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Abstract

Significance: Light-sheet fluorescence microscopy (LSFM) is a powerful technique for high-
speed volumetric functional imaging. However, in typical light-sheet microscopes, the illumi-
nation and collection optics impose significant constraints upon the imaging of non-transparent
brain tissues. We demonstrate that these constraints can be surmounted using a new class of
implantable photonic neural probes.

Aim:Mass manufacturable, silicon-based light-sheet photonic neural probes can generate planar
patterned illumination at arbitrary depths in brain tissues without any additional micro-optic
components.

Approach: We develop implantable photonic neural probes that generate light sheets in tissue.
The probes were fabricated in a photonics foundry on 200-mm-diameter silicon wafers. The light
sheets were characterized in fluorescein and in free space. The probe-enabled imaging approach
was tested in fixed, in vitro, and in vivo mouse brain tissues. Imaging tests were also performed
using fluorescent beads suspended in agarose.

Results: The probes had 5 to 10 addressable sheets and average sheet thicknesses <16 μm for
propagation distances up to 300 μm in free space. Imaging areas were as large as ≈240 μm ×
490 μm in brain tissue. Image contrast was enhanced relative to epifluorescence microscopy.

Conclusions: The neural probes can lead to new variants of LSFM for deep brain imaging and
experiments in freely moving animals.
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1 Introduction

New methods in optogenetics1–3 and, especially, the advent of fluorescent reporters of neuronal
activity, have opened many novel approaches for actuating and recording neural activity en
masse, through the use of powerful free-space single-photon and multi-photon microscopy
methods.4–8 However, existing approaches to functional imaging of the brain have significant
limitations. Single-photon (1P) epifluorescence imaging readily lends itself to high frame-rate
wide-field microscopy, but, in its simplest implementations, image contrast is hampered by
out-of-focus background fluorescence, and the depth of imaging is restricted by the optical
attenuation in the tissue. Confocal imaging improves the contrast by optical sectioning, and
out-of-focus light is rejected using a pinhole; however, a laser beam must be scanned across
each point of the tissue and this significantly slows the image acquisition rate.9 Multi-photon
microscopy is also inherently a point or line scanning method, but because it uses infrared exci-
tation (which provides a longer optical attenuation length5), the imaging depth in brain tissue can
be extended to ∼1 mm and the focus of the light beam can be rastered in three-dimensions to
achieve volumetric imaging.5,10–12

Light-sheet fluorescence microscopy (LSFM), which is also known as selective-plane illu-
mination microscopy, combines the benefits of fast wide-field imaging, volumetric imaging, and
optical sectioning.13 In conventional LSFM, a thin sheet of excitation light is generated either by
cylindrical focusing elements or digitally scanning a Gaussian or Bessel beam.14–16 The sheet is
translated in one dimension across the sample; the fluorescence images are then sequentially
collected in the direction perpendicular to the illumination plane to form a volumetric
image.17 With digitally scanned two-photon (2P) LSFM, it is also possible to increase the optical
penetration depth.16 Non-digitally scanned 1P-LSFM is inherently faster than point- or line-scan
methods; and since the illumination is restricted to a plane, photobleaching, phototoxicity, and
out-of-focus background fluorescence are reduced compared to epifluorescence microscopy.
However, conventional LSFM requires two orthogonal objective lenses, and appropriately
positioning these largely limits the imaging modality to quasi-transparent organisms (e.g.,
C. elegans, Drosophila embryos, and larval zebrafish), chemically cleared mammalian brains,17

and brain slices.18 An LSFM variant called swept confocally aligned planar excitation (SCAPE)
microscopy, which requires only a single objective, removes these constraints.6,19 While in vivo
calcium neural imaging has been demonstrated using SCAPE in mice,6 miniaturization of the
system to be compatible with freely moving animal experiments remains challenging due to
the additional optics required.

To make LSFM compatible with non-transparent tissues such as mammalian brains and,
eventually, behavioral experiments with freely moving animals necessitates drastic miniaturiza-
tion of the light-sheet generation and fluorescence imaging compared to today’s archetypical
table-top systems. The feasibility of fluorescence microscopy in small and lightweight form
factors has already been established by way of head-mounted microscopes for 1P and 2P calcium
imaging in mice,4,20–23 though the endoscopic implantation of the requisite gradient index
(GRIN) lenses, with typical diameters of 0.5 to 2 mm, displaces a significant amount of brain
tissue.

On the other hand, it remains a formidable and unsolved challenge to generate light sheets by
implantable elements at arbitrary brain depths, while minimizing tissue displacement and
remaining compatible with a sheet-normal imaging system. For example, in Ref. 24, to generate
a light sheet perpendicular to the imaging GRIN lens required implantation of a millimeter-scale
prism coupled to a second GRIN lens. In another example, in Ref. 25, a single light sheet was
produced from a microchip using a grating coupler (GC), a glass spacer block, and a metallic
slit lens. The overall device was >100-μm thick and >600-μm wide, which would displace
a significant amount of tissue upon implantation.
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Here, we solve these challenges using wafer-scale nanophotonic technology to realize
implantable, silicon-based, light-sheet photonic neural probes that require no additional micro-
optics. They are fully compatible with free-space fluorescence imaging (light collection) outside
the brain, where the axis of collection is oriented perpendicular to the light sheets. These silicon
(Si) probes synthesize light sheets in tissue using sets of nanophotonic GCs integrated onto thin,
implantable, 3-mm-long Si shanks with 50 to 92 μm thickness, widths that taper from 82 to
60 μm along their length, and sharp tips at the distal ends. These prototype photonic neural
probes (Fig. 1) are capable of generating and sequentially addressing up to five illumination
planes with a pitch of ≈70 μm. Additionally, the form factor and illumination geometry of the
probes open an avenue toward their integration with GRIN lens endoscopes and miniature micro-
scopes, as shown conceptually in Fig. 2(b); offering a singular pathway to rapid, optically sec-
tioned functional imaging at arbitrary depths in the brain.

The probes were fabricated on 200-mm Si wafers in a Si photonics foundry for manufacturing
scalability and mass producibility. Elsewhere, we have used this technology to realize photonic
neural probes that emit dynamically reconfigurable, patterned light with cellular-scale beam
widths27 and steerable beams without moving parts,28 adding to a growing number of photonic

Fig. 1 Light-sheet photonic neural probes. (a) Illustration of the light-sheet synthesis method
(adapted from Ref. 26). A series of simultaneously fed optical waveguides emits light via a row
of GCs designed for large divergences along the sheet-axis and small divergences along the
GC-axis. (b) Optical micrograph of a fabricated neural probe, (inset) scanning electron micrograph
of the tip of a shank. (c) Top-down schematics of the neural probe. (d) and (e) Annotated optical
micrographs of two neural probes with various GC rows emitting light sheets. (d) Neural probe
design with sheets generated from four shanks. (e) Probe design with sheets generated from two
shanks (“half-sheet design”). (f) Optical micrographs showing the routing network from the probe
in (d) guiding light for optical inputs to two different edge couplers. The images in (d) and (e) have
been contrast- and brightness-adjusted to enhance the visibility of the waveguides.
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neural probe demonstrations with increasing levels of integration and sophistication.29–31 In this
work, we employ this integrated nanophotonics technology to realize implantable, microscale
probes that form light sheets for imaging over areas as large as ≈240 μm × 490 μm in brain
tissue. Our preliminary results were reported in Ref. 26. Here, we report in detail the imaging
properties of the light-sheet neural probes, characterizing their performance by means of sus-
pended fluorescent beads in phantoms as well as in adult mouse brain slices. We also report
a first demonstration of in vivo calcium imaging using a prototype light-sheet neural probe that
we fabricated on a 100-mm wafer, as in Ref. 27, prior to our foundry-fabricated probes.

2 Results

2.1 Photonic Neural Probes on 200-mm Silicon Wafers

To ensure that fabrication of our photonic neural probes can be scaled up for dissemination to the
neuroscience community, we have adapted from the outset foundry Si photonics manufacturing
processes. The neural probes described herein were fabricated in a 200-mm Si photonic line;
silicon nitride (SiN) waveguides (135-nm nominal thickness) with SiO2 cladding were patterned
onto Si wafers, deep trenches were etched in the wafers to define the probe shapes, and the
wafers were thinned to thicknesses of 50 to 92 μm. The shank thickness can be reduced in future
iterations to 18 μm, as in Refs. 26 and 27. The fabrication is more fully detailed in Sec. 4,
“Methods.”

The light-sheet neural probe design is shown in Figs. 1(a)–1(c). Light is coupled onto the
probe chip using fiber-to-chip edge couplers that taper from 5.2 μm in width at the chip facet to
single-mode waveguides with widths of 270 to 330 nm. The waveguide-coupled optical power is
divided between four to eight waveguides using a routing network consisting of 1 × 2multimode
interference splitters32 and in-plane waveguide crossings.33 The light is then guided along the
implantable shanks via 1-μm wide, multimode waveguides, and subsequently emitted near the
distal end of the probe by a row of GCs. Light sheets are synthesized by overlapping the emission
from an array of simultaneously fed GCs. Each row of GCs generates a separate light sheet. The
width, period, and duty cycle of the GCs are designed to achieve a large output divergence angle

Fig. 2 Optical addressing method and proposal for deep-brain photonic-probe-enabled LSFM.
(a) Schematic of the optical addressing method (not to scale). The scanning system addresses
on-chip edge couplers via spatial addressing of the cores of an image fiber bundle. Bottom inset:
micrographs of the distal facet of a fiber bundle connected to the scanning system with different
cores addressed (adapted from Ref. 26). Top inset: annotated photograph of a packaged light-
sheet neural probe inserted into an agarose block. (b) Illustration of the proposed use of the light-
sheet neural probe with a GRIN lens endoscope for deep brain LSFM (not to scale). In this first
investigation of the probe functionality, the configuration in (b) has not been demonstrated,
and instead, the results here focus on a simpler imaging configuration where light-sheet probe
illuminated samples are directly imaged with a fluorescence microscope without a GRIN lens
(see Sec. 2).
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along the width-axis of the sheet, and only a small divergence along the thickness-axis. Nominal
lateral GC widths, periods, and duty cycles are 1.5 μm, 440 to 480 nm, and 50%, respectively.
By contrast, our previous neural probe designs in Refs. 27 and 28 emitted low-divergence beams
that are incompatible with light-sheet synthesis.

The waveguide routing network is detailed in Fig. S1 in the Supplementary Material. The
photonic components were designed for a wavelength of 488 nm to enable excitation of common
fluorophores such as green fluorescent protein (GFP) and green calcium dyes; however, these
components can also be designed for green, yellow, and red wavelengths, as we have shown in
Ref. 34 for excitation of other fluorophores. The probe shanks are 3 mm in length and separated
with a 141-μm pitch; the rows of GCs integrated onto the shanks, each row corresponding to a
different sheet, are separated by a 75-μm pitch along the shanks. The shanks taper in width from
82 to 60 μm over their length and each converges to a sharp tip at its distal end.

To rapidly switch between different sheets, we used a spatial addressing approach similar to
Ref. 35 and as illustrated in Fig. 2(a). An image fiber bundle was epoxied to the probe chip on a
common carrier, with each edge coupler on the probe aligned to a different core of the fiber
bundle. By actuating the microelectromechanical systems (MEMS) mirror, light was input to
a selected core of the fiber bundle and the corresponding input waveguide for a light sheet.
The light-sheet switching speed was limited to ≈5 ms (0.2 kHz) in the following demonstrations,
a constraint arising from the MEMS mirror. Future designs will employ optimized MEMS mir-
rors operating in resonance mode that can yield switching frequencies >30 kHz.36 Video S1 and
Video S2 demonstrate rapid switching between different light sheets from packaged probes. The
fiber bundle used in these first experiments did not maintain polarization, whereas the photonic
circuitry was polarization dependent. Therefore, in these first probe prototypes, the fiber bundle
must be held still during imaging. This limitation can be overcome in future designs with use of
polarization-maintaining multicore fibers.

Table 1 summarizes three light-sheet photonic neural probes we have carefully evaluated and
report upon in this article. Beam profiles for the three probes are characterized. Probe 1 is used
for imaging fluorescent beads and fixed tissue, and Probe 2 is used for in vitro imaging. In the
table, the “emission angle” refers to the angle of the sheet relative to the normal of the shanks.
It is noteworthy that the sheets were designed to emit at an angle of ∼20 deg in tissue; this
permits implanting the probe next to an imaging lens such that the light sheets can be generated
beneath the lens parallel to the focal plane.

Two probe designs were investigated: a first, in which each light sheet is generated by a row
of eight GCs spanning four adjacent shanks (Probe 1, with five independent sheets), and a second
based on a “half-sheet design,” in which each sheet is generated by a row of four GCs spanning
two adjacent shanks (Probes 2 and 3, with 10 independent half-sheets). In principle, the half-
sheet design roughly doubles the sheet intensity for a given input optical power to the probe at
the expense of a smaller sheet width. More advanced designs can achieve even larger sheet
widths by distributing GCs along >4 shanks at the expense of: (1) a more complex routing
network with higher optical losses, and (2) higher input optical powers to the probe chip to
achieve a given light-sheet intensity.

2.2 Light-Sheet Generation

The photonic circuitry employed in these devices is designed to provide lower loss for trans-
verse-electric (TE) polarized light. In the following characterization and imaging work, we use

Table 1 Light-sheet photonic neural probes described in this work.

Probe name
Nominal probe
thickness (μm)

Shanks
per sheet

Number of
sheets

Emission angle
in fluorescein (°)

Sheet pitch in
fluorescein (μm)

Probe 1 92 4 5 23.5 69

Probe 2 92 2 10 19.8 71

Probe 3 50 2 10 22.3 69
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TE-polarized optical inputs to the probe chips. The insertion loss of the neural probes (defined
here as the ratio of emitted power from the GCs and the input laser power to the scanning system)
is summarized in the histograms for Probes 1 and 2 in Fig. S2 in the Supplementary Material.
Probe 3 broke before sheet transmissions were able to be characterized.

Transmission ranged from −38 to −20 dB, with a median of about −30 dB. This large varia-
tion in transmission was due both to the irregularly positioned individual cores within the fiber
bundles and alignment drift during attachment of the fiber to the probe chip. Sheet transmissions
measured with a single-mode fiber with optimized alignment typically varied by <3 dB. In future
designs, such transmission variations can be reduced by implementing optimal fiber-to-chip
packaging and by employing custom multicore fibers with a constant core pitch that closely
matches that of the on-chip edge couplers. Nonetheless, by modulating the input laser power
while switching between sheets or adjusting the MEMS mirror positions for each sheet, these
variations can be compensated with the present devices.

We have measured the intrinsic properties of light sheets generated both in free space and in
non-scattering fluorescein solutions—characterizing the light-sheet thicknesses, their intensity
uniformities, and the magnitudes of associated, higher-order GC diffraction. We determine the
in-plane sheet intensity profile by imaging top-down while the probes are immersed in fluores-
cein solution [Fig. 3(a)]. When imaging from the side, the sheet thickness is overestimated since
out-of-focus light can also be captured. In the free-space method, Fig. 4(a), a coverslip coated on
one side with a fluorescent thin film is placed above the probe parallel to the shanks, and a cross-
section of the beam profile is imaged on the coverslip. The light-sheet intensities were volumet-
rically profiled versus propagation distance by translating the probe relative to the coverslip.

Figures 3(b)–3(c) show top-down fluorescence light-sheet profiles from the probes in fluo-
rescein. The GC emissions diverge and overlap to form regions of moderately uniform illumi-
nation. For Probe 1, the semi-uniform region, which we define to be the region where the
maximum intensity variations were <2.5×, is the green region in the binned-color-scale sheet
profile of Fig. 3(b). The semi-uniform illumination region forms a continuous sheet at a propa-
gation distance of about 180 μm and spans an area>0.22 mm2. In scattering media such as brain
tissue, the semi-uniform illumination region will form at shorter propagation distances away

Fig. 3 Light-sheet characterization in fluorescein. (a) Top-down and side-view photographs of a
light-sheet neural probe immersed in a fluorescein solution. (b) Top-down light-sheet intensity pro-
file for Probe 1–Sheet 5 imaged with an epifluorescence microscope above the probe. The plot on
the right is the sheet profile with a binned color scale to show a semi-uniform sheet region (green)
over which the intensity varies by at most 2.5×. (c) Top-down light-sheet intensity profiles for Probe
2–Sheet 10 and Probe 3–Sheet 7. (d) Side profile measurements of the light sheets from Probe 1
captured with a secondmicroscope aligned to the side of the fluorescein chamber. The dashed red
lines delineate the top surface of the shanks. The scale bars are 100 μm.
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from the probe. The side profiles of the Probe 1 light sheets in fluorescein are shown in Fig. 3(d),
and side profiles from Probes 2 and 3 are shown in Fig. S3 in the Supplementary Material. Weak
second-order diffraction results in an additional, upward-pointing beam for each sheet; this is not
visible in Fig. 3(d) due to the low second-order diffraction of Probe 1, but it is visible for Probe 2
in Fig. S3 in the Supplementary Material. The second-order diffraction profiles were similar to
the light sheets, forming “second-order light sheets.” The light-sheet optical powers were >15×,
3×, and 16× larger than the second-order diffraction powers for Probes 1 to 3, respectively.

Figure 4(c) shows light-sheet cross-sections at several propagation distances for Probe 1
imaged with the free-space beam profiling method. The extracted average full width at half
maximum (FWHM) light-sheet thickness versus propagation distance for sheets from Probes
1 to 3 are shown in Fig. 4(b). The sheet thicknesses, averaged over the width of each sheet
cross-section, are <16 μm for propagation distances up to 300 μm. Since the coverslip was not
perpendicular to the sheet propagation axis, the propagation angle of each sheet is used to con-
vert the thickness of the sheet projection on the coverslip to a sheet thickness corrected for align-
ment perpendicular to the propagation axis. The apparent reduction of FWHM divergence for
Probes 2 and 3 sheets at propagation distances above 300 μm in Fig. 4(b) is a consequence of
the evolution of the sheet shape. The full width at 1∕e2 of maximum thickness (Fig. S4 in the
Supplementary Material), in general, increases linearly with propagation distance.

Small amplitude fringes are visible in the sheet cross-sections in Fig. 4(c) and the top-down
profiles in Fig. 3. These fringes are caused by multipath interference from the multiple GCs that
contribute to each sheet. The interference pattern is related to the differing waveguide path
lengths connected to each GC and the coherence length of the laser. In brain tissue, we expect
these fringes will be smoothed (suppressed) by the scattering properties of the medium.

Fig. 4 Free-space light-sheet profile measurements. (a) Illustration of the light-sheet profile meas-
urement protocol using a coverslip coated with a fluorescent thin film (not to scale). Fluorescence
images of the coverslip provide cross-sectional profiles of the incident light sheet, and vertical
translation of the probe enables volumetric profiling. (b) Average FWHM light-sheet thicknesses
versus propagation distance for sheets from Probes 1 to 3. The sheet thicknesses are averaged
over the sheet width [vertical axis in (c)] for each sheet cross-section. (c) Light-sheet cross-
sections imaged at various light-sheet propagation distances, Lprop, for Probe 1. The scale bars
are 150 μm.
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2.3 Light-Sheet Fluorescence Imaging

We investigate the efficacy of the probes for LSFM by first imaging fluorescent beads suspended
in agarose, and then by imaging fixed and in vitro brain tissues. Since most miniaturized micro-
scopes today use wide-field 1P fluorescence imaging, we compare the images obtained with the
light-sheet probe illumination against those with epi-illumination using the same microscope.
Figures 5(a)–5(c) illustrate the imaging setup. An electrically tunable lens was attached to the

Fig. 5 Imaging of fluorescent beads suspended in agarose. Illustrations of the imaging apparatus
for (a) light-sheet probe illumination and (b) microscope epi-illumination (not to scale).
(c) Photographs of Probe 1 inserted into an agarose block during light-sheet probe illumination
and microscope epi-illumination. (d) Imaging of fluorescent beads suspended in an agarose block
using light-sheet illumination from Probe 1 (Sheets 1, 3, and 5) and epi-illumination. First column:
light-sheet illumination images with no filter cube in the microscope path to show both scattered
excitation light and fluorescence. The eight large bright spots at the left of the images are the
emitting GCs on the shanks. Second column: fluorescence images with light-sheet illumination
and the filter cube in the microscope path. Third and fourth columns: fluorescence images of the
regions of interest (ROIs) delineated by the orange boxes with light-sheet and epi-illumination,
respectively. The epi-illumination images were captured at the same focal planes as the corre-
sponding light-sheet images. The second to fourth columns are normalized to the maximum inten-
sity in each image and the color scale is truncated at 0.7 to enhance bead visibility. The scale bars
are 50 μm.
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back of the objective to provide fast focus adjustment to the different light-sheet depth planes.
When the epi-illumination was on, the input to the probe was off, and vice versa. The compar-
isons are performed at the same image plane, i.e., the tunable lens and microscope objective are
not adjusted when switching between light-sheet and epi-illumination. The probe insertion angle
was set to orient the light sheets parallel to the top surface of the sample (sheet-normal imaging).

To demonstrate optical sectioning, Probe 1 was inserted into an agarose block containing
3-μm-diameter fluorescent beads. Figure 5(d) shows the fluorescence images captured using
three of the sheets of Probe 1 compared with epifluorescence images. Significantly out-of-focus
beads and fluorescence are not present with light-sheet probe illumination. This yields a dramatic
reduction of the background intensity in comparison with epi-illumination. We quantify the gain
in contrast in imaging experiments with tissue slices; discussed next. Video S3 shows a simple
proof-of-concept volumetric imaging example. The video demonstrates fluorescence imaging of
fluorescent beads in an agarose block with switching between three of the probe-generated
sheets, and synchronized focus switching enabled by the electrically tunable lens.

We subsequently imaged the hippocampus in a fixed brain slice obtained from a Thy1-
GCaMP6s mouse. Figure 6 shows the probe- and epi-illuminated fluorescence images captured
following insertion of Probe 1 into the fixed tissue. The tissue was about 1-mm thick, and imaging
was performed with Sheets 3 and 4. Again, the probe-illuminated images showed remarkably less
background fluorescence than epi-illumination. Neurons are observable over a sheet area of
≈240 μm × 490 μm for Sheet 3, and different neurons are visible with Sheet 3 versus Sheet 4
illumination. The neurons in the image from Sheet 4, which was 69 μm deeper in the tissue than
Sheet 3, appear less in focus; this is due to the scattering of the fluorescence emission in the tissue.

To quantify the difference in contrast between probe- and epi-illumination, an algorithm
described in Supplementary Note 1 in the Supplementary Material is applied to identify the
neurons in each image, and the neurons found in both images are selected (Fig. 6 “Neuron
ROI”) for contrast analysis using the definition of contrast in Supplementary Note 1.
Figure 6 shows the distributions of the image contrasts of the identified neurons. The contrast
distributions of the two illumination methods are statistically different (p < 0.001, two-tailed
Wilcoxon signed-rank test), with the average contrast for light-sheet illumination higher than
that of epi-illumination by 3.8× for Sheet 3 and 3.2× for Sheet 4. 98.6% and 100% of the neurons
for Sheets 3 and 4, respectively, exhibit higher contrast using light-sheet illumination compared
to epi-illumination. The color insets in Fig. 6 show the contrast of each pixel within each neuron

Fig. 6 Comparison of light-sheet neural probe illumination and microscope epi-illumination for
fluorescence imaging of fixed brain tissue (dentate gyrus) from a Thy1-GCaMP6s mouse. Two
adjacent light sheets from Probe 1 were used: (a) Sheet 3 and (b) Sheet 4. Sheet 3 was
≈60 μm in depth from the surface of the brain tissue, and Sheet 4 was 69 μm deeper than
Sheet 3. Top row: fluorescence images for epi- and light-sheet illumination with insets indicating
the contrast of neurons within an ROI of high neuron density. The scale bars are 100 μm. Bottom
row: ROIs of identified neurons and corresponding histograms of image contrast for the identified
neurons; the contrast of each neuron is the average over its ROI.

Sacher et al.: Implantable photonic neural probes for light-sheet fluorescence brain imaging

Neurophotonics 025003-9 Apr–Jun 2021 • Vol. 8(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 11 Jan 2024
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1117/1.NPh.8.2.025003.6
https://doi.org/10.1117/1.NPh.8.2.025003.s01


ROI, while the histograms show neuron contrasts that are averaged over each neuron ROI.
The illumination intensities for the fixed tissue and in vitro imaging are discussed in Sec. 5.1.

Photonic neural probe tests were also performed for in vitro functional calcium imaging
using a 450-μm-thick brain slice, prominently featuring the auditory cortex, from a Thy1-
GCaMP6s mouse. Preparation of the tissue is described in Sec. 4, “Methods.” For increased
neuronal activity, the brain slice was perfused with an artificial cerebrospinal fluid (aCSF) sol-
ution containing 4-aminopyridine (4-AP).37 Figure 7(a) shows maximum projection images over
time from the probe- and epi-illumination videos of the auditory cortex region of the brain slice.
Sheet 5 from Probe 2 was used, and the probe was inserted into the brain slice such that Sheet 5
was ≈60 μm in depth from the surface of the slice. The data analysis procedure for neuron
identification and extraction of the fluorescence change, ΔF∕F, is described in Supple-
mentary Note 2 in the Supplementary Material. Figure 7(c) shows the ΔF∕F time traces of the
16 identified active neurons using probe-illumination, and ΔF∕F values as large as 5.5 were
observed. Figure 7(d) shows the image contrast of five of the neurons at the peaks of all observed
events; the neurons were selected with the criterion that at least five events were recorded for
both light-sheet and epi-illumination. Higher image contrast is observed for light-sheet compared
to epi-illumination for four of the five neurons (p < 0.01, two-tailed Wilcoxon rank-sum test);

Fig. 7 In vitro functional calcium imaging of a brain slice from a Thy1-GCaMP6s mouse.
(a) Maximum projection images of 142- and 92-s segments of the recorded video for light-sheet
and epi-illumination, respectively, with annotations showing the approximate positions of the
shanks in the image plane. The scale bars are 50 μm. (b) Light-sheet maximum projection image
with ROIs for identified active neurons shown. (c) Fluorescence change, ΔF∕F , time traces of all
active neurons identified in (b). (d) Box plots showing the image contrast of five neurons at the
peaks of all events recorded for light-sheet and epi-illumination; the numbers and colors of the box
plots correspond to the ROIs in (b). Asterisks indicate significant group differences. * denotes
p < 0.05, ** denotes p < 0.01 and *** denotes p < 0.001, two-tailed Wilcoxon rank-sum test. A
sample of the calcium imaging video with light-sheet probe illumination is presented (Video 1,
12.9 MB, MP4 [URL: https://doi.org/10.1117/1.NPh.8.2.025003.1]). A sample of the calcium im-
aging video with epi-illumination is also presented (Video 2, 29.8 MB, MP4 [URL: https://doi.org/
10.1117/1.NPh.8.2.025003.2]). The videos are accelerated 5×. The ΔF∕F time traces for epi-
illumination are shown in Fig. 12 in Sec. 5.2.
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a possible explanation for the lower light-sheet contrast of the one neuron is that its depth may
have been outside or on the periphery of the sheet. The ratios of the median light-sheet- and epi-
illumination neuron contrasts were 6.71, 0.77, 2.04, 2.46, and 3.39. Samples of calcium imaging
video with both probe- and epi-illumination are shown in Video 1 and Video 2.

During calcium imaging experiments, illumination was alternated between probe- and epi-
illumination. The full time-traces are shown in Fig. 12 in Sec. 5.2. Due to the larger background
fluorescence of epi-illumination, the apparently larger ΔF∕F for light-sheet compared to epi-
illumination does not necessarily represent a larger signal-to-noise ratio of the calcium events. A
direct comparison of signal-to-noise ratio for calcium events under these two illumination con-
ditions is beyond the scope of this work.

To investigate the operation of the probes in tissues with a higher density of labeled neurons,
tests were also performed on a green calcium dye loaded (Cal-520 AM, AAT Bioquest), 450-μm
thick, cerebellum brain slice from a wild type mouse. The tissue preparation is described in
Sec. 4, and 4-AP was added to the aCSF perfusion solution. Probe 2 was inserted into the brain
slice, and light-sheet illumination was applied from Sheet 10, which was positioned <50 μm in
depth from the brain slice surface (Fig. 8). Full fluorescence time-traces with the illumination
cycled between probe- and epi-illumination are shown in Fig. 13 in Sec. 5.2. Samples of the
calcium imaging video are shown in Video 3 and Video S4. The labeled cells are likely a combi-
nation of neurons and glial cells. The data analysis procedure is described in Supplementary
Note 2 in the Supplementary Material. For the probe illumination in Fig. 8, ΔF∕F values as
high as 4.3 were observed, and 73 cells were identified. The variation in maximal ΔF∕F values
in Fig. 8(c) may arise from a combination of the position of the cell within the sheet (both

Fig. 8 In vitro functional calcium imaging of a Cal-520 AM loaded brain slice from a wild type
mouse using light-sheet neural probe illumination. (a) Maximum projection fluorescence image
of 36.6 s of the recorded video with annotations showing the approximate positions of the shanks
in the image plane. (b) Number of calcium events and (c) maximum ΔF∕F observed for all iden-
tified cells; (b) and (c) are of the same scale as (a), and the scale bars are 50 μm. (d) Fluorescence
change, ΔF∕F , time traces of 6 cells; the first 4 cells had the highest number of events and the last
2 had the highest peak ΔF∕F among the remaining cells. The ROIs for these cells are shown in
(a) with colors and numbers corresponding to the time traces in (d). Breaks in the time traces
correspond to times when the illumination was switched to epi-illumination. A sample of the cal-
cium imaging video with light-sheet probe illumination is presented (Video 3, 19.6 MB, MP4
[URL: https://doi.org/10.1117/1.NPh.8.2.025003.3]). The video is real-time.
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laterally and in depth) as well as the magnitude of the calcium events. A complication in this
experiment arises from the penetration depth of the dye into the slice during bath-loading; this
limits the thickness of labeled tissue available to contribute to background fluorescence during
epi-illumination. As a result, the image contrast enhancement of light-sheet versus epi-illumi-
nation is expected to be less than our results with Thy1-GCaMP6s mouse brain tissue (Figs. 6
and 7), where the labeling is more uniform in depth. This is confirmed by the minor contrast
difference between light-sheet and epi-illumination observed for the Cal-520 AM loaded brain
slice (Video 3 ,Video S4, and Fig. 13), relative to the significant contrast enhancement of light-
sheet illumination in Figs. 6 and 7.

We have carried out initial in vivo tests as shown in Fig. 9 and described in Sec. 4.11. For these
experiments, a light-sheet probe was inserted approximately <200 μm deep into the parieto-
temporal lobe of an anesthetized Thy1-GCaMP6s mouse at the approximate location of the

Fig. 9 In vivo fluorescence brain imaging of an anesthetized Thy1-GCaMP6s mouse.
(a) Fluorescence image with light-sheet probe illumination. (b) Light-sheet and epi-illumination
fluorescence images with the probe inserted into the cortex at a different position relative to
(a). (c) Maximum projection fluorescence image over a segment of the video corresponding to
(b) with light-sheet illumination. The image is annotated with the ROIs of three neurons identified
by fluorescence changes consistent with GCaMP6s. The inset shows the fluorescence change,
ΔF∕F , at the peak of an observed calcium event for a rectangular region around and including one
of the ROIs. (d) ΔF∕F time traces of the three neurons; the colors of the traces are matched to the
colors of the ROIs in (c). The data analysis procedure is described in Supplementary Note 3 in the
Supplementary Material. The neuron corresponding to the red arrow in (b) and (c) exhibited higher
contrast for light-sheet relative to epi-illumination by a factor of≈3.4×. The fluorescent point source
corresponding to the yellow arrow in (a) could not be identified as a neuron due to a lack of time-
dependent fluorescence; a contrast enhancement of ≈2.7× was observed for light-sheet illumi-
nation compared to epi-illumination. The scale bars of (a)–(c) are 50 μm, and the dashed boxes
denote the approximate positions of the shanks in the image planes. The intensity grayscales in
(a) and (b) are set by the maximum and minimum pixel values outside the dashed boxes, and the
grayscale of (c) is set by 99th and 1st percentiles of pixel intensities. We previously reported this
data in Ref. 26.
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somatosensory cortex. Time-dependent fluorescence using probe-illumination was observed with a
maximumΔF∕F of 0.12, and contrast enhancements were observed compared to epi-illumination.
In this case, it proved difficult to establish statistical comparisons due to the low number of neurons
exhibiting activity in the anesthetized mouse. The probe used for this test was an earlier prototype,
which pre-dated our foundry-fabricated probes; details of these earlier devices are listed in
Supplementary Note 4 in the SupplementaryMaterial. Compared to the foundry-fabricated probes,
the earlier prototype probes were fabricated on a smaller (100-mm diameter) wafer and had thinner
shanks (≈18 μm thickness); all other probe dimensions were not significantly different. The pho-
tonic circuitry design and the optical functionality were nearly identical between these two types of
probes, and thus, the foundry-fabricated probes are expected to also be compatible with in vivo
imaging, albeit with additional tissue displacement. The shank thickness of the foundry-fabricated
probes can be reduced through fabrication process optimization.

3 Discussion and Conclusion

We have conceived of and demonstrated a new paradigm for implantable photonic neural probes
that enables lensless delivery of multiple addressable light sheets. These can facilitate 1P-LSFM
at arbitrary depths in mammalian brains and other non-transparent tissues. The light-sheet pro-
files were experimentally characterized, and the probes were validated by fluorescence imaging
in fixed tissue and by functional imaging in vitro. This imaging approach requires no active
components on the probe, which can otherwise induce deleterious tissue heating. By contrast,
miniaturized forms of digitally scanned 1P- or 2P-LSFM would likely require actuators on the
probe or in close proximity thereof. As the light-sheet neural probes are passive, the ultimate
volumetric imaging rate is similar to that of conventional light-sheet imaging systems. In our
probe-based implementation, it is limited by external components that include the electrically
tunable lens, MEMS mirror, and the image sensor. The apparatus we employ here is not yet fully
optimized to achieve maximum volumetric imaging rates and is primarily limited by the tunable
lens, which has a response time of 25 ms. Other system components are faster; the MEMSmirror
step time is ∼5 ms, and the maximum full frame rate of the camera is 101 frames per second.
Accordingly, with optimized component choices and engineering of the imaging system, volu-
metric imaging rates ≥30 volumetric scans per second will be attainable.38 Although continuous-
wave light was used in our experiments, future implementations can employ pulsed light to
mitigate any potential phototoxicity and photodamage.

The light sheets created by our probes are synthesized from an incoherent sum of multiple
GC optical emissions. We expect sheets generated by neural probes or by conventional light-
sheet microscopes to be similarly affected by scattering within brain tissue. Optical scattering has
been evaluated for conventional light-sheet microscopes in Ref. 39 and for nanophotonic GC
emissions in Refs. 27 and 30.

In this first demonstration of photonic neural probe-enabled LSFM, significant image con-
trast enhancements have been observed relative to epifluorescence imaging. However, the light
sheet thicknesses of the neural probes in this work (<16 μm average FWHM over a 300-μm
propagation distance in air) are larger than those of conventional light-sheet microscopes, which
readily achieve ∼5 μm FWHM sheet thicknesses over 300 μm sheet lengths at a wavelength of
488 nm.13 Therefore, the illumination geometry advantages of these first light-sheet neural probe
designs are accompanied by lower attainable image contrasts compared to conventional light-
sheet microscopes. Optimization of the GC emitter design may reduce the sheet thickness of
the neural probes and correspondingly increase the achievable image contrast. One potential
approach is to implement a non-uniform GC design wherein the GC periods are selected to
enable focusing40 along the thickness-axis of the light sheet.

In future iterations of our probe designs, their photonic circuits can be further optimized by
leveraging state-of-the-art integrated photonic technology. For example, the sheet density may be
increased by integrating multiple photonic layers.41 Also, the optical transmission of the probes
can be increased by roughly an order of magnitude with efficient fiber-to-chip edge couplers42

and optimized low-loss components; the fiber-to-chip coupling efficiency of the edge couplers in
this work was limited to ≈14% with optimal alignment.34 Optimized packaging solutions can
also mitigate transmission variations among light sheets and improve the thermal stability of the
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packaged probes. (The latter may eliminate the turn-on-transient documented in Fig. 15 in
Sec. 5.3.) Optimization of probe transmission and packaging can also minimize potential tissue
heating arising from the packaged probes absorbing extraneous scattered light from on-chip
photonic circuitry and edge couplers. In addition, implanting multiple light-sheet neural probes
into brain tissue is a potential method to increase the illuminated field of view and improve the
light sheet uniformity, e.g., by implanting multiple neural probes around the GRIN lens in the
proposed imaging configuration in Fig. 2(b). To provide clearance between the probes, the on-
chip photonic circuitry may require modifications so that the edge couplers and the fiber bundle
are in line with the shanks.

With their microscale form factors, ultrathin profiles, and their compatibility with sheet-
normal imaging using implantable GRIN lens endoscopes, the light-sheet photonic neural probes
we have demonstrated herein can engender exciting and powerful new variants of LSFM, both
for deep brain imaging and for behavioral experiments with freely moving animals. Beyond
LSFM imaging, these neural probes can also be used for laminar optogenetic neural stimulation,
e.g., for addressing individual cortical layers. When combined with a new class of implantable
neural probes containing photodetector arrays that is now emerging,43 they can enable complex
image reconstruction realized by means of a complete, implantable lensless imaging system.

4 Methods

4.1 Foundry Fabrication of Photonic Neural Probes

Neural probes were fabricated on 200-mm-diameter Si wafers at Advanced Micro Foundry
(AMF). First, the 1.48-μm and 135-nm-thick SiO2 bottom cladding and SiN waveguide layer
were deposited by plasma-enhanced chemical vapor deposition (PECVD). Fully etched SiN
waveguides were formed using deep ultraviolet (DUV) lithography followed by reactive-ion
etching (RIE), and the 1.55-μm-thick PECVD SiO2 top cladding layer was then deposited. Deep
trenches were etched to define the probe shape and form facets for edge couplers. Finally, as in
Ref. 44, backgrinding was used to thin the wafers to ≈50 to 92 μm, which exposed the deep
trenches and separated the probes on the grinding tape (autodicing). Chemical mechanical
planarization (CMP) was used for layer planarization during the fabrication. The fabrication
process and waveguide characteristics are described in more detail in Ref. 34.

4.2 Neural Probe Packaging

The probe chip was first epoxied to a 3D-printed chip carrier. The image fiber bundle (Fujikura
FIGH-06-300S) was connected and aligned to the scanning optical system [Fig. 2(a)]. The
fiber bundle was aligned and then UV-epoxied to the probe chip and the chip carrier; the
emitted optical power from the probe was monitored during the process. The probe chip
(excluding the shanks) and the fiber bundle were then coated with optically opaque epoxy
to block stray light not coupled to the on-chip waveguides. The chip carrier had a steel rod
attached to the proximal end, and this steel rod was connected to additional rods to mount
the packaged probe on a 4-axis micro-manipulator (QUAD, Sutter Instrument Company,
Novato, California).

4.3 Spatial Addressing of the Neural Probes

The 2-axis MEMS mirror in the external scanning optical system, Fig. 2(a), had a nominal maxi-
mum mechanical tilt angle of �5.5 deg and a mirror diameter of 3.6 mm (A7B2.1-3600AL,
Mirrorcle Technologies Inc., Richmond, California). The scanning system used bi-convex lenses
with 35- and 150-mm focal lengths and a 20× objective lens (Plan Apochromat, 20-mm working
distance, 0.42 numerical aperture, Mitutoyo Corporation, Kawasaki, Japan). The loss of the
scanning system (from the input laser beam to the distal facet of the image bundle) was typically
40% to 60%. The 488-nm laser (OBIS 488 nm LS 150 mW, Coherent Inc., Santa Clara,
California) was fiber-coupled to a single-mode fiber (460-HP, Nufern Inc., East Granby,
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Connecticut), which was connected to a fiber collimator that formed the free-space laser beam
input to the scanning system. The input beam was gated by a mechanical shutter. The input
polarization to the scanning system was set via an inline fiber polarization controller.

4.4 Fluorescein Beam Profiling

The neural probes were dipped into 10 μmol fluorescein solutions (pH > 9), Fig. 3(a). Top-
down sheet profiles were measured using an epifluorescence microscope above the probe.
Side profiles showing the sheet thicknesses were measured using an additional microscope posi-
tioned at the side of the chamber containing the fluorescein. One of the walls of the chamber was
removed and replaced with a coverslip to create a viewing port with low optical distortion for
the side microscope. Bandpass optical filters on both microscopes rejected excitation light from
the probe and transmitted the emission light from the fluorescein. The insertion axis of the micro-
manipulator holding the probe was angled such that the sheets propagated parallel to the surface
of the fluorescein solution with the probe immersed.

4.5 Free-Space Beam Profiling

Coverslips with a fluorescent thin film were fabricated by mixing fluorescein (free acid) powder
with SU-8 photoresist45 and spin coating it onto ≈170-μm-thick coverslips. After curing, an
≈8-μm-thick fluorescent thin film was formed on one side of the coverslips, which were then
cleaved in half to prevent the edge bead from limiting the probe-to-coverslip distance. The cover-
slip was fixed above the probe with the shanks, coverslip, and optical table parallel (Fig. 4). The
fluorescent film was on the bottom side of the coverslip, closest to the probe. An epifluorescence
microscope above the coverslip imaged the fluorescent patterns created by the intersection of the
probe light sheets and the thin film. Vertical translation of the probe enabled volumetric profiling
of each sheet for measurements of the sheet thickness and propagation angle. The sheet propa-
gation angles were used to convert the micro-manipulator vertical translation step size into sheet
propagation distance step sizes, and the angles were also used to calculate the sheet thicknesses
from the angled projections on the coverslip. To verify the uniformity and linearity of the thin
film’s fluorescence, volumetric profiles were captured over input optical powers spanning
roughly an order of magnitude and at multiple positions on the coverslip. Measured average
sheet thicknesses varied by <2 μm throughout the trials.

4.6 Fluorescent Beads in Agarose

To prepare the agarose blocks with fluorescent beads, 100 mg of agarose powder was mixed with
10 ml of Milli-Q water to form a 1% agarose solution. The solution was heated until boiled, and
after cooling, 50 μl of yellow-green fluorescent microbeads (3-μm bead diameter, 2.5% concen-
tration, Magsphere, Pasadena, California) were mixed into the solution. The solution was placed
on a rocker to evenly distribute the beads, and then, poured into a plastic mold and stored in a
refrigerator until solidified. The intensity scales of the grayscale images of fluorescent beads in
Fig. 5(d) were set with the bottom and top 1% of all pixel intensities saturated.

4.7 Imaging Apparatus

The fluorescence imaging apparatus, Figs. 5(a) and 5(b), includes an epifluorescence
microscope (Eclipse FN1, Nikon, Tokyo, Japan) with an sCMOS camera (Zyla 4.2 PLUS,
Andor Technology Ltd., Belfast, UK) and an EGFP filter cube (49002, Chroma Technology
Corporation, Bellows Falls, Vermont). A 10× objective lens (Mitutoyo Plan Apochromat,
34-mm working distance, 0.28 numerical aperture) was used for the beam characterization and
in vitro Cal-520 AM brain slice imaging. A 20× objective (Mitutoyo Plan Apochromat, 20-mm
working distance, 0.42 numerical aperture) was used for the fluorescent beads, fixed tissue, and
in vitro GCaMP6s brain slice imaging. An electrically tunable lens (Optotune, Dietikon,
Switzerland) attached to the back of the objective was used for fast focus adjustments in the
fluorescence imaging experiments but not for the beam characterization. The fluorescent beads,
fixed tissue, and in vitro imaging used 200-, 500-, and 100-ms camera exposure times,
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respectively. The packaged probe was attached to a 4-axis micromanipulator for positioning the
probe in the characterization and imaging experiments. The shanks were aligned to the insertion
axis of the micro-manipulator, and in the imaging experiments, the insertion angle was selected
for sheet-normal imaging. Since the fiber bundle was not polarization-maintaining and the probe
was polarization-sensitive, the bundle was fixed in position during imaging experiments to
minimize polarization fluctuations.

4.8 Animals

All experimental procedures described here were reviewed and approved by the animal care
committees of the University Health Network in accordance with the guidelines of the
Canadian Council on Animal Care. Adult Thy1-GCaMP6s mice2 (The Jackson Laboratory,
Bar Harbor, Maine, stock number 025776) and C57BL/6 mice (Charles River Laboratories,
Wilmington, Massachusetts) were kept in a vivarium maintained at 22°C with 12-h light on/off
cycle. Food and water were available ad libitum.

4.9 Fixed Tissue Preparation

Fixed tissue was prepared from a Thy1-GCaMP6s mouse, postnatal day 172, as ≈1-mm-
thick transverse slices from the hippocampus (dentate gyrus). Briefly, the animal was
anesthetized via an intra-peritoneal injection of sodium pentobarbital (75 mg∕kg, Somnotol,
WTC Pharmaceuticals, Cambridge, Ontario, Canada) and transcardially perfused with 1× phos-
phate-buffered saline (PBS) followed with paraformaldehyde (PFA) (4%). Then the extracted
brain was kept in PFA at 4°C for 12 h. After fixation, the hippocampal slices were prepared
in 1× PBS with a vibratome (VT1200S, Leica Biosystems, Wetzlar, Germany).

4.10 In Vitro Imaging Brain Slice Preparation

Brain slices were prepared from 30 to 60 day old Thy1-GCaMP6s and C57BL/6 mice for the
in vitro GCaMP6s and calcium dye imaging experiments, respectively. The animals were anes-
thetized with an intra-peritoneal injection of sodium pentobarbital (75 mg∕kg) and transcardially
perfused with cold (4°C) N-methyl-D-glucamine (NMDG) recovery solution46 prior to decapi-
tation. The brain was quickly dissected, brain tissues were glued on a vibratome stage, and
450-μm-thick slices were prepared with the vibratome using iced NMDG solution. The brain
slices were then stabilized in NMDG solution at 34°C for 12 min while being aerated with carb-
ogen (95% O2, 5% CO2). Only for experiments with the Cal-520 AM calcium dye, following
a 12-min recovery period, slices were rinsed and then bathed in a Cal-520 AM solution (AAT
Bioquest, Sunnyvale, California) for 60 to 90 min at 37°C. For all in vitro experiments, the slices
were then maintained in room temperature incubation solution46 for 1 to 8 h prior to imaging.
The Cal-520 AM solution was aerated with carbogen and consisted of 50 μg of Cal-520 AM
mixed with 20 μl of 20% Pluronic F-127 in dimethyl sulfoxide (DMSO) (Sigma-Aldrich,
St. Louis, Missouri) and then diluted in 4 to 6 ml of incubation solution to a final concentration
of 7 to 10 μMol. During imaging of a slice, the slice was mounted in a perfusion chamber with
a constant flow of rodent artificial cerebrospinal fluid (aCSF) solution46 aerated with carbogen.
A 100- to 200-μMol solution of 4-aminopyridine (4-AP) was added to the aCSF bath to put the
neurons in a hyperexcitable state for increased neuronal activity.37 For the Thy1-GCaMP6s
imaging, a transverse slice prominently featuring the auditory cortex was chosen, and for the
Cal-520 AM imaging, a sagittal slice prominently featuring the cerebellum was chosen. The
cerebellum was chosen since we observed that it had high neuron activity density. The cerebel-
lum could not be chosen for the Thy1-GCaMP6s experiment due to the low labeling density in
the cerebellum for this strain.2

4.11 In Vivo Imaging

First, the Thy1-GCaMP6s mouse (postnatal day 47) was anesthetized, by induction with 5% and
maintenance with 1% to 2% isoflurane/oxygen anesthetic, and secured in a stereotaxic frame via
earbars (Model 902, David Kopf Instrument, Tujunga, California). A craniotomy was performed
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over the parieto-temporal lobe with an electric drill by removing a square portion of the skull
posterior to the bregma and anterior to the lambda bony landmarks (1-mm lateral to midline and
1-mm medial to the superior attachment of the temporalis muscle). The dura was gently removed
with a 30 gauge needle for higher image quality and easier probe insertion. Once the cranial open-
ing was complete, the stereotaxic frame—with the mouse secured—was moved under the
epifluorescence microscope and the brain surface was irrigated with saline. Initial epifluorescence
brain imaging was performed to identify the somatosensory cortex, and an area with few cortical
blood vessels in the parieto-temporal lobe at the approximate location of the somatosensory cortex
was chosen for probe insertion. Next, the probe was slowly inserted into the brain to a maximum
depth of 200 μm via the micro-manipulator, and then, fluorescence imaging was performed using
both probe- and epi-illumination. The probe insertion angle was set so that the light sheet was
roughly parallel to the surface of the brain. The in vivo fluorescence imaging used a 200-ms expo-
sure time and 2 × 2 binning; binning was not used in the other imaging experiments in this work.

5 Appendices

5.1 Appendix A: Light-Sheet and Epi-Illumination Intensity Estimates

For the fixed tissue fluorescence imaging in Fig. 6, the epi-illumination intensity at the surface of
the brain slice was measured to be approximately 0.5 mW∕mm2. The Sheets 3 and 4 output

Fig. 10 Additional data for the Thy1-GCaMP6s fixed mouse brain tissue imaging in Fig. 6(a).
Microscope epi-illumination and light-sheet neural probe illumination (Sheet 3, Probe 1) are com-
pared using a reduced light-sheet intensity relative to Fig. 6(a). Top-down fluorescence images of
(a) epi-illumination and (b) light-sheet illumination. The epi-illumination image data in (a) are the
same as in Fig. 6(a). The scale bars are 100 μm. (c) ROIs of identified neurons. (d) Histograms of
image contrast for the identified neurons. The light-sheet image was taken during the turn-off
transient of the shutter gating the input laser beam to the scanning system, and therefore, the
light-sheet image is an average of multiple intensities over the camera exposure time (500 ms).
The average intensity of the light-sheet image is 2.85× lower than that of Fig. 6(a). The light-sheet
average neuron contrast in (d) was not significantly changed compared to the higher sheet
intensity image in Fig. 6(a).
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powers from the neural probe were approximately 60 and 3 μW, respectively. Neglecting tissue
scattering, at a propagation distance of 200 μm from the probe, assuming the sheet width and
thickness from Figs. 3(b) and 4(b), respectively, yields Sheets 3 and 4 intensity estimates of ≈11
and 0.6 mW∕mm2, respectively.

For the GCaMP6s and Cal-520 AM in vitro imaging in Figs. 7, 8, 12, and 13, the epi-
illumination intensities were measured to be approximately 0.3 and 1.0 mW∕mm2, respectively.
For light-sheet illumination, neglecting tissue scattering and assuming the sheet width and thick-
ness from Figs. 3(c) and 4(b), at a propagation distance of 200 μm from the probe, the light sheet
intensity estimate in these experiments is 13 mW∕mm2.

Tissue scattering is expected to significantly reduce the intensity of the light-sheet and
epi-illumination. Rather than quantifying this effect and matching the intensities inside the
tissue for comparing light-sheet and epi-illumination, we have varied the illumination
intensity and confirmed no large changes in the contrast enhancement of light-sheet probe
illumination relative to epi-illumination. Figure 10 shows fixed tissue imaging with reduced
light-sheet illumination intensity (relative to Fig. 6) and no significant degradation in the
ratio of light-sheet to epi-illumination image contrast. In Fig. 11, the epi-illumination inten-
sity is varied over a ≈4× range for the Thy1-GCaMP6s mouse brain slice imaged in Fig. 7.
For the two neurons analyzed, the image contrast does not continuously increase with epi-
illumination intensity and remains significantly less than that of light-sheet illumination in
all cases.

Fig. 11 Image contrast comparison of two neurons in the Thy1-GCaMP6s brain slice imaged in
Fig. 7 at multiple microscope epi-illumination intensities and with a single light-sheet probe illumi-
nation intensity (Sheet 5, Probe 2). Brain slice fluorescence images with (a) epi-illumination and
(b) light-sheet probe illumination; the ROIs of the two neurons are indicated, and the scale bars are
50 μm. (c) Image contrast of the neurons at four epi-illumination intensities, P1 to P4, and with
light-sheet illumination using the intensity in Fig. 7. The estimated epi-illumination intensities
(P1, P2, P3, and P4) were 0.7, 1.1, 1.9, and 2.8 mW∕mm2, respectively, and the corresponding
contrasts span 20.7% to 24.2% for neuron 1 and 20.5% to 23.6% for neuron 2. The epi-illumination
neuron contrasts are consistently lower than the light-sheet contrasts. The neuron image contrast
is calculated using Eq. (1) in Supplementary Note 1 in the Supplementary Material, averaging
over 50 to 107 s of video. The two neurons were selected for their ease of identification in both
epi- and light-sheet illumination images. At each illumination condition, over the time averaging
window, the time-varying neuron intensity averaged over the ROI had a standard deviation
relative to the median of 2.7% to 4.5% for epi-illumination and 11.9% to 12.8% for light-sheet
illumination.
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5.2 Appendix B: Additional in Vitro Imaging Data

Figures 12 and 13 show the complete time traces for the GCaMP6s and Cal-520 AM in vitro
brain slice imaging experiments in Figs. 7 and 8, respectively, as the illumination was switched
between light-sheet and epi-illumination. Figure 14 shows additional Cal-520 AM in vitro brain
slice imaging data with light-sheet neural probe illumination; the brain slice is the same as Figs. 8
and 13, but the probe was inserted at a different position in the slice.

5.3 Appendix C: Turn-on Transient

The packaged light-sheet neural probes exhibited a turn-on transient upon applying the optical
input. Figure 15 shows an example of this turn-on transient during fluorescence imaging of a
Thy1-GCaMP6s mouse brain slice. The image intensity in the illuminated area decreased by
≈20% to 25% in the first 5 s of illumination, and then continued to decrease at a slower rate.
This turn-on transient may be due to thermal expansion of the probe packaging upon absorbing
stray input light not coupled to the probe chip. The measured intensity time traces in Fig. 15 are a
combination of the turn-on transient in probe illumination and any photobleaching of the brain
slice that occurred.

Fig. 12 Additional data for the in vitro Thy1-GCaMP6s mouse brain slice calcium imaging in Fig. 7
showing the complete time traces as the illumination was switched between light-sheet and
epi-illumination. (a) Maximum projection images of the first segments of the recorded video for
light-sheet probe illumination andmicroscope epi-illumination. The scale bars are 50 μm. (b) Light-
sheet maximum projection image from (a) with ROIs for identified neurons shown; (a) and (b) are
repeated from Fig. 7 to show the neuron ROIs for the time traces in (c). (c) Fluorescence change,
ΔF∕F , time traces of the neurons identified in (b) as the illumination was switched between light-
sheet and epi-illumination. Gaps in the time traces correspond to periods when no illumination was
applied. The time traces correspond to the video used to generate the neuron contrast box plots in
Fig. 7(d).
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Fig. 13 Additional data for the in vitro Cal-520 AM loaded mouse brain slice calcium imaging in
Fig. 8. Maximum projection fluorescence images of segments of the recorded video for (a) light-
sheet and (b) epi-illumination. Annotations show the approximate positions of the shanks in the
image plane, and the scale bars are 50 μm. The ROIs of the six cells selected for time traces in
Fig. 8 are shown. (c) ΔF∕F time traces of the six cells identified in (a) and (b) as the illumination
was switched between light-sheet (“LS”) and epi-illumination (“Epi”). The colors and numbers of
the cell ROIs correspond to the time traces. Gaps in the time traces correspond to periods when no
illumination was applied. The maximum projection images in (a) and (b) are taken over the first
light-sheet and epi-illumination time segments in (c).

Fig. 14 Additional in vitro calcium imaging of a Cal-520 AM loaded mouse brain slice using light-
sheet probe illumination from Probe 2. The brain slice is the same as Figs. 8 and 13, but the probe
was inserted at a different position in the slice. (a) Maximum projection fluorescence image of a
segment of the recorded video with annotations to show the approximate position of the shanks in
the image plane. (b) Number of calcium events and (c) maximum ΔF∕F observed for all identified
cells; (b) and (c) are of the same scale as (a), and the scale bars are 50 μm. (d) ΔF∕F time traces
of six cells. The number and color-coded ROIs for these cells are shown in (a). Breaks in the time
traces correspond to periods when the illumination was switched to epi-illumination. The maximum
projection image in (a) is taken over the first time segment in (d).
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5.4 Appendix D: Supplementary Videos

Four supplementary videos are included in this work, and descriptions are as follows.
Video S1 Top-down microscope imaging of Probe 3 with switching between light sheets.

The video is real-time (Video S1, 1.96 MB, MP4 [URL: https://doi.org/10.1117/1.NPh.8.2
.025003.4]).

Video S2 Side microscope fluorescence imaging of Probe 1 immersed in a fluorescein
solution with switching between the five light sheets. The power of the sheets was roughly
equalized here by not optimally aligning the MEMS mirror for the sheets with relatively high
transmission. Additional ambient illumination was applied to make the shanks visible. The
video is real-time (Video S2, 17.4 MB, MP4 [URL: https://doi.org/10.1117/1.NPh.8.2
.025003.5]).).

Video S3 Fluorescence imaging of 3-μm-diameter fluorescent beads suspended in an agarose
block with light-sheet illumination from Probe 1 and imaging using the epifluorescence micro-
scope above the sample. At about 17 s, the illumination is switched from light-sheet probe
illumination to epi-illumination from the microscope. During light-sheet probe illumination,
switching between Sheets 1, 3, and 5 is performed. The tunable lens is synchronized to the

Fig. 15 Example light-sheet neural probe (Probe 2) fluorescence image intensity turn-on transi-
ents for in vitro Thy1-GCaMP6s mouse brain slice calcium imaging. (a) and (c) Fluorescence
images of two brain slices from the same mouse with four ROIs labeled in each. The ROIs
are outside the observable neurons and were selected to sample the neuropil fluorescence at
different positions in the sheet. (b) and (d) Image intensity time traces averaged over each ROI;
(b) corresponds to the imaging in (a), and (d) corresponds to (c). The beginning of the time-axis
corresponds to the time at which the light-sheet illumination was turned on. The scale bars in
(a) and (c) are 50 μm. The data in (a) and (b) are part of the same imaging experiment presented
in Fig. 7.
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sheet switching to focus the collection optics on the depth planes corresponding to each sheet.
After switching to epi-illumination, the tunable lens focus switching continues and shows
epifluorescence imaging of the same depth planes imaged with light-sheet probe illumination.
The video is real-time (Video S3, 12.9 MB, MP4 [URL: https://doi.org/10.1117/1.NPh.8.2
.025003.6]).).

Video S4 In vitro calcium imaging with epi-illumination of a Cal-520 AM loaded brain slice
from a wild type mouse. This is a sample of the calcium imaging video corresponding to Fig. 13.
The video is from the same experiment as Video 3 but with epi-illumination instead of light-sheet
probe illumination. The video is real-time (Video S4, 13.9 MB, MP4 [URL: https://doi.org/10
.1117/1.NPh.8.2.025003.7]).).
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