
JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 5 1 SEPTEMBER 2002
Noise processes in nanomechanical resonators
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Nanomechanical resonators can be fabricated to achieve high natural resonance frequencies,
approaching 1 GHz, with quality factors in excess of 104. These resonators are candidates for use
as highly selective rf filters and as precision on-chip clocks. Some fundamental and some
nonfundamental noise processes will present limits to the performance of such resonators. These
include thermomechanical noise, Nyquist–Johnson noise, and adsorption–desorption noise; other
important noise sources include those due to thermal fluctuations and defect motion-induced noise.
In this article, we develop a self-contained formalism for treating these noise sources, and use it to
estimate the impact that these noise processes will have on the noise of a model nanoscale resonator,
consisting of a doubly clamped beam of single-crystal Si with a natural resonance frequency of 1
GHz. © 2002 American Institute of Physics.@DOI: 10.1063/1.1499745#
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I. INTRODUCTION

Nanomechanical resonators are rapidly being pushe
smaller size scales and higher operational frequencies, p
due to potential applications as on-chip high-Q filters and
clocks. Such resonators would have the potential for rep
ing bulk quartz crystals and surface-acoustic wave resona
in technological and precision measurement applicatio
which require extensive separate circuitry and space requ
ments. High-frequency resonators have been fabricated f
bulk Si,1 silicon-on-insulator,2 silicon carbide,3 silicon
nitride,4 and from polycrystalline Si~poly-Si!.5,6 High reso-
nance frequencies can be achieved using submicron lith
raphy to define doubly clamped beams with relatively la
length-to-thickness ratios ofL/t;10– 20. Smaller aspect ra
tios, with L/t;2 – 5, allow high frequencies to be achieve
with less stringent demands on lithographic capability. F
these smaller aspect ratios, however, thermoelastic dam
begins to become an important source of energy loss
noise, ultimately limiting the quality factor and nois
performance.4,7

The resonance frequency of a mechanical structure
general scales as 1/L, whereL is the scale of the resonato
As the size scales are reduced and frequencies increa
however, the short-term stability of the resonator will be lim
ited by certain fundamental noise processes.8 These noise
processes include the thermomechanical noise generate
the internal loss mechanisms in the resonator,9 Nyquist–
Johnson noise from the readout circuitry,10 and adsorption–
desorption noise from residual gas molecules in the reson
packaging.11 Another noise source is due to temperature fl
tuations caused by the finite thermal conductance of
resonator;12 these fluctuations are fundamental to any obj
with finite heat capacity, and are distinct from environmen

a!Electronic mail: cleland@iquest.ucsb.edu
2750021-8979/2002/92(5)/2758/12/$19.00
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thermal drifts that can be controlled using oven-heated pa
aging, similar to that used for high-precision quartz cloc
Resonators fabricated from polycrystalline materials, such
those including poly-Si and silicon nitride, are also expec
to demonstrate noise from anelastic noise processes ca
by grain-boundary and point defect motion.13

At present, there does not exist a single self-contain
formalism for describing the resonance and noise proper
of nanomechanical resonators. In the first part of this wo
we therefore develop such a formalism, based on the w
known Euler–Bernoulli theory of beams. We hope that t
will provide a clear and useful framework for future deve
opments in the field. In the latter part of the work, we u
this formalism to calculate the effects of the most significa
and fundamental, classical sources of noise on resonator
formance. The importance of thermomechanical noise, a
ing from the nonzero dissipation and temperature of a re
nator, has been recognized for some time, and its effects h
been included in previous noise analyses of mechan
resonators.9,14Other noise sources have also been included
more recent analyses, as mentioned herein. However,
results are not in agreement with the results of these m
recent works, in particular, in terms of the magnitude of t
impact of the noise, as well as the method of analysis
some of the noise sources, in particular, that of the effec
temperature fluctuations. We have also included a discus
of defect noise, that to our knowledge has not previou
been considered.

We do not consider noise or physical limitations pr
duced by particular transducer implementations. Electros
cally driven and detected resonators suffer from surf
charge motion; magnetomotive approaches require la
stable ambient magnetic fields; optical approaches req
stable sources of monochromatic light. We are more c
cerned with the limitations set by the physics of resona
8 © 2002 American Institute of Physics
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behavior, and transducer approaches should be evalu
separately from these.

II. DOUBLY CLAMPED BEAM RESONATORS

A. Euler–Bernoulli theory

In Fig. 1, we show the structure forming the basis of o
calculations: A doubly clamped beam of lengthL, width w,
and thicknesst, oriented along thex axis, driven into flexural
resonance with displacement along they axis.

The dynamic behavior of a flexural beam is most eas
treated using the Euler–Bernoulli theory, which applies
beams with aspect ratiosL/t@1.15 For an isotropic material
the transverse displacementY(x,t) of the beam centerline
~along they direction!, obeys the differential equation

rA
]2Y

]t2
~x,t !52

]2

]x2
EI

]2Y

]x2
~x,t !, ~1!

wherer is the material density,A5wt is the cross-sectiona
area,E is Young’s modulus, andI 5wt3/12 is the bending
moment of inertia. The clamped ends, atx50 and x5L,
impose the boundary conditionsY(0)5Y(L)50 and
Y8(0)5Y8(L)50. The solutions have the form

Yn~x,t !5~C1n~cosknx2coshknx!

1C2n~sinkn2sinhknx!!exp~2 iVnt !, ~2!

with eigenvectorskn satisfying cosknL coshknL51. The first
four eigenvectors are given byknL5 4.730 04, 7.8532,
10.9956, and 14.1372. The angular frequenciesVn are given
by

Vn5AEI

rA
kn

2 . ~3!

The fundamental eigenfrequency is given by

TABLE I. Numerical solutions for a doubly clamped beam.

n51 2 3 4

knL 4.730 04 7.8532 10.9956 14.1372
nn /n1 1 2.756 5.404 8.933
C1n /L 21.0000 21.0000 20.9988 21.0000
C2n /L 0.9825 1.0008 0.9988 1.0000

FIG. 1. Doubly clamped beam with lengthL, width w and thicknesst. The
end supports are assumed infinitely rigid.
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and the higher modes arenn /n152.756, 5.404, and 8.933 fo
n52, 3, and 4.

The eigenfunctionsYn in Eq. ~2! are mutually orthogo-
nal, and we normalize them to the beam length, so that

E
0

L

Yn~x!Ym~x!dx5L3dmn . ~5!

The corresponding coefficientsC1n and C2n are listed in
Table I. An arbitrary solutionY(x,t) to undriven or driven
motion can be written

Y~x,t !5 (
n51

`

an~ t !Yn~x!, ~6!

where the amplitudesan are dimensionless.
The fundamental frequencyn1 is a function of the ma-

terial parametersE andr as well as the beam dimensionst
and L. High frequencies can be achieved by reducing
overall resonator scale, by choosing stiffer and lighter ma
rials, and by reducing the aspect ratioL/t; all three of these
approaches are being used, and at present the highes
ported frequency is 0.63 GHz, for a SiC beam.16 For the
purposes of this article, we will focus on a single-crystal
beam with dimensions as given in Table II; the releva
physical properties for Si are given in Table III, all at roo
temperature. Our calculations are for the fundamental re
nancen51.

In the next section, we discuss the anelastic proces
that result in a finite quality factorQ for the beam resonance
described within the context of Zener’s model for anelas
solids. In that section, we will describe how the Zener mo
is included in the formalism described so far. In later se
tions, we discuss other types of noise that are not descr
within the context of the Zener model; these have to do w
parametric changes in the physical properties of the reso
tor, such as its mass and length, which cause the na
resonance frequency of the resonator to change, but do
necessarily involve energy dissipation. Any single parame
change can be associated with a change in the reson

TABLE II. Parameters for the beam in this calculation.

L t w M n1 k1

~mm! ~mm! ~mm! ~fg! ~GHz! (mm21)

0.66 0.05 0.05 3.84 1.00 7.17

TABLE III. Properties for Si at room temperature.

Density r 2330 kg/m3

Young’s modulus E 1.6931011 N/m2

Thermal conductivity k 1.48 W/cm K
Specific heat CV 1.64 J/cm3 K
Sound speed cs 5860 m/s
Phonon mean-free path l 50 nm
Thermal expansion aT 2.831026/K
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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energy, depending on where in the oscillation cycle
change occurs, but given events that occur randomly ove
oscillation period, on average, the energy change is zero.
noise sources we discuss include adsorption–desorp
noise due to molecules around the resonator, tempera
fluctuations that change the length and longitudinal stres
the resonator, and defect motion within the resonator.
latter can to some extent be included in the Zener model,
some modes of defect motion will not generate intrinsic d
sipation but instead give rise to parametric changes.

For these sources of parametric noise, an instantan
measurement of the response of a resonator, as a functio
frequency, would indicate the actual dissipation associa
with material losses, while a measurement that takes a n
zero time to complete allows the resonator frequency to fl
tuate over the period of the measurement, and would giv
response curve that appears to be associated with a h
rate of dissipation than is actually present, due to the spr
of resonance frequencies that appear over the course o
measurement. Separating these two effects experimenta
a very challenging but intriguing problem.

B. Dissipation in mechanical resonators

The most significant mechanism for energy loss in a
nomechanical resonator is through intrinsic losses in
beam material, which can be treated using Zener’s mode
anelastic solids.13 Other important loss terms include the
moelastic processes,7 which are negligible for the resonato
geometry and dimensions given here, and through the tr
duction mechanism,17 which can usually be minimized
through design considerations.

In Zener’s model, the Hooke’s stress–strain relations
5Ee, relating the stresss to the straine, is generalized to
allow for mechanical relaxation in the solid:

s1te

ds

dt
5ERS e1ts

de

dt D , ~7!

whereER is the relaxed value of Young’s modulus. Loa
applied slowly generate responses with the relaxed modu
while rapidly varying loads involve a different value for th
modulus.

We consider harmonic stress and strain variations,s(t)
5seivt ande(t)5eeivt. At low frequenciesvt!1, this be-
comes the standard Hooke’s law relation withE5ER . At
high frequenciesvt@1, the modulus becomesE5EU

5(ts /te)ER , theunrelaxedYoung’s modulus. For interme
diate frequencies, Young’s modulus is complex, of the fo

E5Eeff~v!S 11
ivt

11v2t2
D D , ~8!

with mean relaxation timet5(tste)
1/2, fractional modulus

differenceD5(EU2ER)/ER , and effective Young’s modu
lus

Eeff5
11v2t2

11v2te
2

ER . ~9!
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Equation~8! implies that the stresss will include a com-
ponent that is 90° out of phase with the straine, which
causes energy loss at a rate proportional toD. For smallD,
we define the quality factorQ as the ratio of the imaginary to
the real part ofE:

Q215
vt

11v2t2
D. ~10!

We then use the effective Young’s modulusEeff in the
Euler–Bernoulli formula, Eq.~1! at frequencyv,

v2rAY~x!5Eeff~v!I S 11
i

QD ]4Y

]x4
~x!. ~11!

The spatial solutionsY(x) are the same as for Eq.~1!, but the
dispersion relation giving the damped eigenfrequenciesVn8
in terms of the undamped frequenciesVn is

Vn85S 11
i

2QDVn , ~12!

for small dissipationQ21. The imaginary part ofVn8
implies that thenth eigenmode will decay in amplitud
as exp(2Vnt/2Q).

C. Driven damped beams

We now add a harmonic driving forceF(x,t)
5 f (x)exp(ivct), where f (x) is the position-dependent forc
per unit length. The force is uniform across the beam cr
section and directed alongy, and the carrier frequencyvc is
close toV1 . The equation of motion is15

rA
]2Y

]t2
1EA

]4Y

]x4
5 f ~x!eivct. ~13!

We solve this equation for long times,V1t/Q@1, so any
transients damp out. The solution then has the formY(x,t)
5Y(x)eivct. The amplitudeY(x) may be complex, so tha
the motion is not necessarily in phase with the forceF. Ex-
panding the displacement in terms of the eigenfunctionsYn ,

2vc
2rA(

n51

`

anYn~x!1EA(
n51

`

an

]4Yn

]x4
5 f ~x!. ~14!

Using the defining relation for the eigenfunctions, Eq.~1!,
the dispersion relation, Eq.~12!, and the orthogonality rela
tions, Eq.~5!, this can be written

~Vm8
22vc

2!am5
1

rAL3E0

L

Ym~x! f ~x!dx, ~15!

for each termm in the expansion. Forvc close toV1 , only
them51 term in Eq.~15! has a significant amplitude, give
by

a15
1

rAL3

1

V1
22vc

21 iV1
2/Q

E
0

L

Y1~x! f ~x!dx, ~16!

for small dissipationQ21.
We now take a uniform force,f (x)5 f . The integral in

Eq. ~16! is then
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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h15
1

L2E0

L

Y1~x!dx50.8309. ~17!

The amplitude is then

a15
h1

V1
22vc

21 iV1
2/Q

f

M
, ~18!

whereM5rAL is the mass of the beam, and the correspo
ing displacement of the beam isY(x,t)5a1Y1(x)exp(ivct).

If the force distributionf (x) is instead chosen to be pro
portional to the eigenfunctionY1(x), the integral Eq.~16! is
unity, so thath1 in Eq. ~18! is replaced by the number 1.

We point out that the response function, Eq.~18!, while
similar to that of a damped, one-dimensional harmonic os
lator, differs slightly in theQ-dependent denominator, but th
difference is only apparent for small values ofQ: For values
of Q greater than 15, the fractional difference at any f
quency is less than 1%.

III. NOISE IN DRIVEN DAMPED BEAMS

Systems that dissipate energy are necessarily sourc
noise; the converse is also often true. This is the basic s
ment of the fluctuation–dissipation theorem, and is b
known in relation to electrical circuits, where it is termed t
Nyquist–Johnson theorem. An electrical circuit element w
an electrical impedanceZ(v) that has a nonzero real par
R(v)5ReZ(v), will be a source of noise, that is, of fluc
tuations in the voltageV(t) across the impedanceZ, or
equivalently in the currentI (t) throughZ. A voltmeter placed
across the circuit element will measure an instantane
voltage that fluctuates with a Gaussian distribution in am
tude, with zero average value, and a width that is determi
only by R(v) and the temperatureT. A useful way to quan-
tify the noise is to use the average spectral density of
noise in angular frequency space, defined for a noise vol
V(t) by

SV~v!5K E
2`

`

V2~ t !cos~vt !dtL . ~19!

Here the angle brackets^ . . . & indicate that a statistical en
semble average, over many equivalent systems, is to
taken. The spectral density is proportional to the electr
noise power in a unit bandwidth. The Nyquist–Johnson th
rem states that this quantity is given bySV(v)
5(2/p)R(v)\v coth(\v/kBT). At high temperatures or low
frequencies, such thatkBT@\v, this approaches the class
cal limit SV(v)→2kBTR(v)/p. The spectral noise densit
SV( f ), as a function of frequencyf 5v/2p, is given in the
high-temperature limit bySV( f )52pSV(v)54kBTR( f ).
The metric units ofSV( f ) are V2/Hz. The corresponding
current spectral noise density isSI( f )5SV( f )/R2( f )
→4kBT/R( f ), in the high temperature limit, with units o
A2/Hz.

The fluctuation–dissipation theorem applies to mecha
cal resonators with nonzero dissipation, i.e., with finiteQ,
and ensures that the mechanical resonator will also b
source of noise, but due to the resonant nature of the
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sponse of the resonator, the noise spectral density takes
somewhat different form. We will only treat the high
temperature limit,kBT@\v, for the resonator noise.

A. Dissipation-induced amplitude noise

The displacement of a forced, damped beam driven n
its fundamental frequency is given by Eq.~18!. In the ab-
sence of noise, this solution represents pure harmonic mo
at the carrier frequencyvc . As discussed, the nonzero valu
of Q21 and temperatureT necessitates the presence of noi
from the fluctuation–dissipation theorem. Regardless of
origin of the dissipation mechanism, it acts to thermalize
motion of the resonator, so that in the presence of dissipa
only ~no driving force!, the mean energŷEn& for each mode
n of the resonator will be given bŷEn&5kBT, whereT is
the physical temperature of the resonator. This noise term
been considered by a number of authors.9,14

The thermalization occurs due to the presence of a n
force f N(x,t) per unit length of the beam. Each point on th
beam experiences a noise force with the same spectral
sity, but fluctuating independently from other points; t
noise at any two points on the beam is uncorrelated. T
noise be written as an expansion in terms of the eigenfu
tions Yn(x),

f N~x,t !5
1

L (
n51

`

f Nn
~ t !Yn~x!, ~20!

where the forcef Nn
associated with the moden is uncorre-

lated with that for other modesn8; the factor 1/L appears
because of the normalization of theYn .

The noise forcef Nn
(t) has a white spectral densit

Sf n
(v), and a Gaussian distribution with a zero mean. T

magnitude of the spectral densitySf n
may be evaluated by

requiring that it achieve thermal equilibrium for each mo
n. The spectral density of the noise-driven amplitudean of
the nth mode is given by

San
~v!5

1

~Vn
22v2!21~Vn

2/Q!2

Sf n
~v!

M2
. ~21!

The SI units forSf n
are (N/m)2/~rad/s!5kg2/~s3 rad). Those

for San
are 1/~rad/s!, becausean is dimensionless.

The kinetic energyKEn of thenth mode associated with
the spectral densitySan

is given by

^KEn&5
1

2E0

`E
0

L

rAv2San
~v!Yn

2~x!dxdv

5
1

2E0

`

rAL3v2San
~v!dv'

p

4

QL2

Vn

Sf n
~v!

M
,

~22!

where the last equality becomes exact in the limitQ21→0.
The error in Eq.~22! for finite Q is less than 1% forQ
.10.

In order that this yield thermal equilibrium, the kinet
energy is^KEn&5 1

2kBT, so the spectral densitySf n
must be

given by
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Sf n
~v!5

2kBTMVn

pQL2
. ~23!

The termL2 appears in Eq.~23! becausef Nn
is the force per

unit length of beam. An equivalent derivation for a on
dimensional simple harmonic oscillator yields the force d
sity SF(v)52kBTMV/pQ. We can write the spectral den
sity of the thermally driven amplitude as

San
~v!5

Vn

~Vn
22v2!21~Vn

2/Q!2

2kBT

pML2Q
. ~24!

When superposed with a driving force with a carrier fr
quencyvc5V1 , the amplitude noise power consists of
d-function peak at the carrier superposed with the Lorentz
given by Eq.~24!, as sketched in Fig. 2.

B. Dissipation-induced phase noise

The form in Eq. ~24! represents frequency-distribute
amplitude noise. Equivalent expressions can be written
the phase noise, the fractional frequency noise, and the A
variance,18 which are useful for time-keeping and filter a
plications. We note that the different expressions are
equivalent ways of expressing the same noise, and do
represent additional sources of noise. The resonator is dr
by the carrier signal near its resonance frequencyV1 , and in
addition by dissipation-induced noise. The time-depend
amplitude is then

a~ t !5a0 sin~vct1f~ t !1u!, ~25!

wheref(t) represents a phase variation from the carrier
frequencyvc'V1 ; the amplitudea0 is constant, andu is a
phase offset. Following Robins,19 we pick one frequency
component atv for the phase variation,f(t)5f0 sin(vt).
Assuming small maximum deviationf0 , the amplitude may
be written

a~ t !5a0 sin~vct1u!1a0

f0

2
sin~~vc1v!t !

2a0

f0

2
sin~~vc2v!t !. ~26!

FIG. 2. Frequency spectrum of a driven beam in the presence of n
showing both the central driven peak as well as the noise sidebands.
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The phase variation atv generates sidebands spaced6v
from the carrier, with amplitude6a0f0/2. The lower side-
band is phase coherent with the upper sideband, with
opposite sign; this is characteristic of phase noise. Indep
dent sideband signals can be generated by adding an am
tude noise sourceM (t) to the phase noisef(t), so that the
amplitude is written as

a~ t !5a0~11M ~ t !!sin~vct1f~ t !1u!. ~27!

We consider a single component atv for both the phase and
amplitude modulation, so that

M ~ t !5M0 sin~vt !
~28!

f~ t !5f0 sin~vt !.

Again assuming small variations, this can be written as

a~ t !5a0 sin~vct1u!1 1
2 a0~M01f0!sin~~vc1v!t !

1 1
2 a0~M02f0!sin~~vc2v!t !. ~29!

Setting the amplitudeM05f0 , the lower sideband disap
pears and we are left with the independent upper sideb
term,

a~ t !5a0 sin~vct1u!1a0f0 sin~~vc1v!t !. ~30!

Choosing the opposite sign relationM052f0 allows the
lower sideband to be chosen.

A noise signal at a frequency offset from the carrier c
be created from the superposition of a phase and an am
tude modulation of the original carrier. In applications whe
the resonator is to be used as a frequency source or a c
the amplitude modulation is unimportant: Use of a ze
crossing detector, or a perfect limiter, eliminates the effe
of the amplitude modulation. We therefore ignore this no
source. This is equivalent, from the arguments leading to
~26!, to limiting the noise to that which is phase cohere
between the upper and lower sidebands, with amplitu
a(vc1v)52a(vc2v). Noise which has the opposit
phase relation, witha(vc1v)51a(vc2v), is due to am-
plitude modulation. Noise associated with only one sideba
consists of the sum or difference of these two ‘‘modes’’.

Dissipation-induced noise, of the form given by E
~24!, is intrinsically phase incoherent on opposite sides of
carrier signal atvc . Half of the noise power is therefor
associated with amplitude modulation, and half with pha
modulation; the phase noise power is thereforehalf the origi-
nal total noise power.

We can evaluate the dissipation-induced phase noise
a resonator driven at its fundamental resonance freque
We drive the resonator with a forcef per unit length, at the
frequencyvc5V1 . The amplitude for the response is give
by Eq. ~18!,

a152 i
h1

V1
2

Q f

M
. ~31!

The amplitude lags the force by 90°, and includes the m
tiplicative factorQ. Dissipation generates incoherent nois

e,
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



q

,
c

e
li-
ze

y

-

r

th

m
t

the

-

e-

do-
the
rce,

ning

ase

c-
nal

n-

2763J. Appl. Phys., Vol. 92, No. 5, 1 September 2002 A. N. Cleland and M. L. Roukes
distributed about the carrier with noise power given by E
~24!. The phase noise power densitySf(v) at frequencyv
from the carrier frequency is then given by

Sf~v!5
1

2

Sa1
~V11v!

ua1u2

5
V1

~2V1v1v2!21~V1
2/Q!2

kBT

pua1u2L2MQ
. ~32!

For frequencies that are well off the peak resonancev
@V1 /Q, but small compared to the resonance frequen
v!V1 , we may approximate the denominator as

Sf~v!'
kBT

4pV1v2ua1u2L2MQ

'
kBTV1

8pEcQv2
~V1 /Q!v!V1!. ~33!

Here, we define the energyEc at the carrier frequency,Ec

5MV1
2L2ua1u2/2. This can also be written in terms of th

power Pc5V1Ec /Q needed to maintain the carrier amp
tude, i.e., that needed to counter the loss due to the non
value of 1/Q:

Sf~v!'
kBT

8pPcQ
2 S V1

v D 2

~V1 /Q!v!V1!. ~34!

We can also write this expression in terms of frequencf
52pv,

Sf~ f !'
kBT

4PcQ
2 S n1

f D 2

~n1 /Q! f !n1!. ~35!

C. Frequency noise

The phase fluctuations can also be viewed asfrequency
fluctuations, where the amplitudea(t) has a time depen
dence

a~ t !5a0 sinS E
2`

t

v~ t8!dt81u D . ~36!

The time-dependent frequencyv(t) is related to the carrie
frequencyvc and the phasef(t) by

v~ t !5
d~vct1f~ t !!

dt
5vc1

df

dt
. ~37!

We define time-dependent frequency variationdv(t) as

dv~ t !5v~ t !2vc5
df~ t !

dt
. ~38!

We consider a single-phase modulation component, so
f(t)5f0 sin(vt). The frequency variation

dv~ t !5dv0 cos~vt !5vf0 cos~vt ! ~39!

represents a sinusoidal variation of the frequency, with a
plitude dv05vf0 , modulated atv. The time-dependen
amplitude in Eq.~36! is
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a~ t !5a0 sin~vct1~dv0 /v!sin~vt !1u!

5a0 sin~vct !1
1

2
a0

dv0

v
sin~~vc1v!t !

2
1

2
a0

dv0

v
sin~~vc2v!t !, ~40!

a result very similar to that for phase variations, Eq.~26!.
The arguments leading to the spectral density, Eq.~34!,

may be reworked to yield the equivalent expression for
frequency variation noise densitySdv . A more useful quan-
tity is the fractional frequency variation, defined asy
5dv/vc . The noise density fory is related to that for the
phase noise density by

Sy~v!5S ]y

]f D 2

Sf~v!5S v

vc
D 2

Sf~v!, ~41!

where we use the fact that modulation atv generates side
bands at6v from the carrier atvc . From Eq.~34!, we then
have

Sy~v!'
kBT

8pPcQ
2

~vc /Q!v!vc!. ~42!

In the frequency domain, this is

Sy~ f !'
pkBT

4PcQ
2

~nc /Q! f !nc!. ~43!

D. Allan variance

A third useful quantity, commonly used to compare fr
quency standards, is the Allan variancesA(tA).20,21 The
phase and frequency noise are defined in the frequency
main; the Allan variance is defined in the time domain, as
variance over time in the measured frequency of a sou
each measurement averaged over a time intervaltA , with
zero-dead time between measurement intervals. The defi
expression for the square of the Allan variance is

sA
2~tA!5

1

2 f c
2

1

N21 (
m52

N

~ f̄ m2 f̄ m21!2, ~44!

where f̄ m is the average frequency measured over themth
time interval, of lengthDt5tA , andf c is the nominal carrier
frequency. The squared Allan variance is related to the ph
noise density by21

sA
2~tA!52S 2

vctA
D 2E

0

`

Sf~v!sin4~vtA/2!dv, ~45!

wherevc52p f c andv is the modulation frequency.
The Allan variance can be calculated for various fun

tional forms for the phase noise density. For a fractio
frequency noise that has a 1/f component, so thatSy(v)
5A(vc /v), whereA is a scale factor, the phase noise de
sity is Sf(v)5A(vc /v)3, and the Allan variance is

sA~tA!5A2 loge 2Avc. ~46!
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Hence a 1/f fractional frequency noise yields an Allan var
ance that is independent of the measurement time interv

For a source that displays frequency drift, the fractio
frequency noise will have the formSy(v)5B(vc /v)2; the
phase noise density is thenSf(v)5B(vc /v)4, and the Al-
lan variance is

sA~tA!5Ap

3
Bvc

2tA. ~47!

Finally, for a white fractional frequency noise densi
Sy(v)5C, the phase noise density has the formSf(v)
5C(vc /v)2, and the Allan variance is

sA~tA!5ApC

tA
. ~48!

In particular, for the approximate form for the phase no
density Eq.~34!, the Allan variance is

sA~tA!5A kBT

8PcQ
2tA

. ~49!

Defining the dimensionless drive energy«c as the ratio of
drive energy per cycle to the thermal energy,«c

52pPc /vckBT, we have

sA~tA!5
1

Q
A p

4«cvctA
. ~50!

We see that the Allan variance falls inversely with the squ
root of the productvctA , and it is also proportional to the
dissipationQ21. Other things being equal, increasing t
resonator frequencyvc lowers the Allan variance.

In Fig. 3, we display the approximate result Eq.~50! as a
function of vctA , scaled to remove the dependence onQ
and on«c ; we also show the full result obtained from int
grating Eq.~32!, for values ofQ.100; for values ofQ less
than this, the calculated value for the scaled variance f
below that plotted.

We see that the approximate expression given by
~50! works quite well for averaging timestA more than a few
tens of the oscillation period 2p/vc ; in time-keeping or

FIG. 3. Dependence of the Allan variancesA on the dimensionless time
interval vct; the Allan variance has been scaled to remove the ove
dependence onQ and on drive energy«c . The full dependence@from Eq.
~32!# is plotted as a solid line, while the approximate form@Eq. ~50!# is
plotted as a dotted line.
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frequency-lock applications, one is typically interested
times much longer than this, so the approximate form is qu
adequate.

We now turn to examining what the implications are f
the fundamental sources of noise in our model resonator.
will focus on calculating the predicted dependence of
Allan variance.

E. Model resonator Q-dependent noise

We calculate the dependence of the Allan variancesA on
the time interval andQ for our model 1 GHz resonator, de
scribed in Table II. The results of the calculation are sho
in Fig. 4. The drive power levelPc is chosen so that the
amplitude of motiona1 in Eq. ~18! is equal to the beam
thicknesst, approximately the amplitude for the onset
nonlinearity. The calculated temperature rise due to diss
tion in the resonator from this level of drive power is ve
small, of order 0.1 K. We also display for comparison t
Allan variance for an oven-controlled 10 MHz quartz crys
oscillator, the HP10811D.22 For quality factors higher than
105, the calculated thermally induced fluctuations are co
parable to or better than those of the bulk quartz resona

IV. TEMPERATURE FLUCTUATIONS

We now turn to a discussion of the effects of finite the
mal conductance and heat capacitance on the Allan varia
The small dimensions associated with our model resona
and of nanoscale resonators in general, imply that the h
capacity of the resonator is very small. The correspond
thermal fluctuations are proportionally larger, and these m
in turn produce significant frequency fluctuations, due to
temperature dependence of the resonator material param
and geometric dimensions. Here, we present a simple m
through which the magnitude of these effects can be e
mated.

A heat capacitancec, connected by a thermal conduc
tanceg to an infinite thermal reservoir at temperatureT, will
have an average thermal energy^Ec&5cT in the absence of
any power loads. Changes in the temperature relax with

ll
FIG. 4. Allan variancesA as a function of measurement intervaltA , cal-
culated for the model 1 GHz resonator for a range of values ofQ from 103

to 106. The drive power levelPc was chosen so that the amplitude of motio
a15t, the beam thickness, For comparison, we also display the varianc
a 10 MHz quartz crystal frequency standard, the HP10811D; figures ta
from manufacturer’s specifications.
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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thermal time constanttT5c/g. The energyEc will however
fluctuate, as the fluctuation–dissipation theorem applies
finite thermal conductances in a manner similar to
dissipation-induced mechanical noise.23 The thermal circuit
therefore includes a power noise sourcep with spectral den-
sity Sp(v)52kBT2g/p ~see Fig. 5!. The instantaneous en
ergy of the heat capacitance can then be writtenEc(t)5cT
1dE(t), where the spectral density of the energy fluctu
tions dE(t) can be derived from the thermal circuit,

SE~v!5
2

p

kBT2c2/g

11v2tT
2

. ~51!

We can interpret the energy fluctuations as temperature
tuationsdTc(t), if we define the temperature asTc5Ec /c.
The corresponding spectral density of the temperature fl
tuations is given by

ST~v!5
2

p

kBT2/g

11v2tT
2

. ~52!

At low frequenciesv, below that of the thermal frequenc
1/tT , the temperature fluctuationsdT follow those driven by
the noise sourcep, while at higher frequencies the nonze
heat capacitance acts as a filter.

For a resonator with the geometry shown in Fig. 1, th
is no clear separation of the structure into a distinct h
capacitance and thermal conductance. Instead, we divide
resonator into slices of lengthDx and cross-sectional are
A5w3t, so that the nth slice has heat capacitycn

5CvADx, whereCv is the specific heat per unit volume
The (n21)th andnth slices are connected to one another
the thermal conductancegn5kA/Dx, with thermal conduc-
tivity k given by the classical formula,k5(1/3)CVcsl (l is
the phonon mean-free path andcs the sound speed!. The
thermal conductancesgn are associated with noise pow
sourcespn , with spectral densitySpn

(v)52kBT2gn /p. Fi-
nally, the temperatures at the ends of the beam, where
beam is mechanically clamped, are assumed to be give
the reservoir temperatureT; see Fig. 6.

In this model, energy fluctuations in the slicesn21 and
n are anticorrelated through the shared conductancegn : An
energydE driven into thenth slice bypn corresponds to the
same energy taken from the (n21)th slice. These energ
fluctuations then relax through conductance into adjac
slices, and so on through the beam length, so that the
some correlation between the fluctuations in all slices,
though the correlations get weak for distant slices.

FIG. 5. Thermal circuit with a finite thermal conductanceg and a finite heat
capacitancec, including a power noise sourcep.
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One might expect that the most accurate model wo
use slices with differential lengthsDx5dx→0. However,
once the slices become shorter than the phonon mean
path l , the temperature in a slice is no longer well define
We therefore choose slices with a lengthDx5l 550 nm, so
that each element has a volumeV550350350 nm3. The
corresponding heat capacity isc5CVV52310216 J/K, and
the thermal links haveg5kl 57.431026 W/K. The ther-
mal time constant istT530 ps, corresponding to therma
frequencies;35 GHz, well outside the range of frequenci
of interest for resonator phase fluctuations,V1 /Q!v
!V1 . For the purposes of this calculation, therefore, we c
treat the thermal fluctuations in the low-frequency limit.

Consider only thenth power source of the conductanc
pn . If we take the frequency component atv, the (n21)th
and nth slices have temperature variationsTn21(v) and
Tn(v) given by

~21 ivt!Tn2152
pn

g
1Tn221Tn

~53!

~21 ivt!Tn5
pn

g
1Tn211Tn11 .

The corresponding equation for the (n1m)th slice is given
by

~21 ivtT!Tn1m5Tn1m211Tn1m11 . ~54!

Taking the limit vtT!1, we find that the power sourc
pn(v) driving thenth slice generates a temperature variati
T(v)5pn(v)/2g uniformly across the beam. The corre
sponding anticorrelated source2pn(v) driving the (n21)th
slice generates an equal but opposite temperature varia
Hence, in the limitvtT!1, the fluctuations driven by con
ductances within the beam have no net effect.

The other source of temperature fluctuations comes fr
the conductances at the beam ends,g1 andgN11 . These also
drive the beam uniformly, but as the energy that appear
the first and last elements does not have an adjacent ant
related source, there is now a net effect. The final result fr
this model is that the temperature of all the elements in
beam fluctuate uniformly, with spectral densityST(v) given
by the incoherent sum of the two end sources,

ST~v!5
4

p

kBT2/g

11v2tT
2 ~vtT!1!. ~55!

FIG. 6. Thermal model for doubly clamped beam, consisting of a se
connection of heat capacitancescn and thermal conductancesgn , each as-
sociated with a cross-sectional slice of the beam of lengthDx. Each thermal
conductance is associated with a power noise sourcepn . The ends are
assumed clamped at the reservoir temperatureT. There are a total ofN
5L/Dx elements.
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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We have kept the frequency dependence of the thermal
cuit in order to retain the high-frequency cutoff in the flu
tuations.

The effect these temperature fluctuations have on
resonator behavior involves changes in the density and e
tic modulus, which affect the frequency directly, and throu
changes in the overall resonator length. The density and e
tic modulus determine the resonator frequency through
combinationAE/r, which is the sound speedcs ; this quan-
tity has the fractional temperature dependen
(1/cs)]cs /]T52531025/K for pure Si.24 The correspond-
ing temperature dependence of the resonator frequenc
given by

1

Vn

]Vn

]T
5

1

cs

]cs

]T
~sound speed dependence!. ~56!

The changes in resonator length generate longitud
stress in the resonator, as the ends are assumed ri
clamped. The resonator lengthL changes with temperatur
due to the thermal expansion of Si, with (1/L)]L/]T5aT

52.831026/K. A temperature changeDT therefore induces
a longitudinal extensional stresst52EaTDT. This in turn
causes a change in thenth resonator frequencyVn(t), which
for small extensional stresst is given by15

Vn
2~t!5Vn

2~0!1kn
2 t

r
, ~57!

in terms of the beam eigenvectorskn and eigenfrequencie
Vn5AEI/rAkn

2 . The fractional frequency dependence d
to length change is therefore

1

Vn

]Vn

]T
52

1

2

E

r

kn
2

Vn
2
aT ~ length dependence!. ~58!

Hence, the spectral density of fractional frequency flu
tuationsSy(v) caused by the combined temperature dep
dence on sound speed and beam length is given by

Sy~v!5S 1

V

]V

]T D 2

ST~v!

5S 2
cs

2kn
2

Vn
2

aT1
2

cs

]cs

]T D 2
kBT2/pg

11v2tT
2

. ~59!

For the fundamental mode, we havek154.73/L, and insert-
ing the model resonator parameters, we find

Sy~v!5~1.631028/K2!
kBT2/g

11v2tT
2

5
2.7310221

11v2tT
2

1

rad/s
.

~60!

From the fractional frequency noise, Eq.~60!, we calcu-
late the Allan variance:

sA~tA!5~2.2531024/K2!AkBT2/gtA

59.3310211
1

AtA

, ~61!

in the limit tA@tT . The contribution of thermal fluctuation
to the Allan variance for our model resonator is therefore
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the same magnitude and dependence on averaging timetA as
that due to mechanical dissipation for a resonator withQ of
about 104, and is a significant source of fluctuation. Ways
reduce the size of this source of variance include the us
materials with larger thermal conductance, such as AlN~3.20
W/cm K!25 and sapphire ~4.50 W/cm K!, or better
temperature-compensated materials, such as quartz.

V. OTHER SOURCES OF NOISE

There are a number of other sources of noise that
affect resonator performance. We discuss here two s
sources, one due to adsorption–desorption noise of resi
gas molecules, and the other due to defect motion within
resonator structure.

A. Adsorption–desorption noise

Adsorption–desorption noise has been discussed in s
detail by Vig and Kim12 and Yong and Vig.11 The resonator
environment will always include a nonzero pressure
surface-contaminating molecules. These molecules, w
they adsorb on a site on the resonator surface, mass loa
resonator, and thereby change its resonance frequency
the molecules adsorb and desorb due to their finite bind
energy and nonzero temperature, the resulting change
frequency translate to a source of phase or fractional
quency noise. As discussed herein, this type of noise d
not fit into the Zener formalism, as the adsorption
desorption cycle is not intrinsically a dissipative one: As t
arrival and departure times of the atoms are random, they
not on average change the energy of the resonator, but c
its frequency to change in a discontinuous fashion, leav
the quality factor unchanged. This type of parametric no
~where the overall resonator mass is fluctuating! is therefore
not described by the lossy stress–strain relation develo
by Zener.

The frequency change due to a single adsorbed m
ecule,DV, is proportional to the ratio of the molecule t
resonator total mass,m/M ; smaller mass resonators are mo
sensitive than larger ones. Furthermore, as the resonator
scale is reduced, the number of adsorption sitesNa on the
resonator surface grows in proportion to the number of to
number of resonator atoms: The surface-to-volume ra
grows inversely to the size scale. Hence, nanoscale res
tors are more susceptible to adsorption–desorption n
than larger, bulk mechanical resonators.

We use a simple model to estimate the noise from t
source. We assume a single molecular species with masm,
surface binding energyEb , and pressureP. Expressions may
be derived for the adsorption and desorption ratesr a and r d

at any given surface site;11 with sticking coefficients, the
adsorption rate at any site is given by

r a5
2

5

P

AmkBT
s. ~62!

The sticking coefficient is typically temperature dependen26

Once bound to the surface, a molecule desorbs at a rate
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



of
e

is
–

on
e
s
A
is

s

T
e
m
pa
i-

Th

si
s
n

at
in

t
et
y
n-
fo

x-
t
r
th

at
or
de-

lly,
he
eri-

ing
ili-
e
ids,
fre-
y

ly-
his
ade

ect

les,
al
-
er-

r
ct
oc-
nd
n is

er-
ere

a

l

e
inant

c-

2767J. Appl. Phys., Vol. 92, No. 5, 1 September 2002 A. N. Cleland and M. L. Roukes
r d5nd expS 2
Eb

kBTD , ~63!

where nd is the desorption attempt frequency, typically
order 1013 Hz, andEb is the desorption energy barrier. Th
average occupationf of a site is thenf 5r a /(r a1r d); the
variance in the occupation probability issocc

2 5r ar d /(r a

1r d)2.
An expression may then be derived for the phase no

Sf(v) resulting from the statistics of the adsorption
desorption process:11

Sf~v!5
2Nasocc

2 tA /p

11v2t r
2

DV2

v2
. ~64!

Here,t r is the correlation time for an adsorption–desorpti
cycle, 1/t r5r a1r d . A simple mass-loading formula may b
assumed,DV5(m/2M )V1 , whereM is the resonator mas
and V1 is the fundamental frequency of the resonator.
corresponding expression for the fractional frequency no
is then given by

Sy~v!5
Nasocc

2 t r /2p

11v2t r
2 S m

M D 2

. ~65!

We calculate the Allan variance,

sA~tA!5ANat r

2tA

soccm

M
, ~66!

in the limit tA@t r .
The occupation variancesocc

2 , and therefore the noise, i
maximum when the site occupation probability isf 50.5,
i.e., when the adsorption and desorption rates are equal.
noise is minimized when the occupation probability is eith
near zero or near unity. For typical packaged pressures,
lecular sticking coefficients, and binding energies, occu
tion probabilities are quite small; we therefore try to min
mize the occupation to reduce the fluctuation variance.
exponential dependence of the desorption rater d on tempera-
ture provides a useful approach; heating the resonator, u
an on-chip heating element, causes significant increase
the desorption rate and therefore in the occupation varia
socc

2 .
In Fig. 7, we plot the Allan variance for a 1 saveraging

interval, as a function of package pressure, for two reson
temperatures, 300 and 500 K. We have chosen a contam
molecule with an binding energy ofEb510 kcal/mol, with
one adsorption site every 0.25 nm2, and a sticking coefficien
of 0.1, typical values for gas molecules adsorbing on m
surfaces.11,26 Note that the sticking coefficient is typicall
temperature dependent,26 but here we have taken it as co
stant. We show for comparison the overall Allan variance
the HP 10811D 10 MHz quartz oscillator, again for a 1 s
averaging interval.

It is clear from Fig. 7 that this source of noise is e
tremely important. Great care must be taken to passivate
resonator surface, thus reducing the sticking coefficient,
duce the pressure, for instance by including getters in
package, and possibly raising the ambient temperature.
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B. Defect motion

The last source of noise we would like to consider is th
caused by defect motion within the resonator volume. F
the single-crystal resonators we have been considering,
fect levels are very low in the base material. Statistica
there are of order 0 to 1 defects within the volume of t
resonator. We therefore do not expect this to provide a s
ous source of noise in these resonators.

However, there has been extensive work on develop
polycrystalline materials for resonators, especially using s
con nitride and poly-Si.5,6 These materials include a larg
density of grain boundaries, point defects, and some vo
and the motion of these defects can cause phase and
quency noise in high-Q resonators. Amorphous Si created b
implantation has defect densities of order 1%;27 similar lev-
els are expected for chemical vapor deposition-grown po
silicon. The quality factors of resonators fabricated from t
material are comparable, at room temperature, to those m
from single-crystal materials such Si and GaAs, but def
processes may still play a very important role.

Point defects in a solid can be treated as elastic dipo
with symmetry different from that of the underlying cryst
~see e.g., Nowick and Berry13!. In the relaxed state, the de
fects are randomly oriented; reorientations occur due to th
mally induced motion, at a rateGd5n0 exp(2Dg* /kBT), with
an attempt frequencyn0;1012 Hz and free energy barrie
Dg* , typically of order 0.1–1 eV. If we consider a defe
with two possible orientations, with equal energies, the
cupation probabilities are given by the Gibbs distribution a
are each equal to 1/2; the variance in the mean occupatio
equal to 1/4, with mean reorientation timetd51/Gd . De-
fects in which the possible orientations have different en
gies will have smaller variances in the occupation, and th
will be a range of reorientation times as well.

A single defect moving or reorienting itself can cause
change in the local Young’s modulusE; if the defect has two
possible configurations,2 and 1, the corresponding loca
modulus changes fromEs1E2 to Es1E1 , whereEs is the

FIG. 7. Allan variance for a 1 saveraging interval as a function of packag
pressure for two resonator temperatures, 300 and 500 K. The contam
molecule has a binding energyEb510 kcal/mol, with one adsorption site
every 0.25 nm2, and a sticking coefficient of 0.1. Also shown is the fra
tional noise for the HP10811D 10 MHz quartz resonator, for a 1 s averaging
interval.
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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TABLE IV. Expressions for the various spectral noise densities worked out for different representations
same noise, as well as for noise associated with different fundamental processes.

Type of noise Symbol Expression Equation

Force noise, moden Sf n
(v)

2kBTMVn

pQL2
~23!

Amplitude noise, moden San
(v)

Vn

~Vn
22v2!21~Vn

2/Q!2

2kBT

pML2Q
~24!

On-resonance amplitude noise, moden San
(Vn)

2kBTQ

pML2Vn

~24!

Off-resonance phase noise, moden51 Sf(v)
kBT

8pPcQ
2 SV1

v D2

~34!

Off-resonance fractional frequency noise,n51 Sy(v)
kBT

8pPcQ
2

~42!

Allan variance,n51 sA(tA) A kBT

8PcQ
2tA

~49!

Temperature fluctuations ST(v)
4

p

kBT2/g

11v2tT
2

~55!

Allan variance, temperature fluctuations sA(tA) ~2.2531024/K2!AkBT2/gtA
~61!

Allan variance, adsorption desorption sA(tA) A2Nat r

tA

soccm

M
~66!

Allan variance, defect motion sA(tA) A2sv
2

^V&2
Atd

tA

~68!
n
u
th

a
t
a
r

a
th

-
by
.

io
e

s a
ct

ture

ing.

ith

e-
ly

e

defect-free modulus. Typical values forE6 are in the range
0.01– 0.1Es . A mole fractionCd!1 of such defects, all si-
multaneously reorienting from2 to 1, will cause the effec-
tive modulus to change13 from Es1CdE2 to Es1CdE1 . If
we consider a total mole fraction of identical defectsC0

!1, that reorient independently between configuratio
2 and1 with equal free energies, so that the two config
rations are equally likely, the average elastic modulus for
solid will be ^E&'Es1C0(E21E1)/2. The variance in the
elastic modulus is given by the Poisson formula,sE

2

'C0(E12E2)2/4. Additional noise sources can appe
from the defect motion itself; the defect may resonate a
frequency near the resonator natural frequency, causing
ditional dissipation and additional noise terms. We igno
such effects here.

Applying this discussion to resonator frequency fluctu
tions, if we assume the defects all have equal impact on
resonator frequencyV, the mean resonator frequency^V&
will be that calculated from Eq.~3! using the average modu
lus ^E&. The frequency will have a mean variance given
sV

2 5(C0/8)(V12V2)2, whereV6 are calculated from Eq
~3! using the moduliEs1C0E6 .

These fluctuations, occurring with a single reorientat
time td , will generate fractional frequency noise with th
spectral density

Sy~v!5
2

p

sV
2

^V&2

td

11v2td
2

. ~67!
v 2002 to 131.215.106.182. Redistribution subject to 
s
-
e

r
a
d-

e

-
e

n

For this distribution, the corresponding Allan variance ha
similar functional form to that shown in Fig. 3. The defe
reconfiguration timetd can range fromms to minutes or
hours at room temperature, with an exponential tempera
dependence. For averaging timestA much larger thantd ,
the approximate form for the Allan variance is

sA~tA!5A2sv
2

^V&2
Atd

tA
. ~68!

If we assume a defect mole fractionC050.001, and modulus
changesE6560.1Es , the frequency variance issV'1
31026V. For a defect reconfiguration timetd51 ms, we
find an Allan variance attA51 s of 531028, a quite large
contribution compared to those we have been consider
Clearly, active defect concentrationsC0 of less than 1 part in
105 are needed to achieve Allan variances competitive w
those of single-crystal resonators.

We note that a typical solid will include a range of r
orientation timestd , which when superposed generical
produce 1/f noise through the Dutta–Dimon–Horn model.28

In that case, we can write

Sy~v!'A
vc

v
kBTD~Ē!, ~69!

where D(Ē) is the density of defect states at energyĒ
52kBT loge(v/n0) and A is a scale factor. In this case th
Allan variance works out to be@see Eq.~46!#
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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sA~tA!'A2 loge 2AvcAkBTD~Ē!. ~70!

Here, we see the Allan variance independent of averag
time tA , but with a magnitude comparable to that of E
~68!.

Such processes, which play an important role in sing
crystal and polycrystalline metals, and for which much inf
mation in metals exists, need to be investigated in silic
nitride and poly-Si to determine whether these play an
portant role in limiting resonator performance.

VI. CONCLUSIONS

We have described a formalism for treating the re
nance behavior, loss processes, and resulting frequency
phase noise in nanoscale resonators. We then applied
formalism to evaluate the role of a number of fundamen
and material-dependent noise sources, and how these so
affect the frequency stability of a model 1 GHz nanom
chanical resonator. For practical applications, the relev
comparison has been made with an industry standard,
oven-controlled high-precision quartz crystal. We find th
the anticipated resonator noise is predominantly from th
momechanical noise, temperature fluctuations,
adsorption–desorption noise. The noise levels from th
sources are comparable in magnitude to that of the qu
crystal, provided some care is taken to minimize certain
portant loss processes. In Table IV, we have tabulated
various expressions for the noise, from different treatme
and from different noise sources.

The results we have calculated here are for a dou
clamped, flexural resonator. Any resonator whose basic e
tions of motion can be reduced to those of a linear sim
harmonic oscillator, driven by a force term, will have resu
of the form shown here. The results for a cantilevered be
a torsional resonator, and a longitudinal wave resonator
therefore all be identical to these, except that the resona
frequencies and the mode shapes are different, so tha
numerical prefactors will be somewhat different.

For practical applications, nanoscale resonators can
fabricated on chip with electronics needed to provide pre
sion frequency control. This would obviate the need for
externally packaged and controlled quartz crystal, and en
integrated fabrication.

Clearly, there are gaps in the available data for evalu
ing whether the noise performance calculated here can
achieved in fact. More systematic approaches, measuring
performance of high-Q resonators operated in phase-lock
loops, with controlled variations in temperature, enviro
ment, and materials, need to be followed in order to de
Downloaded 04 Nov 2002 to 131.215.106.182. Redistribution subject to 
g
.

-
-
n
-

-
nd

his
l
ces
-
nt
he
t
r-
d

se
tz
-
e

ts

ly
a-
e

,
ill
ce
the

be
i-
n
le

t-
be
he

-
r-

mine whether the suggested applications are indeed viab
better understanding of the role of defects and molecu
adsorption and desorption is also needed to evaluate th
fect these have on frequency stability.
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