The Probabilistic Method

Due on or before Friday, 21 May.
There are two bonus problems towards the end. These problems are a little harder, so partial answers here will get partial credit.

Problem 1: Let X be a random variable taking integral non-negative values and suppose $\mathbb{E}(X^2) < \infty$. Prove\(^\text{1}\) that
\[
\mathbb{P}(X = 0) \leq \frac{\mathbb{V}(X)}{\mathbb{E}(X^2)}.
\]

Problem 2: Let $v_1 := (x_1, y_1), v_2 := (x_2, y_2), \ldots, v_n = (x_n, y_n)$ be n vectors with each $x_i, y_i \in \mathbb{Z}$. Suppose further, that $|x_i|, |y_i| \leq \frac{2n^2}{100\sqrt{n}}$ for all i. Prove that there exist disjoint sets $I, J \subseteq [n]$ such that
\[
\sum_{i \in I} v_i = \sum_{j \in J} v_j.
\]

Problem 3: By a cyclic interval in \mathbb{F}_p of size r for $r \in \mathbb{N}$, we mean a set of the form $\{a + 1, a + 2, \ldots, a + r\}$ for some $a \in \mathbb{F}_p$. Prove that for every set X of at least $4k^2$ distinct elements in \mathbb{F}_p for an odd prime p there exist $a, b \in \mathbb{F}_p$ such that $aX + b := \{ax + b | x \in X\}$ intersects every cyclic interval in \mathbb{F}_p of length at least p/k. (Hint: Consider a fixed partition \mathcal{I} of \mathbb{F}_p into $2k$ cyclic intervals of equal length. Observe that a set X intersects every cyclic interval in \mathbb{F}_p iff it intersects every $I \in \mathcal{I}$).

Problem 4: For an integer $m > 0$, let \mathbb{Z}_m denote the set of integers modulo m. For any two subsets A, B of \mathbb{Z}_m, and $x \in \mathbb{Z}_m$, denote
\[
s(A, B, x) := |\{(a, b)|a \in A, b \in B, a + b = x\}|.
\]

For any partition (A, B) of \mathbb{Z}_m, denote
\[
c(A, B) := \max_{x \in \mathbb{Z}_m} |s(A, A, x) + s(B, B, x) - 2s(A, B, x)|.
\]

Prove that for every m odd, there is a partition of \mathbb{Z}_m into two (disjoint) parts (A, B) such that $c(A, B) = O(\sqrt{m \log m})$.

\(^1\)Note that this improves upon Chebyshev’s inequality as Chebyshev only proves $\mathbb{P}(X = 0) \leq \frac{\mathbb{V}(X)}{\mathbb{E}(X^2)}$.\n
Problem 5: Show that if $G = G_{n,1/2}$ is a random graph, then for any $\epsilon > 0$, asymptotically almost surely G has no bipartite subgraph with at least $(1/2 + \epsilon)e(G)$ edges.

Bonus Problems:

Problem 1*: Let $G = (V, E)$ be a graph with n vertices and minimum degree $\delta > 10$. Prove that there is a partition of V into two disjoint subsets A and B such that $|A| = O(n \log \delta/\delta)$, and each vertex of B has at least one neighbor in A and at least one neighbor in B.

Problem 2*: Call a family \mathcal{F} of subsets of $[n]$ Distinguishing if for every two distinct subsets A, B of $[n]$ there exists $F \in \mathcal{F}$ so that $|A \cap F| \neq |B \cap F|$. Show that there exists such a distinguishing family \mathcal{F} of $[n]$ of size $|\mathcal{F}| \leq (2 + o(1))\frac{n}{\log_3 n}$.