Problem 1.

Combine Turán’s theorem and the Szemerédi Regularity Lemma to prove the following: For every H fixed with $\chi(H) = r + 1$ and $\epsilon > 0$, there exists an integer $n_0 = n_0(H, \beta)$ such that every G_n with $n \geq n_0$ and satisfying $e(G_n) \geq (1 - \frac{1}{r} + \beta)(\epsilon n)^{r+1}$ contains a copy of H.

Hint: Use the Key Lemma with $d = \beta/2$, $\epsilon = (\beta/6)^{(r+1)t}$ for a suitable t.

Solution. As $\chi(H) = r + 1$, H can be partitioned into $r+1$ independent sets. Let t be the size of the greatest part. Then $H \subset K_{r+1}(t)$.

By Szemerédi Regularity Lemma, there exists an integer $T(\epsilon, \frac{1}{r})$ such that for any G_n with $n \geq T$, there exists a partition $V = (V_0, V_1, \ldots, V_k)$ with $\frac{1}{r} \leq k \leq T$ such that $|V_0| \leq \epsilon n$, V_1, \ldots, V_k have the same size c and the number of non-ϵ-regular pair is at most ϵc^2.

Purify this graph by deleting the following edges:

1. all edges connected with V_0: the number is $\leq \epsilon n \times n = \epsilon n^2$;
2. all internal edges in V_1, \ldots, V_k: the number is $\leq \frac{c^2}{2} \times k \leq \frac{1}{2r} n^2 \leq \frac{\epsilon}{2} n^2$;
3. all edges between non-ϵ-regular pairs: the number is $\leq \epsilon k^2 \times c^2 \leq \epsilon n^2$;
4. all edges between pairs with density less than d: the number is $\leq d c^2 \times \frac{k^2}{2} \leq \frac{\epsilon}{2} n^2$.

After purification, the number of edges left is $\geq (1 - \frac{1}{r} + \beta)(\frac{n}{2}) - (\frac{\epsilon}{2} n^2 + \frac{\epsilon}{2} n^2) = (1 - \frac{1}{r} + \frac{\beta}{2}) \frac{n^2}{2}$.

Then, $e(R) \geq [(1 - \frac{1}{r} + \frac{\beta}{2}) \frac{n^2}{2}] / c^2 \geq [(1 - \frac{1}{r} + \frac{\beta}{2}) \frac{n^2}{2}] \times \frac{k^2}{2} = (1 - \frac{1}{r} + \frac{\beta}{2}) \frac{k^2}{2}$. By Turán’s theorem, $K_{r+1}(t) \subset R$.

Now, $H \subset K_{r+1}(t) \subset R(t)$, $\Delta(H) \leq (r + 1)t$, and $\delta = d - \epsilon = \frac{\beta}{2} - (\frac{\beta}{6})^{(r+1)t}$. If $\frac{\beta}{6}^{(r+1)t} = \epsilon \leq \epsilon_0 = \frac{\beta^{\Delta(H)}}{2 + \Delta(H)}$, $t - 1 \leq \epsilon_0 c$, then by the Key Lemma, G_n contains a copy of H.

$\epsilon_0 \geq (\frac{\beta}{2} - (\frac{\beta}{6})^{(r+1)t}) \frac{(r+1)^t}{2 + (r+1)t} \geq \frac{(\frac{\beta}{2})^{(r+1)t}}{\epsilon^{(r+1)t}} = (\frac{\beta}{2 \times \epsilon})^{(r+1)t} \geq (\frac{\beta}{6})^{(r+1)t} = \epsilon$,

$\epsilon_0 \geq \frac{\epsilon_0 (1 - \epsilon)n}{k} \geq \epsilon_0 (1 - \epsilon)n \geq t - 1$ if $n \geq M(H, \beta)$. Therefore, if $n \geq n_0(H, \beta)$, we are done.

Problem 2.

Show that there exists $\delta = \delta(\epsilon) > 0$ so that if a graph G_n is ϵ-far from being triangle-free, then G contains at least δn^3 triangles.
Solution. Let \(t = \lceil \frac{\epsilon}{4} \rceil \). Then by Szemerédi Regularity Lemma, there is a partition \(V = (V_0, V_1, \ldots, V_k) \) with \(t \leq k \leq M(\epsilon) \) such that \(|V_0| \leq \frac{\epsilon}{4} n \), \(V_1, \ldots, V_k \) have the same size \(c \) and the number of non-\(\frac{\epsilon}{4} \)-regular pairs is at most \(\frac{\epsilon}{4} k^2 \). Purify this graph by deleting the following edges:

- all edges connected with \(V_0 \): the number is \(\leq \frac{\epsilon}{4} n \times n = \frac{\epsilon}{4} n^2 \);
- all internal edges in \(V_1, \ldots, V_k \): the number is \(\leq \frac{c^2}{2} \times k \leq \frac{1}{2k} n^2 \leq \frac{1}{2} n^2 \leq \frac{\epsilon}{8} n^2 \);
- all edges between non-\(\frac{\epsilon}{4} \)-regular pairs: the number is \(\leq \frac{\epsilon}{4} k^2 \times c^2 \leq \frac{\epsilon}{4} n^2 \);
- all edges between pairs with density less than \(\frac{\epsilon}{2} \): the number is \(\leq \frac{\epsilon}{2} c^2 \times \frac{c^2}{2} \leq \frac{\epsilon}{4} n^2 \).

As our graph is \(\epsilon \)-far from being triangle-free, after purification, \(G \) is still not triangle-free. Assume that a triangle is formed among \(V_1, V_2, V_3 \). Then \(\{V_1, V_2\}, \{V_2, V_3\}, \{V_1, V_3\} \) are \(\frac{\epsilon}{4} \)-regular with density at least \(\frac{\epsilon}{2} \).

Let \(U_i = \{v \in V_i : |\Gamma(v) \cap V_i| < \frac{\epsilon}{4} c\} \), \(i = 2 \) or 3. By \(\frac{\epsilon}{4} \)-regularity, \(|U_i| < \frac{\epsilon}{4} c \) for both \(i = 2 \) and 3, implying that \(|(U_2 \cup U_3)^c| \geq (1 - \frac{\epsilon}{2}) c \).

For each \(v \in (U_2 \cup U_3)^c \), since \(|\Gamma(v) \cap V_i| \geq \frac{\epsilon}{4} c \) for both \(i = 2 \) and 3, by \(\frac{\epsilon}{4} \)-regularity, there are at least \(\frac{\epsilon}{4} \times (\frac{\epsilon}{4} c)^2 \) edges between \(\Gamma(v) \cap V_2 \) and \(\Gamma(v) \cap V_3 \), forming \(\frac{\epsilon^3}{64} c^2 \) triangles at vertex \(v \). As \(|(U_2 \cup U_3)^c| \geq (1 - \frac{\epsilon}{2}) c \), the number of triangles in \(G \) is at least \(\frac{\epsilon^3}{64} (1 - \frac{\epsilon}{2}) c^3 \geq \frac{\epsilon^3}{64} (1 - \frac{\epsilon}{2})(1 - \frac{\epsilon}{8}) n^3 \).

Problem 3.

Let \(\mathbb{A} \) be the set of all integers of the form \(4^i + 4^j \) with \(0 \leq i < j \). Show

1. Every \(n \in \mathbb{N} \) has at most 3 different representations of the form

\[a_p + a_q \] with \(a_p < a_q \) and \(a_p, a_q \in \mathbb{A} \).

Solution. Every \(n \in \mathbb{N} \) has at most 1 way to express as \(n = 4^i + 4^j + 4^k + 4^l \), where \(i, j, k, l \) are nonnegative and not all equal. Once written in this form, there are at most 3 ways to be split into \(a_p \) and \(a_q \) in \(\mathbb{A} \), \(a_p < a_q \), such that \(n = a_p + a_q \).

2. For any partition \(\mathbb{A} := \mathbb{A}_1 \cup \mathbb{A}_2 \cup \cdots \cup \mathbb{A}_r \) there exists \(1 \leq s \leq r \) such that infinitely many \(n \in \mathbb{N} \) can be written as \(a'_i + a'_j \) with \(a'_i < a'_j \), \(a'_i, a'_j \in \mathbb{A}_s \), in at least 3 different ways.
Solution. Let $4^\mathbb{N} = \{4^1, 4^2, \ldots\}$. Color \(\binom{4^\mathbb{N}}{2} \) with r colors such that if $4^i + 4^j \in A_s$, then we color $\{4^i, 4^j\}$ with color s. By infinite Ramsey theory, there exists an infinite $S \subset 4^\mathbb{N}$ such that all pairs in S have the same color s. Hence, if an $n \in \mathbb{N}$ can be written as $4^i + 4^j + 4^k + 4^l$, where $4^i, 4^j, 4^k, 4^l \in S$ are distinct, then this n can be written as $a_p + a_q$ with $a_p < a_q$, $a_p, a_q \in A_s$, in at least 3 different ways. Note that there are infinitely many such n, so we are done.

Problem 4.
Show that there is an infinite subset $A := \{a_1 < a_2 < \cdots\}$ of \mathbb{N} such that for all $i \neq j$, $a_i + a_j$ has an even number of prime factors counted without multiplicity.

Solution. Let \mathbb{P} be the set of all primes. Color \(\binom{\mathbb{P}}{2} \) with 2 colors as follows: for any $\{p_i, p_j\} \subset \mathbb{P}$, if $p_i + p_j$ has an odd number of prime factors, then color it with 1; if $p_i + p_j$ has an even number of prime factors, then color it with 2. By infinite Ramsey theory, there exists an infinite $S \subset \mathbb{P}$ such that all pairs in S have the same color. If all pairs in S have color 1, note that either $T = \{p_i \in S : p_i \equiv 1 \pmod{3}\}$ or $U = \{p_i \in S : p_i \equiv 2 \pmod{3}\}$ is infinite, since we are only looking at primes. If T is infinite, define $A = 3T$; if not, then define $A = 3U$, and we are done.

Problem 5.
Define the Cochromatic Number of a graph G as the smallest size of a partition of the vertex set of G in which each part is either an independent set or induces a complete subgraph in G. Suppose $\chi(G) = \omega(G) = n$. Then show that there exists a subgraph H of G whose cochromatic number is at least $\frac{n}{2\log_2 n}$.

Solution. There exists k such that $R(k, k) \leq n < R(k + 1, k + 1)$. As $n < R(k + 1, k + 1)$, there exists $H \subset G$ such that all complete subgraphs and all independent sets are of size $\leq k$. Note that $R(k, k) > 2^k \Rightarrow 2\log_2 R(k, k) > k$. As a result, $co(H) =$ size of partition $\geq \frac{n}{k} > \frac{n}{2\log_2 R(k, k)} \geq \frac{n}{2\log_2 n}$.
Problem 6.

Determine all \(k \in \mathbb{N} \) for which the following statement holds. There exists \(n_0(k) \in \mathbb{N} \) such that for all \(n \geq n_0(k) \), any connected graph on \(n \) vertices contains an \textbf{induced} subgraph \(H \) with \(e(H) = k \).

Solution. If \(k \neq \binom{r}{2} \) for any \(r \), then for all \(n \in \mathbb{N} \), \(K_n \) does not contain an induced subgraph \(H \) with \(e(H) = k \).

Now, assume \(k = \binom{r}{2} \) for some \(r \). If there exist vertices \(u, v \) such that the distance between \(u \) and \(v \) is \(k \), then the shortest path from \(u \) to \(v \) is an induced subgraph \(H \) with \(e(H) = k \) since there cannot be any shortcut edge along this path. If there exists a vertex \(u \) with degree at least \(R(r-1,k) \), then in \(\Gamma(u) \), there is either a clique of size \(r-1 \) or an independent set of size \(k \). A clique of size \(r-1 \) with form a clique of size \(r \) with vertex \(u \), obtaining an induced subgraph \(H \) with \(e(H) = k \).

An independent set of size \(k \) will form a star of size \(k+1 \) with vertex \(u \), obtaining an induced subgraph \(H \) with \(e(H) = k \).

If the diameter \(D \) of the graph is less than \(k \), and the maximum degree \(\Delta \) is less than \(R(r-1,k) \), then the number of vertices \(n \) will be less than \(1 + \Delta + \Delta^2 + \cdots + \Delta^D \). Hence, if \(n \geq n_0(k) = 1 + R(r-1,k) + \cdots + R(r-1,k)^k \), then any connected graph on \(n \) vertices contains an induced subgraph \(H \) with \(e(H) = k \).