The Probabilistic Method

Due Monday 26th April, Noon.

Problem 1: Suppose \(n \geq 4 \) and \(\mathcal{H} \) is an \(n \)-uniform hypergraph with at most \(\frac{4^n - 1}{3^n} \) edges. Show that one can color the vertices of \(\mathcal{H} \) using 4 colors such that every edge has at least one vertex of each color.

Problem 2: Prove that there is an absolute constant \(c > 0 \) with the following property. Let \(A \) be an \(n \times n \) matrix with pairwise distinct entries. Then there is a permutation of the rows of \(A \) so that no column in the permuted matrix contains an increasing subsequence of length at least \(c \sqrt{n} \).

Problem 3: If \(\{(A_i, B_i)\}_{1 \leq i \leq h} \) is a family of pairs of subsets of a set \(S \) such that

(i) \(|A_i| = k, |B_i| = l \) for all \(i \).

(ii) For all \(i \), we have \(A_i \cap B_i = \emptyset \).

(iii) \((A_i \cap B_j) \cup (A_j \cap B_i) \neq \emptyset \) if \(i \neq j \).

Show that \(h \leq \frac{(k+l)^k+l}{k^l} \).

Problem 4 Let \(k > 1 \) and suppose \(G \) is a graph without loops satisfying \(e(G) = m, \Delta(G) \leq 2k - 1 \). Show that there exists a bipartite subgraph \(H \subset G \) such that \(e(H) \geq \frac{km}{2k - 1} \).

Problem 5 A tournament \(T_n \) with \(n \) players is said to possess an *Absolute Winner-Loser Pair* (abbreviate AWLP) of size \(k \) if there are disjoint sets of players \(A, B \) such that \(|A| = |B| = k \) and every player of \(A \) beats every player of \(B \). Prove that for any given integer \(k \) and sufficiently large \(n \), every tournament with \(n \) players has an AWLP of size \(k \). In fact, if \(n(k) \) denotes the minimum \(n \) such that any tournament on \(n \geq n(k) \) players has an AWLP of size \(k \) then \(n(k) \leq k(2 + o(1))^k \).

Problem 6: Prove that there is a positive constant \(c \) so that for all \(n > 1 \) and every \(n \)-uniform hypergraph \(\mathcal{H} \) with at most \(cn^{1/4}2n \) edges, there is an ordering of the vertices of \(\mathcal{H} \) such that there are no two edges \(A \) and \(B \) that intersect in a unique element, and all members of \(A \setminus B \) precede all those of \(B \setminus A \), while the unique element in \(A \cap B \) appears

1. Hint: See theorem 1.3.3 of the text for a similar problem.
after all those of $A \setminus B$ and before all those of $B \setminus A$. Hence conclude that for c, n, and \mathcal{H} as above, \mathcal{H} is two-colorable.\footnote{Do NOT use the Beck or R-S improvement for the lower bound for $m(n)$.