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Heat transport in mesoscopic systems
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Phonon heat transport in mesoscopic systems is investigated using methods analogous to the
Landauer description of electrical conductance. A ‘universal heat conductance’ expression
that depends on the properties of the conducting pathway only through the mode cutoff
frequencies is derived. Corrections due to reflections at the junction between the thermal
body and the conducting bridge are found to be small except at very low temperatures where
only the lowest few bridge modes are excited. Various non-equilibrium phonon distributions
are studied: a narrow band distribution leads to clear steps in the cooling curve, analogous
to the quantized resistance values in narrow wires, but a thermal distribution is too broad
to show such features.
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1. Introduction
The study of electronic transport in mesoscopic systems has uncovered many fascinating quantum aspects

of resistance. The idea of relating charge transport in confined geometries to a quantum transmission problem,
developed by Landauer in a series of papers starting 40 years ago [.1], has been an important unifying theoretical
idea. The idea, in its modern understanding [.2], can be expressed in terms of the formula for the conductance
between two ideal electrodes

G = e2

h
Tr t t+, (1)

where t is the transmission matrix between the electrodes ande2/h appears as the fundamental unit of
conductance. In the case of an ideal long one-dimensional wire with no scattering eqn (1) reduces to

G = Nc
2e2

h
, (2)

with Nc the number of channels available for the transport, i.e. the number of transverse modes with energies
below the Fermi energy of the electrodes. This leads to a quantized conductance and well defined steps in the
measured resistance as the Fermi energy or the effective width of the wire is changed, for example using gate
electrodes [.3].

Implicit (and sometimes explicit) in the early work was the idea that boson excitations, such as phonons,
could also be described by the same type of formalism. Recent experimental innovations in the construction
of well characterized thermal reservoirs and thermal transport pathways make a detailed analysis of the
consequences of these ideas to heat transport in mesoscopic systems of considerable interest. In this paper
we present results in this direction.
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Fig. 1. Conceptual view of an electron heating experiment. Joule heatQ̇in is introduced to the electrons. Some of this is transferred to
the phonons by the e–p interactionQ̇ep; this heats the phonons, which then cool by phonon diffusionQ̇ph and by returning some of this
heat to the electronṡQpe. However heat also flows to the contacts via electron diffusionQ̇el.

.

2. Experimental systems

To date, relatively few groups have attempted experimental explorations of phonon transport in mesoscopic
structures. For most that have, the measurement strategy has been to induce electron heating in wires that
are thermally decoupled from the environment, either though physical suspension or through intentionally
poor thermal contact (e.g. Kapitsa boundary resistance). What is actually measured is the electron-energy loss
rate, which at low temperatures and in the absence of phonon heating is determined by the phonon emission
rate from hot electrons [.4]. The underlying premise in this approach is that if phonon transport is sufficiently
impaired hot phonons will result—and theelectronicproperties such as resistance will give information on the
phononheat pathways. However, the actual picture is somewhat more complicated (Fig. 1). The thermally-
decoupled, conducting samples employed in these studies comprise both electronic and phononic thermal
conductors, and the electron cooling path by electron diffusion down the wire to the cooler contacts ‘short-
circuits’ the phononic pathway of interest. To deduce the phononic contribution in this situation requires rather
involved modeling of heat flow in these structures, with tacit assumptions about the scattering rates occurring
within mesoscopic systems in the non-equilibrium steady state.

The earliest attempts to study phonon transport in mesoscopic systems began with suspended metal wires in
1985 [.5], and culminated in investigations of arrays of suspended, monocrystalline n+GaAs wires [.6]. Electron
diffusion overwhelmed the indirect energy pathway involving phonons in these samples, hence little evidence
of a phononic contribution to cooling could be observed. In the later work at higher currents, analysis using
a coupled electron/phonon model provided some evidence for the onset of a small contribution to electron
cooling via a phononic pathway, but it also indicated that the phonons were not appreciably heated in the
process.

Electron heating experiments in both suspended and supported wires of polycrystalline AuPd alloy first
initiated in 1985, led to an intriguing report of the observation of acoustic waveguide modes in 1992 [.7].
The samples manifesting these unusual features were anchored to the substrate. Nonetheless, it was argued
that phonon confinement could occur due to acoustic mismatch at the substrate/metal film interface. In the
intervening time the search by others for similar phenomena has proven elusive [.8]. The results in the AuPd
system were observed in a temperature regime where the thermal smearing of the electron distribution function
(4kBT ∼ 2 meV) was comparable or larger than the sharpness of the features seen in the data(∼ 0.3 meV).
A mechanism remains to be elucidated which would enable electron–phonon processes involving a smeared
Fermi surface to manifest features with the sharpness of those observed. It would appear necessary to postulate
the generation of a non-equilibrium phonon distribution function with spectral features far narrower than those
occurring in thermal equilibrium (see Section 4.2.2). These topics remain to be explored experimentally.
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Fig. 2. Suspended, monocrystalline device enabling direct thermal conductance measurements on nanostructures. A, Electron micro-
graph showing suspended, semi-insulating (i) GaAs plate 3× 3 µm× 300 nm thickness), forming a quasi-isolated phonon cavity, that
is suspended 1µm above the substrate by four 5.5 µm long i-GaAs bridges (cross section 200 nm× 300 nm). An integral pair of n
+ GaAs resistive transducters (120 nm linewidth, 150 nm thickness), meander above, but are in epitaxial registry with, the underlying
GaAs cavity. B, Schematic diagram showing principal components of the suspended device: isolated cavity, suspended bridges and the
supports anchoring the sample to the substrate, which together comprise the external reservoir. (After Tighe, Worlock and Roukes [.9]).

.

The recent work of Tighe, Worlock and Roukes [.9] in GaAs heterostructures was motivated by a desire
to configure monocrystalline nanostructures fordirect phonon thermal conductance measurements. Concep-
tually, the simplest approach for such measurements would be to thermally clamp one end of an insulating
nanostructured beam under study while providing heat inputQ̇ to the other thermally-isolated end. The ther-
mal conductance for small heat input is thenK = Q̇/1T , where1T is the temperature difference between
the clamped and thermally isolated ends. Fabrication of nm-scale structures in such a configuration is awk-
ward: it is difficult to support a thermally-isolated end without placing undue strain on the suspended beam.
Instead, the approach depicted in Fig. 2 is taken in which a phonon ‘cavity’, formed from insulating GaAs in
the shape of a thin plate, is suspended above the substrate by insulating GaAs beams. To measure the thermal
conductance of these nanostructured beams, the cavity is Joule heated by asourcetransducer patterned above
it. The cavity then cools through the long, narrow, monocrystalline insulating GaAs bridges that suspend it.
The rise in cavity temperature is measured using a secondsensortransducer. This configuration allows direct
measurement of the parallel thermal conductance of the four nm-scale support beams. Through this approach
it has now become possible to pattern separately themesoscopic insulators, which determine the thermal
transport, and thetransducerswhich are used to induce and measure a response. Details of the measurement
technique and the results obtained may be found in [.9]; in the present context these devices serve to illustrate
that an experimental path into the regime of mesoscopic thermal transport now exists.

3. The ideal one-dimensional heat conductor

Motivated by the experimental geometry of Fig. 2 we consider the situation pictured in Fig. 3. A small
thermal mass, thecavity, at temperatureT1 is thermally isolated from the environment except for contact
through a narrowbridgeto thereservoirat temperatureT2. We will study the heat transport for the case where
T2 = 0 modeling cooling experiments where the reservoir is at a much lower temperature than the cavity, and
also the case with the temperature differenceT1− T2 small compared to the mean temperature corresponding
to measurements of thermal conductance. The simplest model of the thermal transport is given by assuming
the modes in the bridge are populated with an equilibrium thermal distribution given by the appropriate
temperature—the temperature of the cavity for the right-moving phonons, and that of the reservoir for the
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Fig. 3. Schematic diagram of the geometry for heat transport experiment.
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left-moving phonons. This corresponds to an ‘adiabatic’ coupling of the modes in the bridge and reservoirs,
as would be expected for a smooth, tapered junction. (The experimental geometry with the bridges connected
to the corners of the square cavity might be expected to approximate this situation quite well.) In this case
we are calculating the heat transport as a property of the bridge alone, and are neglecting scattering (due to
mode-mismatch) at the cavity–bridge interface.

The calculation of the heat transport proceeds as in the calculation of the ideal electrical conductance
eqn (2) except that we are interested in energy transport, rather than number transport, and of course the
thermal distribution is given by the Bose distributionn(ω) rather than the Fermi distribution. If we first look
at the transport by the right moving phonons, the energy flux is

H (+) = 1

2π

∑
m

∫ ∞
0

dkh̄ωm(k)n(ωm(k))vgm(k), (3)

wherek is the wavevector along the bridge,ωm(k) is the dispersion relation of themth discrete mode of the
bridge, andvgm = dωm(k)/dk is the group velocity. Transforming the integral to an integral over frequencies
yields an expression for the heat transport by right moving phonons that can be written as a sum of mode
contributionsH (+) =∑m H (+)

m with

H (+)
m = 1

2π

∫ ∞
ωm

dω h̄ωm(k)n(ωm(k)), (4)

whereωm is thecutoff frequencyof themth mode, i.e. the lowest frequency at which this mode propagates. (We
have assumed themth mode propagates to arbitrarily large frequencies. If a particular mode only propagates
over a finite band of frequencies, the upper limit of the intergral will be replaced byωmax

m .) Using the Bose
distribution forn(ω) leads to the expression

H (+)
m = (kBT1)

2

h

∫ ∞
xm

x

ex − 1
dx, (5)

wherexm = h̄ωm/kBT1 and again a maximum frequency to the phonon dispersion would lead toh̄ωmax
m /kBT1

appearing as the upper limit.
The heat transport is given by summingH (+)

m over the modesm, and if the reservoir is at a non-zero
temperatureT2, subtracting the analogous expression for

∑
m H (−)

m for the left moving phonons given by
eqn (5) (but withT2 replacingT1). In a thermal conductance measurement the cavity and reservoir are
maintained at a temperature difference small compared to their temperatures, and the thermal conductance is
given by the temperature derivative ofH (+)

K = kB

∑
m

kBT

h

∫ ∞
xm

x2ex

(ex − 1)2
dx. (6)
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Equation (6) plays the role of a ‘universal’ phonon conductance in direct analogy with the expression for
the electronic case (2). Note that this result isindependent of all details of the dispersion curveexcept the
cutoff frequenciesωm. (The same remark applies to the result forH (+).) This simple result arises, as in the
electronic case, because the density of states factor in the frequency integral is cancelled by the group velocity,
Equations (5) and (6) will play a central role in our discussion of heat transport in mesoscopic systems.

4. Scalar model

4.1. Adiabatic coupling

To investigate the experimental consequence of eqns (5) and (6) we consider ascalarmodel of elasticity
where the modes are given by a scalar fieldφ which satisfies the wave equation

∂2φ

∂t2
− c2

i ∇2φ = 0. (7)

We allow for the polarizations of the elastic wave (two transverse, one longitudinal) simply by summing over
three independent modes with the wave speeds,ci given byct (transverse) orcl (longitudinal): in this scalar
theory we ignore mode mixing effects that would occur at boundaries and interfaces. Boundary conditions
onφ of zero normal derivative are assumed, corresponding to free surfaces. (This allows the propagation of
acoustic modesω ∝ k along the bridge, which is partial modeling of the situation for elastic waves.) For the
temperatures of interest the wavelength of the excited modes is large compared to the atomic scale, so that
the linear dispersion relation in eqn (7) is adequate. These simple assumptions lead to waveguide modes

ωmn(k) =
√
ω2

mn+ c2
i k2, (8)

where the cutoff frequencies are given by

ωmn = ciπ

√(m

w

)2
+
(n

d

)2
(9)

withw the width andd the depth of the bridge. For simplicity we will present results for a single sound speed,
all ci = c.

With the mode structure defined, we can now calculate the cooling rate of a cavity in contact with a zero
temperature reservoir, and the thermal conductance. For ease of presentation we show results for the thin limit
λth ≡ hc/kBT � d in both the bridge and reservoirs, so that there are no modes excited across the depth
of the material i.e. effectively a two-dimensional situation. Hereλth is the thermal wavelength demarcating
the transition between thermally populated and unpopulated modes. We will use the notationωm for ωm0. To
calculate the cooling rate of the cavity we then use the two-dimensional expression for the Debye thermal
capacity:

C = S
9ζ(3)k3

B

π(h̄c)2
T2 (10)

with S the area of the cavity.
The cooling rate|dT/dt| of a cavity at temperatureT connected via the bridge to a reservoir at zero

temperature given by a single bridge modem is shown in Fig. 4. At high temperatures the energy in each
bridge state is given by classical equipartition, and the heat transport rate is proportional toT2, the same
temperature dependence as the two-dimensional specific heat. For temperatures belowkBT = h̄ωm the heat
transport falls with the mode occupation, eventually falling exponentially at low temperatures. However the
cutoff is quite smooth, unlike the case of electrical transport where the Fermi function can lead to sharp steps.
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Fig. 4. Cooling rate due to single bridge mode as a function of reduced temperature. The vertical axis is scaled to unity at large
temperatures. The solid curve is the result for adiabatic coupling, the dashed curve for abrupt coupling in the ‘mean field approximation’
(see Appendix).
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(If instead we had considered a three-dimensional cavity, with aT3 thermal capacity, the cooling rate per
mode would show a broad peak at aroundkBT = h̄ωm.)

Summing over the waveguide modes given by eqn (9) yields the prediction for the cooling curveT(t),
Fig. 5. Note that the cooling curve is quite smooth, not showing any features of the discrete mode structure of
the transport pathway due to the broad nature of the cutoff given by the Bose distribution (Fig. 4). This can be
compared to the Fermi case, where the ability to tune two different parameters separately—the Fermi energy
through the gate voltage, and the width of the thermal broadening through the temperature—allows the sharp
step structure to be measured. The important point is that in the phonon case the temperature sets both the
range of transport modes that are effective, and also the thermal broadening of the mode cutoff, and in this
case the width of the distribution function is sufficient to smear out the quantized signature of the transport.

An interesting feature of the cooling curve is that at very low temperatures, where only the acousticm= 0
mode is excited, the equation for the cooling becomes

dT

dt
= − h̄c2ζ(2)

6kBζ(3)

1

S
, (11)

i.e. the temperature decreases linearly in time, and goes to absolute zero at a finite time of orderπS/wc!
(In the real case, with a reservoir at a nonzero temperature, the cavity temperature would equilibrate at the
reservoir temperature.) This result no longer holds for non-adiabatic coupling, since the very long wavelength
modes excited at low temperatures are particularly sensitive to the precise details of the intermode coupling,
and their contribution to the heat transport is reduced.

The prediction for the thermal conductance as a function of temperature is shown in Fig. 6. Again there
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Fig. 5. Temperature decay rate for cavity connected to a reservoir at zero temperature in the approximation of adiabatic coupling to
the bridge. The inset shows the same curve on a log–linear plot.
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is no signature of the discrete mode structure contributing to this curve. At high temperatures the number of
modes contributing to the thermal conductance eqn (6) grows proportionately with the temperature, so that
K ∝ T2. Since the cavity heat capacity also varies asT2 the exponential relaxation rate of small temperature
differences between cavity and reservoirK/C becomes independent of temperature at high temperatures.
This is shown in the inset to Fig. 6.

4.2. Non-equilibrium phonon distributions

4.2.1. Relaxation with no internal equilibration

In the calculations in the previous section, it is assumed that the phonons in the cavity have sufficient
time to rethermalize during the cooling process. However, since anharmonic effects should be small at low
temperatures, this may not be the case, and it is interesting to consider the opposite limit where there is no
rethermalization. In this case we can consider each frequency bandω → ω + δω separately. The spectral
energy density in the cavity isE(ω) ∼ n(ω)ω2 wheren is now the non-equilibrium distribution and theω2 is
from the two-dimensional density of states. The heat transport per unit frequency isH (+)(ω) ∼ n(ω)ωNc(ω)

whereNc is the number of bridge modes accessible at frequencyω (i.e. with cutoff frequency less thanω),
since each accessible mode contributes the same amount to the heat current. Thus each frequency band will
relax exponentially with a time constantτ(ω). For the narrow range of frequencies between adjacent bridge
cutoff frequencies, whereNc is constant, the decay rate for the lower frequencies will be larger than for the
upper frequencies(τ (ω) ∝ ω for mixed Nc). But over wider ranges of frequencies (large compared to the
bridge mode spacing), sinceNc grows an average linearly with increasing frequency, the time constantτ̄ (ω)
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will be roughly frequency independent. Thus the total energy is expected to decay as a single exponential,
and this is confirmed by direct simulations. In addition the envelope ofn(ω) will decay exponentially at this
rate, even though considerable fine scale structure on a scale of the bridge mode cutoff frequency separation
develops (Fig. 7).

We could also imagine situations where reduced transmission rates of particular modes changes this result.
For example a beam with modulated width could be manufactured to induce a band gap in the lowest bridge
mode so that the transport by this mode is significantly reduced by an effective transmission coefficientT0.
(There would also be gaps in the other modes at the wavenumber of the modulation, but these are expected to
be smaller than in the lowest mode which should be perturbed more strongly by the geometry). In this case all
frequency bands other thanω < h̄cπ/w should relax with the time scalēτ , whereas this lowest band should
relax with a longer time constantτ̄ /T0. This slower exponential should become apparent at long times, as
shown in Fig. 8.

4.2.2. Narrow band distribution

Since a thermal distribution appears to be too broad in most situations to give any signature of the mode
quantization in heat transport, it is interesting to look at other, nonthermal distributions. We could imagine,
for example, setting up a nonthermal phonon distribution in the cavity using superconducting junctions, or
even using a modulated bridge with a band gap in the phonon spectrum to selectively filter the cavity phonons.
In addition, our results for a thermal distribution give no signatures of the discrete phonon modes such as
seen in the electron cooling experiments [.7], and, although the geometry there is quite different from the one
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we consider, it is of interest to see whether a nonthermal phonon distribution might recover the signature of
discrete modes.

We again model the coupling as adiabatic, so that the bridge modes are populated with the same distribution
function as the cavity. We assume a distribution function of the formn(ω) = A[θ(ω− (ω0−1ω/2))−θ(ω−
(ω0 +1ω/2))] i.e. a square band centered atω0 and of width1ω. It is obvious that a mode with dispersion
relationωm(k) and cutoff frequencyωm = ωm(0) does not contribute to the heat transport ifωm > ω0+1ω/2,
since in that case the mode is not populated. Using the expression forn(ω) in eqn (4) leads to the heat transport
by a single mode:

H (+)
m = Ah̄

2π

∫ ω0+1ω/2

Max(ωm,ω0−1ω)/2
ωdω. (12)

This formula predicts a constant heat transport rate equal toAh̄
2π ω01ω for ω0 > ωm + 1ω/2, and 0 for

ω0 < ωm −1ω/2. Thus, when the central frequency of the narrow band distribution passes through a mode
cutoff frequency, the transport rate shows a ‘step’ increase with a step sharpness, defined as the ratio between
the size and the width of the step, given byAh̄

2π ω0. Note that the apparent sharpness increases with the frequency.
The decay rate of the total energy using the scalar model of phonons in Fig. 9 shows the expected result that
a narrow band phonon distribution uncovers the effects of the discreteness of the bridge modes.

4.3. Non-adiabatic coupling

In general due to imperfect coupling of the cavity modes to the bridge modes, the population of the bridge
modes will not be the same as the cavity distribution under conditions of thermal transport, i.e. whenT1 6= T2.



682 Superlattices and Microstructures, Vol. 23, No. 3/4, 1998

0.0
0.000

0.001

0.010

Sc
al

ed
 to

ta
l e

ne
rg

y

0.100

1.000

0.1 0.2 0.3

Scaled time (wc/πS) t

0.4 0.5

Fig. 8. Decay of the total energy when the transmission into the lowest bridge mode is reduced to 0.2. The initial temperature corresponds
to 3hν1/kB with ν1 the lowest bridge mode cutoff.

.

The full expression for the thermal transport by the modem, in the spirit of the Landauer formula, will involve
a transmission probabilityTm(ω)which takes into account the imperfect transmission at the junction between
the bridge and the reservoirs. We can estimate the importance of the geometry of the cavity–bridge junction
by considering the worst case, that of an abrupt junction (as sketched in Fig. 3). In the experiment, this would
correspond to the bridges meeting the cavity along a side, rather than at a corner. We show in the Appendix
that the mode thermal transport in this case can be written

H (+)
m = 1

2π

∫ ∞
ωm

h̄ω

eβh̄ω − 1
Tm(ω)dω, (13)

whereTm(ω) can be calculated following the work of Szafer and Stone [.10] on the analogous electronic
problem. Indeed a simple analytic approximation scheme they suggest produces values forTm(ω) that are in
good agreement with the numerically calculated results, except for low temperatures where only the lowest
few bridge modes are active.

The scheme for calculatingH (+) is to populate all the modes in the cavity at each energyh̄ω (which are
the modes that can couple to themth bridge mode at the same energy) with the cavity distributionn(ω)
(e.g. thermal), and then to calculate the total energy flux in the bridge from the transmitted part of the full
wavefunctions. The key idea explained by Szafer and Stone is that because of the properties of the overlap
integral of the transverse spatial dependences of the cavity and bridge modes, a given (say, even) bridge mode
will couple strongly only to (even) cavity modes with cutoff frequencies within± 1

21ω of the bridge mode
cutoff frequency where1ω = 2πc/w is the bridge (even) mode cutoff spacing. Similar results hold for the
odd modes. Then a sum rule, and the fact that theaveragetransmission probability of the modes that do couple
(see Fig. 10) rapidly approaches unity asω increases above the bridge mode cutoff frequency, gives aTm(ω)
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that is close to a step function (see Fig. 11). This was pointed out by Szafer and Stone, and the argument is
explained in more detail in the Appendix. The approximation to a step function is very good for large bridge
mode indicesm, but becomes poorer asm→ 0. Thus, after performing the frequency integral, we find that the
single mode thermal transport is, to quite high accuracy, unchanged from the adiabatic coupling limit at high
temperatures(λth = hc/kBT � w). An important result however is that for them= 0 mode,T0(ω) ∝ ω3 for
smallω (see Appendix). This means that at low temperatures the cooling rate is determined bydT/dt ∝ T3

rather than a constant as in the adiabatic calculation, so thatT ∼ t−1/2 in the low temperature limit. Similarly
at low temperatures we have for the thermal conductanceK ∝ T4 rather than the linear low temperature
dependence predicted by eqn (6). It should be noted, however, that these results depend on the scalar model
of the elastic waves and on the detailed nature of the dispersion at low frequencies.

5. Conclusions

In the spirit of Landauer’s picture for electrons, we have developed a theoretical model for the thermal
transport of ballistic phonons through a narrow bridge linking a thermal mass (the cavity) to the environment.
We have obtained a simple relation between the thermal conductance of a single bridge mode and the mode
cutoff frequency, which is analogous to the formula for quantized electronic conductance. Our simple pic-
ture indicates that, in contrast to the case for Fermi-distributed electrons, the thermal conductance of Bose
distributed phonons doesnot exhibit dramatic features reflecting the underlying quantization of modes as
the temperature is varied. This appears to hold even at the lowest temperatures when the thermal energy is
smaller than the average mode cutoff spacing for both adiabatic and abrupt coupling between the narrow
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channel and the larger regions. This is a consequence of the fact that both the width and average energy of
the Bose distribution are set by temperature, whereas for the Fermi distribution, the energy is determined by
an independently controllable parameter, i.e. electron density.

We have studied non-equilibrium phonon distributions, where the effects of individual bridge modes become
more evident. We find quantized features in the thermal decay when the phonon occupation occurs over a range
narrower than a thermal distribution. Alternatively, in the situation where the cavity phonon distribution does
not have sufficient time to rethermalize during the cooling and interesting phonon spectral density develops
from an initial thermal distribution, directly reflecting the discrete mode structure of the thermal transport. The
decay of the total energy in this case is exponential for ideal coupling between cavity and bridge. However an
approximate model where transmission into the lowest mode of the channel is weak, which approximates the
behavior due to geometric impedances, shows that the thermal decay curve exhibits a crossover to a slower
exponential decay at low temperatures.

The effect of imperfect coupling between cavity and bridge modes can be understood in terms of a trans-
mission coefficient that we calculate for an abrupt junction in a scalar model of the elastic waves. The changes
from the perfect coupling (adiabatic) case are small except at very low temperatures where only the lowest few
bridge modes are populated. However the asymptotic low temperature dependences are significantly changed
due to the strong effect of the geometric mismatch on the long wavelength acoustic modes. In particular the
thermal cooling, which is linear in time for the adiabatic coupling, develops at−1/2 long time tail, and the low
temperature thermal conductances changes from linear in temperature toT4.

These results provide an initial, intuitive guide to the physics of mesoscopic phonon transport. With the
recent advent of new experimental techniques to explore phonon transport ininsulatingmesoscopic systems,
we look forward to new surprises from the measurements.
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DEA was supported by the SURF 1997 program at Caltech.

Appendix

In this Appendix we present the calculations of the abrupt junction in more detail, following the analysis
of Szafer and Stone [.10].

Assume a simple two-dimensional geometry consisting of a rectangular cavity of transverse dimensionW
connected to a rectangular bridge of transverse dimensionsw. (In the general three-dimensional case, if the
cavity and bridge have the same thickness, there is no mixing of thez modes, and the problem separates into
a set of two-dimensional problems, one for eachz mode.) Letχc

α(y) andχm(y) be orthonormal transverse
modes in the cavity and the bridge, respectively. (For clarity we will denote cavity mode indices by Greek
letters, and bridge mode indices by Roman letters.)

The solutions to the wave equation take the formφm(x, y, t) = χm(y)e
i (kx−ωt)

for the bridge, whereω2 =
ω2

m + c2k2 with ωm = mπc/w is the cutoff frequency of themth bridge mode, and has similar form in the
cavity with the cavity widthW replacing the bridge widthw.

Consider a phonon incident on the interface from the cavity side, in the modeα of the cavity, and with
longitudinal wavevectork(c)α . The solutions in the cavity and bridge are:

φ(c) = χ(c)α eik(c)α x +
∑
β

rαβχ
(c)
β e−ik(c)

β
x cavity,

φ =
∑

m

tαmχmeikmx bridge.
(14)

In the above equations,km andk(c)β are the wavevectors of the transmitted and reflected waves respectively.
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They are given by the energy conservation condition

ω2 = c2k(c)2α + ω(c)2α = c2k2
m + ω2

m = c2k(c)2β + ω(c)2β . (15)

Note that the sums overmandβ include evanescent waves (imaginaryk ork(c)) although only the propagating
modes will contribute to the energy transport. The two solutions have to be matched atx = 0, which leads to
the equations:

χ(c)α +
∑

β rαβχ
(c)
β = ∑

m tαmχm,

k(c)α χ
(c)
α −

∑
β rαβk(c)β χ

(c)
β = ∑

m tαmkmχm.
(16)

By integrating the first equation withχ(c)β , and making use of the orthonormality relation
∫

dyχ(c)α χ
(c)
β = δαβ ,

we obtain

rαβ = −δαβ +
∑

m

tαmamβ, (17)

whereamβ is the overlap of cavity and bridge transverse functionsamβ =
∫

dyχ(c)β χm. Equation (17) may be
plugged in the second equation in eqn (16), and the result is:

2k(c)α χ
(c)
α −

∑
m

∑
β

tαmamβk(c)β χ
(c)
β =

∑
m

tαmkmχm, (18)

which, when integrated withχm, yields

2k(c)α amα =
∑

n

Anmtαn + tαmkm, (19)

which is a system of equations that determinetαm. In eqn (19) the kernelAmn is given by

Amn =
∑
β

amβanβk(c)β . (20)

These equations may be solved numerically for thet ’s. However, there is a simple approximation [.10] that
provides an analytic form for the solution that is in extremely good agreement with the exact solution. The
approximation derives from three important properties ofamα. First,amα = 0 unlessm andα have the same
parity. In other words, even modes couple to even modes and odd modes to odd modes only. Secondly as a
function ofα,amα is sharply peaked aroundα = mW/w, the width of the peak being of orderW/w. And
thirdly, aαm must satisfy the completeness relation∑

α

amαanα = δmn. (21)

The first two properties permit the key approximation, namely thatAmn ∝ δmn (since the product of two
functions peaked at different channelsm,n is very small andAmn is rigorously zero whenm and n are
different parity modes). Then we only need the diagonal part ofA

Amm=
∑
β

a2
mβk(c)β , (22)

which is simply a weighted average of the complex wavevector over the narrow range of reflected cavity
modes for whichαmβ is significant. (Note

∑
β a2

mβ = 1 by completeness).
In this case eqn (19) separates into

2k(c)α amα = Ammtαm + kmtαm (23)

and then

tαm = 2k(c)α amα

Amm+ km
. (24)
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The flux transmission probability from the wavevectork(c)α state of cavity modeα to bridge modem is given
by

Tαm = |tαm|2 km

k(c)α
= 4k(c)α km|amα|2
(km + Km)2+ J2

m

, (25)

whereKm = ReAmm and Jm = ImAmm. We observe thattαm ∼ amα, and from the form of the overlapamα,
to a good approximation only the cavity modesα satisfying(m− 1)W/w < α < (m+ 1)W/w and having
the same parity asm contribute to the energy transport through themth mode of the bridge.

Now populating the cavity modesα with the distributionn(ω), and summing over the energy flux due to
the amplitudetαm in each bridge modem noting that only cavity and bridge modes of the same frequency are
coupled, leads to the simple modification of the heat transport

H (+)
m = 1

2π

∫ ∞
ωm

dωh̄ωn(ω)Tm(ω), (26)

where the ‘transport transmission coefficient’ into themth modeTm(ω) is defined (forω > ωm) by

Tm(ω) =
∑

α,ω
(c)
α <ω

4k(c)α km|amα|2
(km + Km)2+ J2

m

= 4Kmkm

(km + Km)2+ J2
m

, (27)

with km(ω) andk(c)α (ω) given by eqn (15).
We must now use the explicit form of the transverse modes to evaluateTm(ω). A natural scalar model of

the full elastic theory is to assumeφ satisfies the wave equation. Since the full elastic theory will permit an
‘acoustic mode’ withω→ 0 ask→ 0 an appropriate boundary condition would appear to be∂φ/∂y = 0 at
they boundaries (rather thanφ = 0 as in the electronic case). With this boundary condition we have explicitly
for each polarization:

χm(y) =

√

2
w

cos
(mπy
w

)
m even√

2
w

sin
(mπy
w

)
m odd

(28)

χc
α(y) =


√

2
W cos

(
απy
W

)
α even√

2
W sin

(
απy
W

)
α odd

(29)

with m andα integers, with the special caseχ0(y) = 1/
√
ω andχc

0(y) = 1/
√

W. The amα are easily
calculated, e.g. form, α even:

amα '
√
w

W

[
sin
(
απw
2W − mπ

2

)
απw
2W − mπ

2

+ sin
(
απw
2W + mπ

2

)
απw
2W + mπ

2

]
'
√
w

W

sin
(
απw
2W − mπ

2

)
απw
2W − mπ

2

(30)

(for m, α 6= 0) where the second approximation is good for largem. Theamα are indeed sharply peaked as
a function of cavity mode numberα. The largem approximation is essentially identical to the result in the
electronic case. Since most of the weight is concentrated in the peak between(m−2)W/w < α < (m+2)W/w
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we evaluateKm + i Jm as the weighted average over this peak†

Km + i Jm '
∑

α a2
mαk(c)α∑
α a2

mα

, (31)

with both sums running over this range.
The functionTm(ω) is plotted as a function of the dimensionless parameterδ defined byδ = (ω −

ωm)/(ωm+1 − ωm) for different m in Fig. 11. Curves rising from 0 to 1 within a fraction of the frequency
change to the next bridge mode are found. This can be understood sinceKm+ i Jm is the (weighted) average
of the complex wavevectors of the narrow band of cavity modes that couple to themth bridge mode (Fig. 10).
As ω increases,Jm becomes close to zero, andKm approacheskm so thatTm(ω) approaches unity. Also
plotted are the results based on a step function approximation toamα that Szafer and Stone call the ‘mean
field approximation’:

amα
2 ' w

W

(
θ

(
α − (m− 1)

W

w

)
− θ

(
α − (m+ 1)

W

w

))
(32)

which satisfies the completeness relation foramα. (There are exactly 2W/w modes of the cavity between
bridge modes numberm−1 andm+1. Out of these, onlyW/w have the same parity asa, and thus couple to
it, which justifies the factorw/W in front of the expression.) The largem curves approach this approximate
form quite closely. The resulting heat transportH (+)

m due to the single bridge modem in this approximation
is also plotted in Fig. 4. The resemblance between this curve and the one obtained for the adiabatic case, is
striking. The exact abrupt coupling curve is slightly below the adiabatic curve due to the reflections at the
junction which reduced the heat transport, but by a surprisingly small amount.

The difference for the adiabatic calculation becomes more important at low temperatures, where the lower
modes of the bridge dominate. In the limitT → 0, only the lowest mode of the bridge (the acoustic mode)
contributes to the energy transport, so that we need only

H (+)
0 = 1

2π

∫ ∞
0

dωh̄ωn(ω)T0(ω), (33)

whereT0(ω) may be obtained from eqn (27). Because of the factorn(ω) only smallω will contribute to the
integral forT ′ → 0, so that we are interested in the behavior ofT0(ω) for ω � cπ/w. We then have eqn (22):

K0 ' 2
w

W

ω W
2πc∑
β=0

(
ω2

c2
− β2 4π2

W2

)1/2

= w

4c2
ω2 (34)

replacing the sum by an integral for largeW. In the same limitJ0 is some number which has no strong
dependence onω. From eqn (27), and taking into account the linear dispersion for the acoustic modek ∼ ω,
we arrive at the conclusion that in this limitT0 ∼ ω3. This result, of course, depends on the detailed assumptions
about the nature of the dispersion curves.

† There is actually a difficulty here that we have not resolved: although|amα|2 is quite strongly peaked over this range, the
α−2 tails mean that the sum overα in the definition ofKm+ i Jm actually diverges weakly (logarithmically) for an infinite
number of transverse modesα. This does not happen in the calculation of Szafer and Stone, where the corresponding full
expression eventually falls off asα−4 even though the approximate form has the identicalα−2 behavior. Thus the zero
derivative boundary conditions we have introduced to mimic the correct behavior of the acoustic mode, has also subtly,
and unfortunately, changed the largeα behavior. Except for modeling the acoustic mode, zero boundary conditions forφ
would seem entirely adequate (φ then relates to the stress rather than the displacement), and the divergence disappears. It
is not clear to us whether this difficulty is an artifact of the scalar model of the elastic waves, or a physical phenomenon
that will survive in a full elastic theory treatment. The largeα terms contribute only to the imaginary partJm which would
go to a constant depending logarithmically on the cutoff for largeω rather than to zero as in our calculation using the
truncated range ofamα.
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