developed Fourier Continuation (FC) and integral-equation techniques, which can successfully tackle such challenges, have enabled accurate solution of previously intractable PDE problems of fundamental importance in science and engineering
List of Research Areas
Partial Differential Equations: Theory and Numerical Methods. Computational Science (Computational Electromagnetics, CFD, Computational Solid Mechanics). Numerical Analysis. Multiphysics Modeling and Simulation. Mathematical Physics.