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Nanomechanical resonators can be fabricated to achieve high natural resonance frequencies,
approaching 1 GHz, with quality factors in excess of.1Dhese resonators are candidates for use

as highly selective rf filters and as precision on-chip clocks. Some fundamental and some
nonfundamental noise processes will present limits to the performance of such resonators. These
include thermomechanical noise, Nyquist—Johnson noise, and adsorption—desorption noise; other
important noise sources include those due to thermal fluctuations and defect motion-induced noise.
In this article, we develop a self-contained formalism for treating these noise sources, and use it to
estimate the impact that these noise processes will have on the noise of a model nanoscale resonator,
consisting of a doubly clamped beam of single-crystal Si with a natural resonance frequency of 1
GHz. © 2002 American Institute of Physic§DOI: 10.1063/1.1499745

I. INTRODUCTION thermal drifts that can be controlled using oven-heated pack-
aging, similar to that used for high-precision quartz clocks.
Nanomechanical resonators are rapidly being pushed tResonators fabricated from polycrystalline materials, such as
smaller size scales and higher operational frequencies, parttiose including poly-Si and silicon nitride, are also expected
due to potential applications as on-chip highfilters and 5 gemonstrate noise from anelastic noise processes caused
clocks. Such resonators would have the potential for replao(-)y grain-boundary and point defect motibh.
ing bulk quartz crystals and surface-acoustic wave resonators p; present, there does not exist a single self-contained
in technological and precision measurement applicationgy, majism for describing the resonance and noise properties
which require extensive separate circuitry and space reQUINSt hanomechanical resonators. In the first part of this work
ments. High-frequency resonators have been fabricated frome therefore develop such a formalism, based on the weII,-

.1 g _ _. o . e
2:::|i(de?,alndSI:‘lr(é)Orrr1] ogllr:u;?;cl)”?hesg(coor} _;":;rggdf;’ r?':'ggg_ known Euler—Bernoulli theory of beams. We hope that this
' polyery POIY=S. g will provide a clear and useful framework for future devel-

nance frequencies can be achieved using submicron Iitho% s in the field. In the lat ¢ of th K
raphy to define doubly clamped beams with relatively large pments in the Tield. In the fatler part ot the work, we use

length-to-thickness ratios df/t~10—20. Smaller aspect ra- this formalism to calculate the effects of the most significant
tios, with L/t~2—5, allow high frequencies to be achieved and fundamental, classical sources of noise on resonator per-

with less stringent demands on lithographic capability. Foformance. The importance of thermomechanical noise, aris-
these smaller aspect ratios, however, thermoelastic dampirgd from the nonzero dissipation and temperature of a reso-
begins to become an important source of energy loss an@@tor, has been recognized for some time, and its effects have
noise, ultimately limiting the quality factor and noise been included in previous noise analyses of mechanical
performancé:’ resonators:* Other noise sources have also been included in
The resonance frequency of a mechanical structure ifnore recent analyses, as mentioned herein. However, our
general scales asl1/wherelL is the scale of the resonator. results are not in agreement with the results of these more
As the size scales are reduced and frequencies increasgggent works, in particular, in terms of the magnitude of the
however, the short-term stability of the resonator will be lim-impact of the noise, as well as the method of analysis of
ited by certain fundamental noise process@hese noise some of the noise sources, in particular, that of the effect of
processes include the thermomechanical noise generated tsmperature fluctuations. We have also included a discussion
the internal loss mechanisms in the resondtblyquist—  of defect noise, that to our knowledge has not previously
Johnson noise from the readout circuitfyand adsorption— been considered.
desorption noise from residual gas molecules in the resonator We do not consider noise or physical limitations pro-
packaging-' Another noise source is due to temperature fluc-quced by particular transducer implementations. Electrostati-
tuations caused by the finite thermal conductance of theally driven and detected resonators suffer from surface
resonator? these fluctuations are fundamental to any objecttharge motion; magnetomotive approaches require large
with finite heat capacity, and are distinct from environmentalsiaple ambient magnetic fields; optical approaches require
stable sources of monochromatic light. We are more con-
dElectronic mail: cleland@iquest.ucsb.edu cerned with the limitations set by the physics of resonator
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y TABLE II. Parameters for the beam in this calculation.
L t w M 2 ky
() (pem) () (fg) (GH2) (um™)
0.66 0.05 0.05 3.84 1.00 7.17
E t

FIG. 1. Doubly clamped beam with length width w and thickness. The
end supports are assumed infinitely rigid. and the higher modes arg/v,=2.756, 5.404, and 8.933 for

n=2, 3, and 4.

The eigenfunction, in Eq. (2) are mutually orthogo-

behavior, and transducer approaches should be evaluat8g!. and we normalize them to the beam length, so that
separately from these. L
f Y (X)Yr(X)dx=L36,,. (5
0
II. DOUBLY CLAMPED BEAM RESONATORS The corresponding coefficient§;, and C,, are listed in
Table I. An arbitrary solutiorY(x,t) to undriven or driven

A. Euler—Bernoulli theory motion can be written

In Fig. 1, we show the structure forming the basis of our w0
calculations: A doubly clamped beam of lendthwidth w, Y(x,H)= D a,(t)Y,(x) (6)
and thickness, oriented along tha& axis, driven into flexural I = e

resonance with_displacgment along thaxis. . . where the amplitudea, are dimensionless.

The dynam|c behavior of a fle-_xural beam 1S most gas”y The fundamental frequency; is a function of the ma-
treated using the Eult_ar—Bern?Sulll theo_ry, Wh'?h appllgs tOterial parameter& andp as well as the beam dimensiohs
beams with aspe_ct ratiagt>1." For an isotropic materl_al, and L. High frequencies can be achieved by reducing the
the transver;e d|§placemem(x,t) .Of the .beam cgnterlme overall resonator scale, by choosing stiffer and lighter mate-
(along they direction), obeys the differential equation rials, and by reducing the aspect ratift; all three of these

22Y 2 22y approaches are being used, and at present the highest re-

pPA— (X, )=— —El—(x1), (1) ported frequency is 0.63 GHz, for a SiC bedfrFor the

at X X purposes of this article, we will focus on a single-crystal Si
wherep is the material densityA=wt is the cross-sectional beam with dimensions as given in Table II; the relevant
area,E is Young’s modulus, and=wt3/12 is the bending physical properties for Si are given in Table IlI, all at room
moment of inertia. The clamped ends,xat0 andx=L, temperature. Our calculations are for the fundamental reso-
impose the boundary condition&(0)=Y(L)=0 and nancen=1.
Y’(0)=Y’(L)=0. The solutions have the form In the next section, we discuss the anelastic processes
that result in a finite quality factd® for the beam resonance,
described within the context of Zener’s model for anelastic
+ Cyp(sink,—sinhk,x))exp —iQ,t), 2) solids. In that section, we will describe how the Zener model
is included in the formalism described so far. In later sec-
tions, we discuss other types of noise that are not described
within the context of the Zener model; these have to do with
parametric changes in the physical properties of the resona-
tor, such as its mass and length, which cause the natural

El resonance frequency of the resonator to change, but do not
Q= /Jkﬁ.

Y (X,t) =(Cy,(cosk,x— coshk,X)

with eigenvectorsk,, satisfying cok,L coshk,L=1. The first
four eigenvectors are given bi,L= 4.73004, 7.8532,
10.9956, and 14.1372. The angular frequen€lgsare given

by

3 necessarily involve energy dissipation. Any single parametric

change can be associated with a change in the resonator
The fundamental eigenfrequency is given by

TABLE IlIl. Properties for Si at room temperature.

TABLE |. Numerical solutions for a doubly clamped beam.

Density p 2330 kg/ni
n—1 5 3 4 Young’s modulus E 1.69x 10 N/m?
Thermal conductivity K 1.48 W/icm K
k,L 4.730 04 7.8532 10.9956 14.1372 Specific heat Cy 1.64 J/cri K
vy lvq 1 2.756 5.404 8.933 Sound speed Cs 5860 m/s
Cin/L —1.0000 —1.0000 —0.9988 —1.0000 Phonon mean-free path / 50 nm
C,, /L 0.9825 1.0008 0.9988 1.0000 Thermal expansion at 2.8x10°5/K
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energy, depending on where in the oscillation cycle the Equation(8) implies that the stress will include a com-
change occurs, but given events that occur randomly over thgonent that is 90° out of phase with the strain which
oscillation period, on average, the energy change is zero. Theauses energy loss at a rate proportionahtd~or smallA,
noise sources we discuss include adsorption—desorptione define the quality factd® as the ratio of the imaginary to
noise due to molecules around the resonator, temperatutke real part of:

fluctuations that change the length and longitudinal stress in

the resonator, and defect motion within the resonator. The 1 @7 A (10)
latter can to some extent be included in the Zener model, but 1+w?r?

some modes of defect motion will not generate intrinsic dis- We then use the effective Young's moduliy in the

sipation but instead give rise to parametric changes. .
; . . Euler—Bernoulli formula, Eq(l) at frequencyw,
For these sources of parametric noise, an instantaneous

measurement of the response of a resonator, as a function of
frequency, would indicate the actual dissipation associated ®@”pAY(X)=Egx(w)I| 1+ a — (X). (12)
with material losses, while a measurement that takes a non- X

zero time to complete allows the resonator frequency to flucThe spatial solution¥(x) are the same as for E(L), but the
tuate over the period of the measurement, and would give dispersion relation giving the damped eigenfrequen€lés
response curve that appears to be associated with a highierterms of the undamped frequenci@sg is

rate of dissipation than is actually present, due to the spread |
of resonance frequencies that appear over the course of the Q)= —
measurement. Separating these two effects experimentally is 2Q
a very challenging but intriguing problem. for small dissipationQ~1. The imaginary part of(/

implies that thenth eigenmode will decay in amplitude
as expQ,t/2Q).

oY

1+ Q. (12

B. Dissipation in mechanical resonators

The most significant mechanism for energy loss in a naC. Driven damped beams
nomechanical resonator is through intrinsic losses in the \yo now add a harmonic driving forceF (x.t)

beam material, which can be treated using Zener’s model fo&f(x)exp@wct), wheref(x) is the position-dependent force

anelastic solid$” Other important loss terms include ther- per unit length. The force is uniform across the beam cross
moelastic processésyhich are negligible for the resonator section and directed along and the carrier frequenay, is
geometry and dimensions given here, and through the trangjose toQ),. The equation of motion 18

duction mechanisth, which can usually be minimized

through design considerations. Y * ot
In Zener’s model, the Hooke’s stress—strain relation PAF“LEAy:f(X)e c (13
=Ege, relating the stress to the straine, is generalized to
allow for mechanical relaxation in the solid: We solve this equation for long times);t/Q>1, so any
transients damp out. The solution then has the (R, t)
o+ TE—0=ER E+T’E , @ =Y(x)e.“"ct._ The amplitudej((g) may be f:omplex, so that
dt 7 dt the motion is not necessarily in phase with the foFceEx-

where Ey is the relaxed value of Young's modulus. Loads panding the displacement in terms of the eigenfunctions

applied slowly generate responses with the relaxed modulus, ) * * a*Y,
while rapidly varying loads involve a different value for the - wcPAnZl anYn(X)+ EAnZl an? =f(x). (14
modulus. N N

We consider harmonic stress and strain variatior(s) Using the defining relation for the eigenfunctions, Eg),
=cge'“' ande(t) = ee'“". At low frequenciesn <1, this be-  the dispersion relation, Eq12), and the orthogonality rela-
comes the standard Hooke's law relation wih=Eg. At tions, Eq.(5), this can be written
high frequenciesw™™>1, the modulus becomeg&=E
=(7,/7.)ER, theunrelaxedYoung’s modulus. For interme- Q12— wd)a, = 1 jLY (x) f(x)dx (15)
diate frequencies, Young’'s modulus is complex, of the form m ermm 3 m '

0T for each termm in the expansion. Fo#, close to(),, only
E=Eer(w)| 1+ ———5 A, (8)  them=1 term in Eq.(15) has a significant amplitude, given
with mean relaxation time-= (7,7.)%2 fractional modulus 1 1 .
differenceA=(Ey—ER)/Er, and effective Young’'s modu- a;= I R f Y, (x) f(x)dx, (16)
lus pAL® Q71— wi+iQ7/QJo
14 022 for small dissipatiorQ 1.
Eet=———3Er- 9 We now take a uniform forcef,(x)=f. The integral in
1+ wor Eq. (16) is then
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sponse of the resonator, the noise spectral density takes on a

1 (L
nlz—zf Y1(x)dx=0.8309. a7 somewhat different form. We will only treat the high-
L=Jo temperature limitkgT>#A w, for the resonator noise.
The amplitude is then A. Dissipation-induced amplitude noise
3 7 f 18 The displacement of a forced, damped beam driven near
= (18) its fundamental frequency is given by E4.8). In the ab-

02— w2+iQ21Q M’ : _ : _ _
sence of noise, this solution represents pure harmonic motion
whereM = pAL is the mass of the beam, and the correspondat the carrier frequency.. . As discussed, the nonzero value
ing displacement of the beam ¥{(x,t)=a;Y (x)explot).  of Q! and temperatur& necessitates the presence of noise,
If the force distributionf(x) is instead chosen to be pro- from the fluctuation—dissipation theorem. Regardless of the
portional to the eigenfunctioM,(x), the integral Eq(16) is  origin of the dissipation mechanism, it acts to thermalize the
unity, so thaty, in Eq. (18) is replaced by the number 1. motion of the resonator, so that in the presence of dissipation
We point out that the response function, E48), while  only (no driving force, the mean energ$E,,) for each mode
similar to that of a damped, one-dimensional harmonic oscilp of the resonator will be given b{E,)=ksT, whereT is
lator, differs slightly in theQ-dependent denominator, but the the physical temperature of the resonator. This noise term has
difference is only apparent for small values@f For values  peen considered by a number of authbts.
of Q greater than 15, the fractional difference at any fre-  The thermalization occurs due to the presence of a noise
quency is less than 1%. force f(x,t) per unit length of the beam. Each point on the
beam experiences a noise force with the same spectral den-
sity, but fluctuating independently from other points; the
noise at any two points on the beam is uncorrelated. The

Systems that dissipate energy are necessar”y sources Q@ise be written as an eXpanSion in terms of the eigenfUnC-
noise; the converse is also often true. This is the basic statélons Yn(x),
ment of the fluctuation—dissipation theorem, and is best 1.
knowp in relation to electrical circuits_, whe.re it. is termed the fu(x,t)= T 2 an(t)Yn(x), (20)
Nyquist—Johnson theorem. An electrical circuit element with n=1

an electrical impedancg(w) that has a nonzero real part, \yhere the forcef, associated with the modeis uncorre-
n

R(w) =ReZ(w), will be a source of noise, that is, of fluc- |4 with that for other modes’; the factor 1L appears
tuations in the voltagev(t) across the impedancg, or because of the normalization of the

equivalently in the currerit(t) throughZ. A voltmeter placed The noise forcef (t) has a white spectral density

across the circuit element will measure an instantaneoug dacG ian distribut ith Th
voltage that fluctuates with a Gaussian distribution in ampli- r,(@), and a Gaussian distribution with a zero mean. The

tude, with zero average value, and a width that is determinef?@gnitude of the spectral densi§y may be evaluated by
only by R(w) and the temperatur€ A useful way to quan- requiring that it achieve thermal equilibrium for each mode
tify the noise is to use the average spectral density of th@. The spectral density of the noise-driven amplitugeof
noise in angular frequency space, defined for a noise voltag&e nth mode is given by

V(t) by
) S B 1 St (@)
Sv(w):< f_mvz(t)cos(wt)dt>. (19 @)= (Q2-0?)?+(QYQ)? M2

; — L2
Here the angle brackets. . .) indicate that a statistical en- The SIunits forSy, are (N/mY/(rad/$ =kg*/(s’ rad). Those

semble average, over many equivalent systems, is to Q' Sa, are Lrad/s, because, is dimensionless.

taken. The spectral density is proportional to the electrical ~ The kinetic energKE, of the nth mode associated with
noise power in a unit bandwidth. The Nyquist—Johnson theothe spectral densit$, is given by

rem states that this quantity is given b, (w) 1 (= (L

=(2/7)R(w)h w cothGrw/kgT). At high temperatures or low (KE,)= _f j pAw3S, (w)Yﬁ(x)dxdw

frequencies, such th&;T>7% w, this approaches the classi- 2Jo Jo "

cal limit Sy(w)— 2kgTR(w)/#. The spectral noise density

I1l. NOISE IN DRIVEN DAMPED BEAMS

(21)

o0 2
Sy(f), as a function of frequenc= w/2m, is given in the _ EJ PAL202S, () dw~ ™ QL Si, (@)
high-temperature limit byS,(f)=27S,(w)=4kgTR(f). 2J)o on 4 Q, M’
The metric units ofS,(f) are \?/Hz. The corresponding 22)

current spectral noise density IS (f)=Sy(f)/R?(f) _ _ o
—4kgT/R(f), in the high temperature limit, with units of Where the last equality becomes exact in the li@it"— 0.

A2/Hz. The error in Eq.(22) for finite Q is less than 1% foiQ
The fluctuation—dissipation theorem applies to mechani=10. o o o
cal resonators with nonzero dissipation, i.e., with firQe In order that this yield thermal equilibrium, the kinetic

and ensures that the mechanical resonator will also be @nergy is(KE,)=3kgT, so the spectral densi;_ must be
source of noise, but due to the resonant nature of the regiven by

Downloaded 04 Nov 2002 to 131.215.106.182. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



2762 J. Appl. Phys., Vol. 92, No. 5, 1 September 2002 A. N. Cleland and M. L. Roukes

T i The phase variation ab generates sidebands spaced
Carrier at w, from the carrier, with amplitude-ag¢o/2. The lower side-
band is phase coherent with the upper sideband, with the
opposite sign; this is characteristic of phase noise. Indepen-
dent sideband signals can be generated by adding an ampli-
Noise sidebands tude noise sourchl(t) to the phase noisé(t), so that the

/ amplitude is written as
a(t)=ap(1+M(1)sinw.t+ b(t)+ 6). 27)

log Sa (@)

We consider a single componentatfor both the phase and
0 1 2 amplitude modulation, so that

®/Q .
M(t)=Mg sin(wt)
FIG. 2. Frequency spectrum of a driven beam in the presence of noise, (28)
showing both the central driven peak as well as the noise sidebands. H(t)= do sin(wt).

Again assuming small variations, this can be written as
_ 2keTM2, 23 a(t)=ao Sin(wet + 6) + 3ag( Mo+ do)sin (we + )t)

n ’7TQL2 s ]
+380(Mo— ¢o)sin((we— w)t). (29
The termL? appears in Eq(23) becausd n, is the force per
unit length of beam. An equivalent derivation for a one-
dimensional simple harmonic oscillator yields the force den
Sity Sp(w) =2kgTMQ/7Q. We can write the spectral den- term,

sity of the thermally driven amplitude as a(t)=agsin(wct+ 0) +agpg sin((ws+ w)t). (30

Qy 2kgT _ (24) Choosing the opposite sign relatioiy= — ¢, allows the
(Q2— 0?)?+(Q2%/Q)? 7ML?Q lower sideband to be chosen.
When superposed with a driving force with a carrier fre- Anoise fS|gnthat a frequen_qy off?et frgm the carrier canr
uency w.=,, the amplitude noise power consists of abe created rom the supgrpo&ﬂon Ofa phase aqd an ampil-
q oo L : . . tude modulation of the original carrier. In applications where
S-function peak at the carrier superposed with the Lorent2|anh . f lock
iven by Eq.(24), as sketched in Fig. 2 the resonator is to be u_sed_as a frequency source or a clock,
9 e T the amplitude modulation is unimportant: Use of a zero-
crossing detector, or a perfect limiter, eliminates the effects
B. Dissipation-induced phase noise of the amp_litgde mpdulation. We therefore ignore this noise
, o source. This is equivalent, from the arguments leading to Eq.
The form in Eq.(24) represents frequency-distributed (¢ tq jimiting the noise to that which is phase coherent
amplitude noise. Equivalent expressions can be written fopatveen the upper and lower sidebands, with amplitudes
the phase noise, the fractional frequency noise, and the Allag(w +w)=—a(w,—w). Noise which has the opposite
variancet® which are useful for time-keeping and filter ap- ha;e relation wictra(wc+w)= +a(w.— ), is due to am-
plications. We note that the different expressions are alElitude modulation. Noise associated with only one sideband

equivalent ways of expressing the same noise, and do N@hnsists of the sum or difference of these two “modes”.
represent additional sources of noise. The resonator is driven Dissipation-induced noise, of the form given by Eq.

by the carrier signal near its resonance frequedey and in (o4 is intrinsically phase incoherent on opposite sides of the
addlt!on by dissipation-induced noise. The time-dependent rier signal atw.. Half of the noise power is therefore
amplitude is then associated with amplitude modulation, and half with phase
a(t)=ag Sin(wet+ ¢(t)+ ), (25) modulation; the phase noise power is theretoa the origi-
i _ nal total noise power.
where (1) represents a phfase variation from the carrier at - \ye can evaluate the dissipation-induced phase noise for
frﬁquenc]};wﬁ(;ll,l th? amlé) Ilégggeao IS co rllstant, fand? 'Sa 3 resonator driven at its fundamental resonance frequency.
phase offset. Following Robins,we pick one frequency  yye grive the resonator with a fordeper unit length, at the

compopent alw for the phase .ve}riation¢(t)=¢p sinfet). frequencyw.=(),. The amplitude for the response is given
Assuming small maximum deviatiofi,, the amplitude may by Eq. (18)

be written

Setting the amplitudeM = ¢, the lower sideband disap-
pears and we are left with the independent upper sideband

San(w):

1y Qf
a(t)=ag sin(wct+ a)+ao%sin((wc+w)t) S AVE (32)
1
bo . The amplitude lags the force by 90°, and includes the mul-
a07sm((wc )b). (26) tiplicative factorQ. Dissipation generates incoherent noise,
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distributed about the carrier with noise power given by Eq.  a(t)=a, sin(wt+ (Swy/w)sin( wt) + 6)
(24). The phase noise power densy(w) at frequencyw

from the carrier frequency is then given b . 1 dowg
! quency | gv y zaosm(wct)Jr§a075|n((wc+w)t)

S 1 Sal(Ql+w) 1 5
- w
o(©)= 5 a? _EaOTOsin((wc—w)t), (40)

. 0, KgT 32 a result very similar to that for phase variations, EZf).
B (2010+ 02)2+(02/Q)? |ay|2AL2MQ (32) The arguments leading to the spectral density, (B84),
may be reworked to yield the equivalent expression for the
For frequencies that are well off the peak resonanse, frequency variation noise densig, . A more useful quan-
>(,/Q, but small compared to the resonance frequencyity is the fractional frequency variation, defined ag
w<();, we may approximate the denominator as = Swlw,. The noise density foy is related to that for the
phase noise density by

S,(0) kgT
P W)= 2|4 |2] 2 ay \? w\?
Sy(w) 96 Sy(w) o Sy(w), (41)
kgTQ) . .
~ 5—12 (Q,/Q<w<Q;). (33)  where we use the fact that modulationeatgenerates side-
87E.Qw bands at+ w from the carrier ato,. From Eq.(34), we then
Here, we define the enerdg, at the carrier frequencg, ~ Nave
=MQ3L?|a,|?/2. This can also be written in terms of the KT
power P.=Q,E./Q needed to maintain the carrier ampli- Sy(w)%L2 (0 /Q<w<wg). (42
tude, i.e., that needed to counter the loss due to the nonzero 87PQ
value of 1Q: In the frequency domain, this is
kBT (Ql>2 k T
Sy(w)~——| = (0, /Q=w<Q,). (34 _ ks I
o(©) 87P.Q?| @ (Q1/Q 1) (34) Sy(f)~4ch2 (veIQ<f<yy). (43
We can also write this expression in terms of frequeficy
=27w,
keT [y 2 D. Allan variance
Sy(f)~ 4P Q2 f (1 /Q=f<wy). (35 A third useful quantity, commonly used to compare fre-

quency standards, is the Allan varianog(7,).2%%* The
phase and frequency noise are defined in the frequency do-
main; the Allan variance is defined in the time domain, as the
The phase fluctuations can also be viewedreguency variance over time in the measured frequency of a source,
fluctuations, where the amplitude(t) has a time depen- each measurement averaged over a time interyal with

C. Frequency noise

dence zero-dead time between measurement intervals. The defining
¢ expression for the square of the Allan variance is
a(t)=agsin J w(t)dt' +6]. (36) . 1 N
_ _ _ oa(Ta)= SEN—1 > (fn—fmo1)? (44)
The time-dependent frequeney(t) is related to the carrier 2f¢ m=2

f d the ph t)b —
requencyw. and the phase(t) by where f,, is the average frequency measured over riitie

d(wct+¢(t)) do¢ time interval, of lengt\t= 7, , andf. is the nominal carrier
dt AT (37) frequency. The squared Allan variance is related to the phase
noise density b

w(t)=

We define time-dependent frequency variat&m(t) as

de(t) A( )—2( 2
T. (38) TALTA T WcTpa

We consider a single-phase modulation component, so thf\:{¥h
¢(t) = ¢pg Sin(wt). The frequency variation

2 ro
S0 ()= w(t) - 0= ) fo Sy(w)sinf(wal2)dw, (45)
erew.=27f; andw is the modulation frequency.
The Allan variance can be calculated for various func-
tional forms for the phase noise density. For a fractional
Sw(t)=dwy coq wt) = w ¢y cog wt) (390  frequency noise that has aflé¢omponent, so tha§ (w)
=A(w./w), whereA is a scale factor, the phase noise den-

represents a sinusoidal variation of the frequency, with am'sity is Sy(w) =A(w /w)3, and the Allan variance is
c 3

plitude dwy=we¢y, modulated atw. The time-dependent
amplitude in Eq(36) is oa(7a)= V2 100 2Aw,. (46)
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FIG. 3. Dependence of the Allan varianeg on the dimensionless time F|G. 4. Allan variancer, as a function of measurement interval, cal-

interval w7, the Allan variance has been scaled to remove the overallyated for the model 1 GHz resonator for a range of value® 6bm 1

dependence o@ and on drive energy.. The full dependencffrom Eq. 5 1¢f. The drive power levelP, was chosen so that the amplitude of motion

(32)] is plotted as a solid line, while the approximate fofg. (50)] is a,;=t, the beam thickness, For comparison, we also display the variance for

plotted as a dotted line. a 10 MHz quartz crystal frequency standard, the HP10811D; figures taken
from manufacturer’s specifications.

Hence a 1f fractional frequency noise yields an Allan vari- frequency-lock applications, one is typically interested in

ance that is independent of the measurement time interval.times much |Onger than thisi so the approximate form is quite
For a source that displays frequency drift, the fractionalagdequate.

frequency noise will have the forr§,(w) = B4(wc/w)2§ the We now turn to examining what the implications are for
phase noise density is th&(w) =B(w/w)”", and the Al-  the fundamental sources of noise in our model resonator. We
lan variance is will focus on calculating the predicted dependence of the

- Allan variance.
aalTa)=1\/ §Bw§TA- (47)

E. Model resonator Q-dependent noise
Finally, for a white fractional frequency noise density
S/(w)=C, the phase noise density has the foBp(w)
=C(w./w)?, and the Allan variance is

We calculate the dependence of the Allan variamgen
the time interval and for our model 1 GHz resonator, de-
scribed in Table Il. The results of the calculation are shown
wC in Fig. 4. The drive power leveP; is chosen so that the
oAlTA) =\ (48 amplitude of motiona, in Eq. (18) is equal to the beam
. A ] _ thicknesst, approximately the amplitude for the onset of
In particular, for the approximate form for the phase noiseénon|inearity. The calculated temperature rise due to dissipa-
density Eq.(34), the Allan variance is tion in the resonator from this level of drive power is very
KT small, of order 0.1 K. We also display for comparison the
B .
A (49)  Allan variance for an oven-controlled 10 MHz quartz crystal
8PQ%7A oscillator, the HP10811E% For quality factors higher than
Defining the dimensionless drive energy as the ratio of 10°, the calculated thermally induced fluctuations are com-
drive energy per cycle to the thermal energy, parable to or better than those of the bulk quartz resonator.

=2m7P./wkgT, we have

oa(Ta)=

IV. TEMPERATURE FLUCTUATIONS

1 T
oa(Ta)= 6\/4—. (50 We now turn to a discussion of the effects of finite ther-
EcWcTA mal conductance and heat capacitance on the Allan variance.

We see that the Allan variance falls inversely with the squaréhe small dimensions associated with our model resonator,
root of the productw.7,, and it is also proportional to the and of nanoscale resonators in general, imply that the heat
dissipationQ 1. Other things being equal, increasing the capacity of the resonator is very small. The corresponding
resonator frequency, lowers the Allan variance. thermal fluctuations are proportionally larger, and these may
In Fig. 3, we display the approximate result E50) as a  in turn produce significant frequency fluctuations, due to the
function of w75, scaled to remove the dependence@n temperature dependence of the resonator material parameters
and one.; we also show the full result obtained from inte- and geometric dimensions. Here, we present a simple model
grating Eq.(32), for values ofQ>100; for values ofQ less  through which the magnitude of these effects can be esti-
than this, the calculated value for the scaled variance fallsnated.
below that plotted. A heat capacitance, connected by a thermal conduc-
We see that the approximate expression given by Egtanceg to an infinite thermal reservoir at temperatdrewill
(50) works quite well for averaging times, more than afew have an average thermal enefdy,.)=cT in the absence of
tens of the oscillation period 2/ w.; in time-keeping or any power loads. Changes in the temperature relax with the
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so PN T
C ) PnN+1
FIG. 6. Thermal model for doubly clamped beam, consisting of a series

p connection of heat capacitancesand thermal conductancesg, each as-

sociated with a cross-sectional slice of the beam of ledgthEach thermal
conductance is associated with a power noise sopfceThe ends are
assumed clamped at the reservoir temperalur&@here are a total oN
=L/Ax elements.

T

FIG. 5. Thermal circuit with a finite thermal conductargcand a finite heat
capacitance, including a power noise sourge

thermal time constant;=c/g. The energyE. will however

fluctuate, as the fluctuation—dissipation theorem applies to One might expect that the most accurate model would
finite thermal conductances in a manner similar to theuse slices with differential lengthAx=dx—0. However,
dissipation-induced mechanical nofSeThe thermal circuit once the slices become shorter than the phonon mean-free
therefore includes a power noise soupcwith spectral den- path/, the temperature in a slice is no longer well defined.
sity Sp(w)=2kBng/7r (see Fig. 5 The instantaneous en- We therefore choose slices with a length= /=50 nm, so
ergy of the heat capacitance can then be wrifigft)=cT  that each element has a volurie=50x 50X 50 nn¥. The

+ S5E(t), where the spectral density of the energy fluctua-corresponding heat capacity ¢s=C,V=2x10"1® J/K, and

tions SE(t) can be derived from the thermal circuit, the thermal links have=k/'=7.4x10"°% W/K. The ther-
2 k.T2C2 mal time constant isrt=30 ps, corresponding to thermal
Se(w)=— Bl'C g. (51) frequencies~35 GHz, well outside the range of frequencies

™ 1+ w%-% of interest for resonator phase fluctuation9,;/Q<w

. . <(),. For the purposes of this calculation, therefore, we can
We can interpret the energy fluctuations as temperature ﬂu(ffeat the thermal fluctuations in the low-frequency limit.
tuationsT(t), if we define the temperature 8s=E./c.

Th di tral densitv of the t ture Consider only thenth power source of the conductance
€ corresponding spectral densily of the temperature ucﬁn_ If we take the frequency componentat the (n—1)th
tuations is given by

and nth slices have temperature variatioilg_;(w) and

2 kgT?/g Tn(w) given by
Sr(w)=———=. (52
T 1+ w7y . Pn
i (2+|w’7’)Tn_1:_—+Tn_2+Tn
At low frequenciesw, below that of the thermal frequency g
1/71, the temperature fluctuatiodd follow those driven by (53
the noise source, while at higher frequencies the nonzero (2+in)Tn:&+Tn—1+Tn+l-

heat capacitance acts as a filter.

, For a resonator ,W'th the geometry ShPW” n F_|g.. 1 thereThe corresponding equation for the- m)th slice is given
is no clear separation of the structure into a distinct heab

capacitance and thermal conductance. Instead, we divide thg

resonator into slices of lengthx and cross-sectional area CHiom)Toim=Tnim-1T Thims1- (54)

A=wxXt, so that thenth slice has heat capacitg, ) o )
—C,AAX, whereC, is the specific heat per unit volume. Taking the limit w7r<<1, we find that the power source

The (n—1)th andnth slices are connected to one another bypn(w) driving thenth slice generates a temperature variation
the thermal conductanag, = <A/Ax, with thermal conduc- 1 (@) =Pn(@)/2g uniformly across the beam. The corre-
tivity « given by the classical formula= (1/3)Cycy/ (/ is ~ SPOnding anticorrelated soureep,(w) driving the (i~ 1)th
the phonon mean-free path and the sound spegdThe slice generates an equal but opposite temperature variation.
thermal conductances, are associated with noise power Hence, in the limitw7r<1, the fluctuations driven by con-
sourcesp,,, with spectral densit)Spn(w)ZZkBngn/w. Fi- ductances within the beam have no net eﬂ‘ept.

nally, the temperatures at the ends of the beam, where ”lﬁe The other source of temperature fluctuations comes from

beam is mechanically clamped, are assumed to be given ba/. conductances at the beam ergisandgy ;1. These also .
. . rive the beam uniformly, but as the energy that appears in
the reservoir temperatufg see Fig. 6.

In this model, energy fluctuations in the slices 1 and the first and last elements does not have an adjacent anticor-

n are anticorrelated through the shared conductagcein related source, there is now a net effect. The final result from

. . . this model is that the temperature of all the elements in the
energySE driven into thenth slice byp,, corresponds to the beam fluctuate uniformly \[/)vith spectral densy(w) given
same energy taken from the&{ 1)th slice. These energy !

fluctuations then relax through conductance into adjacenlfy the incoherent sum of the two end sources,

slices, and so on through the beam length, so that there is 2

. . . ) 4 kgT/g
some correlation between the fluctuations in all slices, al- St(w)=——>7 (o7r<l). (55
though the correlations get weak for distant slices. T 1t oy
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We have kept the frequency dependence of the thermal cithe same magnitude and dependence on averagingriiras

cuit in order to retain the high-frequency cutoff in the fluc-

tuations.

that due to mechanical dissipation for a resonator \@thf
about 10, and is a significant source of fluctuation. Ways to

The effect these temperature fluctuations have on thesduce the size of this source of variance include the use of
resonator behavior involves changes in the density and elasaterials with larger thermal conductance, such as @20

tic modulus, which affect the frequency directly, and throughW/cm K)?® and sapphire (4.50 W/cmK),

or better

changes in the overall resonator length. The density and elagemperature-compensated materials, such as quartz.
tic modulus determine the resonator frequency through the

combinationyE/p, which is the sound speed; this quan-
tity has the fractional temperature
(1/cg)dcs/ IT=—5%x10"5/K for pure Si?* The correspond-

dependence, orieR SOURCES OF NOISE

ing temperature dependence of the resonator frequency is There are a number of other sources of noise that can

given by
1900, 1 dc

Q, T ¢ dT

(sound speed dependence (56)

The changes in resonator length generate longitudin
stress in the resonator, as the ends are assumed rigi

clamped. The resonator lengthchanges with temperature
due to the thermal expansion of Si, with (JAL/0T=at
=2.8x10 %K. A temperature chang&T therefore induces
a longitudinal extensional stress= —Ea;AT. This in turn
causes a change in theh resonator frequend (), which
for small extensional stressis given by®

Qﬁ(r)=nﬁ<0>+kﬁg, (57)

in terms of the beam eigenvectdts and eigenfrequencies

Q.= \/EI/pAkﬁ. The fractional frequency dependence due

to length change is therefore

190, 1EK;
Q, T EEQ_gaT

(length dependenge (58)

affect resonator performance. We discuss here two such
sources, one due to adsorption—desorption noise of residual
gas molecules, and the other due to defect motion within the
resonator structure.

?%/. Adsorption—desorption noise

Adsorption—desorption noise has been discussed in some
detail by Vig and Kint? and Yong and Vid! The resonator
environment will always include a nonzero pressure of
surface-contaminating molecules. These molecules, when
they adsorb on a site on the resonator surface, mass load the
resonator, and thereby change its resonance frequency. As
the molecules adsorb and desorb due to their finite binding
energy and nonzero temperature, the resulting changes in
frequency translate to a source of phase or fractional fre-
quency noise. As discussed herein, this type of noise does
not fit into the Zener formalism, as the adsorption—
desorption cycle is not intrinsically a dissipative one: As the
arrival and departure times of the atoms are random, they do
not on average change the energy of the resonator, but cause
its frequency to change in a discontinuous fashion, leaving
the quality factor unchanged. This type of parametric noise

Hence, the spectral density of fractional frequency fluc-(where the overall resonator mass is fluctuatisgtherefore
tuationsS(w) caused by the combined temperature depennot described by the lossy stress—strain relation developed

dence on sound speed and beam length is given by

Sy(w)=

:

For the fundamental mode, we hakg=4.73L, and insert-
ing the model resonator parameters, we find

1 90\2
q ot Srl@)
cak?

T2 ®9

a-,—+

2 dc,\ “keT? g
Cs dT | 1+ w27-2|— ‘

keT?/g 2.7x10°% 1

1+w27-?-_ 1+ w272 radls
(60)

From the fractional frequency noise, E§0), we calcu-
late the Allan variance:

oa(Ta)=(2.25< 10 4/K?) \/kBTz/g TA

S,(0)=(1.6x10"8/K?)

1
=9.3x10 11—,
TA

(61)

in the limit 74> 7. The contribution of thermal fluctuations

by Zener.

The frequency change due to a single adsorbed mol-
ecule,AQ), is proportional to the ratio of the molecule to
resonator total mass)/M; smaller mass resonators are more
sensitive than larger ones. Furthermore, as the resonator size
scale is reduced, the number of adsorption shNgson the
resonator surface grows in proportion to the number of total
number of resonator atoms: The surface-to-volume ratio
grows inversely to the size scale. Hence, nanoscale resona-
tors are more susceptible to adsorption—desorption noise
than larger, bulk mechanical resonators.

We use a simple model to estimate the noise from this
source. We assume a single molecular species with mass
surface binding energlf,,, and pressur. Expressions may
be derived for the adsorption and desorption rateandr 4
at any given surface site;with sticking coefficients, the
adsorption rate at any site is given by

P

m

2

la

7

The sticking coefficient is typically temperature depend@nt.

to the Allan variance for our model resonator is therefore ofOnce bound to the surface, a molecule desorbs at a rate
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Eb 10-8 "y or oy y r "_‘,-—-:'\ v
rd_VdeXF{ kB_T) (63 , RN
: . . 300K, AN
where vy is the desorption attempt frequency, typically of >
order 13° Hz, andE, is the desorption energy barrier. The < 10710¢
average occupatioh of a site is thenf=r_/(r,+rq); the o) r HP 10811D 500K 4
variance in the occupation probability isgcczrard/(r‘,j1 """"""""""""""""""""""""""""""""

+rg)%. 10-12f
An expression may then be derived for the phase noise ]
Ss(w) resulting from the statistics of the adsorption— it v st s
desorption process: 10 1076 103 1
Pressure (bar)

3

"

2Ny Tl m AQ2

2 2 2 (64) FIG. 7. Allan variance foa 1 saveraging interval as a function of package
1+ow Ty w pressure for two resonator temperatures, 300 and 500 K. The contaminant

. . . . . molecule has a binding enerds, =10 kcal/mol, with one adsorption site
Here, 7, is the correlation time for an adsorption—desorptioneyery 0.25 nr, and a sticking coefficient of 0.1. Also shown is the frac-

cycle, 1F,=r,+r4. A simple mass-loading formula may be tional noise for the HP10811D 10 MHz quartz resonatarafd s averaging
assumedA Q= (m/2M)Q;, whereM is the resonator mass interval.

and Q, is the fundamental frequency of the resonator. A

corresponding expression for the fractional frequency noise

is then given by

Sy(w)

) B. Defect motion
a0 occTr2

N
Sy(w)=

2
E) . (65) The last source of noise we would like to consider is that
M caused by defect motion within the resonator volume. For
the single-crystal resonators we have been considering, de-
fect levels are very low in the base material. Statistically,

1+ w27r2

We calculate the Allan variance,

N, 7} 0 oed there are of order O to 1 defects within the volume of the
A=\ S (66)  resonator. We therefore do not expect this to provide a seri-
A ous source of noise in these resonators.
in the limit 75> 7, . However, there has been extensive work on developing

The occupation varianae?.., and therefore the noise, is polycrystalline materials for resonators, especially using sili-
maximum when the site occupation probability fis 0.5,  con nitride and poly-St? These materials include a large
i.e., when the adsorption and desorption rates are equal. Thieensity of grain boundaries, point defects, and some voids,
noise is minimized when the occupation probability is eitherand the motion of these defects can cause phase and fre-
near zero or near unity. For typical packaged pressures, m@uency noise in higl resonators. Amorphous Si created by
lecular sticking coefficients, and binding energies, occupaimplantation has defect densities of order 1oimilar lev-
tion probabilities are quite small; we therefore try to mini- els are expected for chemical vapor deposition-grown poly-
mize the occupation to reduce the fluctuation variance. Theilicon. The quality factors of resonators fabricated from this
exponential dependence of the desorption rgten tempera- material are comparable, at room temperature, to those made
ture provides a useful approach; heating the resonator, usirfgpm single-crystal materials such Si and GaAs, but defect
an on-chip heating element, causes significant increases processes may still play a very important role.
the desorption rate and therefore in the occupation variance Point defects in a solid can be treated as elastic dipoles,
crﬁcc. with symmetry different from that of the underlying crystal

In Fig. 7, we plot the Allan variance fa 1 saveraging (see e.g., Nowick and BerfS). In the relaxed state, the de-
interval, as a function of package pressure, for two resonatdects are randomly oriented; reorientations occur due to ther-
temperatures, 300 and 500 K. We have chosen a contaminamially induced motion, at a raféy= vy exp(—Ag*/kgT), with
molecule with an binding energy &,=10 kcal/mol, with  an attempt frequency,~ 10 Hz and free energy barrier
one adsorption site every 0.25 Anand a sticking coefficient Ag*, typically of order 0.1-1 eV. If we consider a defect
of 0.1, typical values for gas molecules adsorbing on metaWwith two possible orientations, with equal energies, the oc-
surfaces?® Note that the sticking coefficient is typically cupation probabilities are given by the Gibbs distribution and
temperature dependefitbut here we have taken it as con- are each equal to 1/2; the variance in the mean occupation is
stant. We show for comparison the overall Allan variance forequal to 1/4, with mean reorientation timg=1/T"4. De-
the HP 10811D 10 MHz quartz oscillator, agaimr @ 1 s fects in which the possible orientations have different ener-
averaging interval. gies will have smaller variances in the occupation, and there

It is clear from Fig. 7 that this source of noise is ex- will be a range of reorientation times as well.
tremely important. Great care must be taken to passivate the A single defect moving or reorienting itself can cause a
resonator surface, thus reducing the sticking coefficient, rechange in the local Young's modulis if the defect has two
duce the pressure, for instance by including getters in thpossible configurations;- and +, the corresponding local
package, and possibly raising the ambient temperature.  modulus changes frofa;+ E_ to Eq+E . , whereE; is the
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TABLE IV. Expressions for the various spectral noise densities worked out for different representations of the
same noise, as well as for noise associated with different fundamental processes.

Type of noise Symbol Expression Equation
Force noise, moda S (w) 2eTM, (23
n ﬂQLZ
. . Q, 2kgT
Amplitude noise, mode S, (@) (24)

(Q3— )+ (QYQ)* TMLQ

2ksTQ

On-resonance amplitude noise, matde S, (Q) (24)
n ML,
) keT (0,2
Off-resonance phase noise, mate 1 Sy(w) (_ (34
87P.Q* | @
. . keT
Off-resonance fractional frequency noises 1 Sy(w) - (42
8mP.Q?
) ()
Allan variance,n=1 aa(Ta) — (49
8P.Q°1p
4 kgT?
Temperature fluctuations Si(w) 4 kTlo (59
T 1+ w?7
Allan variance, temperature fluctuations oa(7a) (2.25x 10" 4/K2) kg T2 g7a (61)
Allan variance, adsorption desorption oa(T) R /%% (66)
T,

A
i ; 202 Tq
Allan variance, defect motion oa(7a) © 9 (68
()2 ¥ 7a

defect-free modulus. Typical values far. are in the range For this distribution, the corresponding Allan variance has a

0.01-0.E;. A mole fractionC4<1 of such defects, all si- similar functional form to that shown in Fig. 3. The defect

multaneously reorienting from to +, will cause the effec- reconfiguration timery can range fromus to minutes or

tive modulus to chand@ from Eq+ C4E_ to Eq+C4E. . If hours at room temperature, with an exponential temperature

we consider a total mole fraction of identical defe€g  dependence. For averaging times much larger thanry,

<1, that reorient independently between configurationghe approximate form for the Allan variance is

— and + with equal free energies, so that the two configu-

rations are equally likely, the average elastic modulus for the 20‘3) \/T\d

solid will be (E)~E.+ Co(E_+E,)/2. The variance inthe AT =\ @2 Vox (68)

elastic modulus is given by the Poisson formul@é

~Co(E,.—E_)?/4. Additional noise sources can appear If we assume a defect mole fracti@=0.001, and modulus

from the defect motion itself; the defect may resonate at #hangeskE.==*0.1Es, the frequency variance isqo~1

frequency near the resonator natural frequency, causing ack 10 °Q. For a defect reconfiguration timgy=1 ms, we

ditional dissipation and additional noise terms. We ignorefind an Allan variance at,=1 s of 5x10°°, a quite large

such effects here. contribution compared to those we have been considering.
Applying this discussion to resonator frequency fluctua-Clearly, active defect concentratio@g of less than 1 part in

tions, if we assume the defects all have equal impact on tha0® are needed to achieve Allan variances competitive with

resonator frequenc§), the mean resonator frequen¢§2)  those of single-crystal resonators.

will be that calculated from Eq3) using the average modu- We note that a typical solid will include a range of re-

lus (E). The frequency will have a mean variance given byorientation timesry, which when superposed generically

02 =(Co/8) (. — )2, whereQ).. are calculated from Eq. Produce 1f noise through the Dutta—Dimon—Horn mod®l.

(3) using the modulEg+ CoE . . In that case, we can write
These fluctuations, occurring with a single reorientation o -
time 74, will generate fractional frequency noise with the Sy(w)wA;ckBTD(E), (69
spectral density
2 o2 - where D(E) is the density of defect states at enerﬁy
Sy(w)=— 92 % (67 = —kgT logs(w/vg) and A is a scale factor. In this case the
()" 1+ w Ty Allan variance works out to besee Eq.(46)]
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~ /2 100 2A 0. /k TD(E). 70 mine whether the suggested applications are indeed viable. A
Ta(7A) G 2Awc ke TD(E) 70 petter understanding of the role of defects and molecular

Here, we see the Allan variance independent of averagingdsorption and desorption is also needed to evaluate the ef-
time 74, but with a magnitude comparable to that of Eq.fect these have on frequency stability.
(68).
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