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1.  Temperature Coefficient of Frequency (TCF) for the torsional and flexural 

modes of the paddle resonator 

  
The TCF of the flexural mode possesses an additional thermal stress term which is absent for 

the torsional mode. The mode-dependent thermal sensitivities originate from the distinct roles 

that stress plays in the motion. Figure S1 illustrates how the tensile force T enters into the 

equation of motion of the flexural mode, but not into the torsional motion 

  

  
 

 

 

 

 

 

 

Fig. S1.  (a), in the flexural mode, the tensile force T has a component along the direction of 

beam motion z, and thus contibutes to its resonant frequency and TCF, see text. In the equations, � is the displacement in the � direction. For the torsional mode (b),  the tensile force T is along 

the direction of torsional axis, and generates no torque. Therefore, the tensile force dose not 

affect the torsional resonant frquency. This leads to an exceptionally linear torsional mode with a 

reduced TCF. 
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(b). Torsional mode 



2 

 

 

1.1 The flexural mode resonant frequency and TCF of a stressed torsional resonator  

 

 

 

 

 

 

Fig. S2. A plane view diagram of the torsional device with the geometry labels. Origin of the 

coordinate system is at the center of the left hand clamped end. 

We derive the resonant frequency of a doubly clamped torsional resonator with a built-in 

stress T. A schematic of the torsional device is given in Fig. S2. The coordinate system employed 

in this manuscript is also defined, with the origin set at the left end of the beam. The governing 

equation for the beam deflection function w is 

����� ���	
 ������ � �	 �	� ������ �� ������ =0	,																																																																																																	�S1� 
where � � �/	 is the reduced distance along the beam length L, I is the areal moment of inertia, 

E is the Young’s modulus, t is time, and � � �� is the mass per unit length. 

Since the width of the paddle Lp greatly exceeds that in the arm wr, we consider the paddle to 

be rigid relative to the narrow arms, and assume the inertia of the rods is negligible. We therefore 

ignore the inertial term in Eq. S1, and include the inertia only through the shearing force at the 

contact point between the rods and the paddle. This gives the governing equations and boundary 

conditions: 

Lr		= Torsion rod length wr		= Torsion rod width h		= Device thickness	Lp		= Paddle length wp		= Paddle width L		= Device whole length 
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��	
 �
���
 �	 �	� ������ =0	,																																																																																																																														�S2� 
with the usual clamped boundary conditions: 

)� � ���� *+,- =
���� .+,/0111�0	.																																																																																																																	�S3a� 

Applying Newton’s 2
nd

 law at the paddle  

��	5 �5���5 6+,/0111�1278 ∂��∂�� 6+,/0111 	,																																																																																																														�S3b� 
where 	;111 � 	;/	, Mp is the mass of the paddle, and the factor of ½ in Eq. S3b accounts for the 

symmetry of the resonator , i.e. that there are two identical narrow torsion rods. 

The displacement is expressed in terms of an explicit time dependence exp	��>?��: 
���, ���W�ξ�BCD�-i?t�.																																																																																																																								�S4� 

Substituting Eq. S4 into Eq. 2 and 3 gives 

I
JI�
 � υI�JI�� � 0	,																																																																																																																																		�S5� 
with boundary conditions 

)J � IJI� *+,- =
IJ�� .+,/0111�0	,																																																																																																														�S6a� ��	5 I5JI�5 6+,/0111�1278?�J.+,/0111 	,																																																																																																													�S6b� 

where the normalized tension parameter υ is 

N � �	��� 																																																																																																																																																				�S7� 
Note that the required resonant frequency ? only appears in the boundary condition S6b. This 

property allows for an explicit determination of ? by solving the system in Eqs. S5-7: 



4 

 

?� � 24��78	;5 P�N�																																																																																																																																						�S8� 
where	
P�N� � 	;�111υ12 R1 � 2	;111√N tanh�	;111√N2 �UVW 																																																																																									�S9� 

We can remove the scaling with respect to the total beam length L.  Eqs. S8-9 then become: 

?� � 24��78	;5 Y�Z�,																																																																																																																																					�S10� 
where  

Y�Z� � τ12 R1 � 2√Z tanh�√Z2 �UVW ,																																																																																																		�S11a� 
Z � �	;��� .																																																																																																																																																		�S11b� 
For a rectangular cross section resonator, � � �;\5/12, Eq. S10 then simplifies to  

?� � 2��;\578	;5 Y�Z�,																																																																																																																																�S12� 
Using tanh�C� � C � ]^5 � �W_ C_ � W`5W_ C` �⋯, in the limit of small tension,  Eq. S11a becomes 

Y�Z� � 1 � Z10 � b�Z��.																																																																																																																								�S13� 
Equation S12 and S13 show that the resonant frequency reduces to the result of Evoy et al.

1
 at 

zero tension case, i.e., ?- � c�de0f^gh/0̂ . Substituting Eq. S12 into S13 gives the resonant 

frequency for a low stressed device  

?≈i2��;\578	;5 j1 � Z10k l ?- j1 � Z20k	.																																																																																									�S14� 
We can rewrite Eq. S11b as 
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Z � 12m	;��\� ,																																																																																																																																													�S15� 
where σ=T/A=(σi-αE∆T) is the tensile stress of the beam, σi is the intrinsic stress resulting from 

the wafer growth process, αE∆T is the thermal stress term that accounts for the IR (or any other 

sources) heating induced beam softening effect,  where n � Wo popq is the linear thermal expansion 

coefficient. The 1
st
 derivative of Eq. S15 with the temperature yields:  

	�rs|flexural � 1P- IPI� � n � x2 � 35 y	;\ z�	 . n,																																																																																				�S16� 
where  x � Wd pdpq is the thermal coefficient of Young’s modulus.  

 

 

1.2 TCF of the torsional mode 

The intrinsic resonant frequency of the torsional motion is given by 

P- � 12{c|� 																																																																																																																																											�S17� 
where I is the moment of inertia of the resonator, κ is the torsional spring constant. 

Moment of Inertia 

The moment of inertia for the two torsion rods is 

�} � 16~}��;� � \��,																																																																																																																							�S18a� 
where ~} is the mass, wr is the width, and h is the thickness of the torsional rod. 

The paddle’s moment of inertia is: 

�8 � 11278	8� ,																																																																																																																																				�S18b� 
here ~8 and 	8 are the mass and length of the paddle, respectively. The total moment of inertia 

is: 
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� � �} � �8 l �8 �	 11278	8� .																																																																																																														�S19� 
The last approximation holds true if 	8 ≫ �; , \, which is the case for our device. 

Torsional spring constant 

For macroscopic beams of rectangular cross sections, the torsional spring constant can be 

calculated by
2
 

| � 2���/	; ,                                                                                                                           (S20) 

where Gs is the shear modulus of the rod, which is related to Young’s modulus by the relation �� � d���h�W� , N8	is	Poisson�s	ratio. 	;  is the length of each rod, K is the torsional moment of 

inertia. For a rectangular cross section with sides of length h and wr, where h>wr, the torsional 

moment is given by
2
 

� � \�;5 �13 � 0.21�;\ �1 � \
12w;
�� 	for	\ � w; .																																																																											�S21� 

Combing all above, the torsional resonant frequency is given by 

P � 12{i ���} � ��� l 12{i��� �	 12{i24�78 � \�;5	8�	; .																																																																							�S22� 
The first derivative with temperature of Eq. S22 yields TCF|torsion � n � x2 																																																																																																																																	�S23� 
  

 

2.  NETD limited by temperature fluctuation noise process  

The spectral density of the thermodynamically driven temperature fluctuations are
3
  

�q�?� � 2{ 4����� �J1 � ?�� Z� 	,																																																																																																											(S24) 

where BW  is the measurement bandwidth. The temperature fluctuations can be converted into 

noise equivalent power by  

��q� � �. �qW��?�.																																																																																																																																				(S25) 
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The amount of power received by an IR detector δPt can be related to the temperature 

difference δT of a target relative to its surroundings (assuming blackbody radiation) by the 

following formula
3
 

��� � ��p4s� yI�I�z��,�� ���,																																																																																																																					(S26) 

where Ad is the detector area, F is the focal ratio of the optics, and jp�pqk��,��is the slope of the 

function P=f (Tt), where P is the power radiated by a blackbody target within the spectral band 

from λ1 to λ2.  For the long wavelength infrared band from 8-14 µm, dP/dT = 2.62 W/m
2⋅K. The 

NETD limited by the temperature fluctuation can be determined by combing Eq. S25 and S26. 

The calculated NETD limited by the temperature fluctuations versus thermal conductance is 

depicted by the blue curve in Fig. 1d. The adopted parameters in the calculation are: ?�=10 Hz, 

BW=1 Hz, � � 0.3, F=0.5. The device has the same geometry as shown in Fig. 1b.  

3.  Device fabrication process 

The pattern of the torsional device is defined by the electron beam lithography, followed by 

the gold film, Strontium Fluoride (SrF2) film deposition, and lift-off process. The device is 

released in a Sulfur Hexafluoride (SF6) based inductively coupled plasma (ICP) dry etching step 

with SrF2 as the etching mask. The obtained narrowest supporting rod is 50 nm. The ICP etching 

offers a high lateral etching ratio between Si and SiN over 100:1, a Si lateral etching rate ~ 1 

µm/min, a uniform and smooth etched surface over a whole 4 inch wafer. 

4.  Modeling of the optical interference technique 

We develop a simple interference model to account for the optical transduction nonlinear 

effect. Assuming the interference cavity, commonly formed by the device top surface and the 
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substrate with a separation of d, the laser electric fields reflected from the cavity’s top and 

bottom surfaces are:  

�W�%, �� � �W�%�B ¡∅£�%�V¤¥�¦,																																																																																																													��27� 
���%, �� � ���%�B ¡∅£�%���§pV¤¥�¦,																																																																																																					��28� 
where ¨-�%� is the initial phase, k is the wave vector, and ?� is the angular frequency of the laser 

light. The summed field is ©�ª, �� � �W�%, �� � ���%, ��, and the interference intensity ��%� is 

given by  

	��%, I� � «©�%, ��©∗�%, ��I� � �W��%� � ����%� � 2�W�%����%� cos�2�I�																							��29� 
This sets the background DC intensity that the photodetector measures. When the device vibrates 

at an amplitude of ®C, the interference intensity, ��%�, becomes modulated. The modulation 

depth in ��%� , ∆� , is recorded by the photodetector as the measure of the device resonant 

amplitude, i.e. the optical displacement signal: 

∆� � |��%, I � C� � ��%, I � C�| � 4�W�%����%� sin�2�I� sin�2�C� � � sin�2�C�	��30� 
 

5.  Optical nonlinearity caused resonance peak splitting versus actuation level 

We quantify the resonance splitting caused by the optical nonlinearity as a function of the 

actuation level based on a driven damped resonator model. The amplitude of a driven damped 

resonator is given by 

°�?� � s��?�7±²²� ³�?� � ?-��� � ?�?-�/´�µ																																																																																								 ��31� 
At the critical drive, the device reaches its maximum optical response at an amplitude C¶ � · 8⁄  

according to Eq. S30. The two frequencies corresponding to this amplitude according to above 

equation are 
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?® � ?-¹y1 � 12´�z ® 1́ iy CC¶z� � 1 	l ?- ® ?-2´iy CC¶z� � 1																																											��32� 
Finally the splitting is  

∆? � ?-́iy CC¶z� � 1 � ?-́iyºº¶z� � 1		,																																																																																					��33� 
V is the applied RF voltage on the piezo-ceramic disk, Vc is the voltage corresponding to 

°¶ � · 8⁄ . The piezo-ceramic disk acts as a linear actuator in the whole power range of our 

experiments. 

6.  Dynamic range (DR) of the torsional mode  

Since the torsional mode is inherently linear, its DR range should be limited by its elastic limit, 

i.e. the yield strength of the torsional rod Z»�. The experimental elastic limit of SiN is about 12 

GPa.
4
 The maximum shear stress occurs at the outer surface of the torsional rod can be expressed 

as 2 

Z�¼] � ��¼]{ª5 ,																				�for	circular	rod	with	a	radius	r�																																																						��34°� 
Z�¼] � 3��¼]2\�� x j�\k 				�for	rectangular	rod	with	cross	section	length	\ ¿ ��,														�S34b� 
Where x� je0f k � 1 � 0.6095ef � 0.8865�ef�� � 1.8023 jefk5 � 0.91�ef�
 , ��¼]  is the 

maximum torque applied to the torsional rod under the elastic limit, i.e., Z�¼] À Z»� . The 

maximum displacement angle Á�¼] � ��¼] |⁄ , where | is the torsional constant expressed in Eq. 

S20, can be formulated as: 

Á�¼] � 	ª Z»�� , �for	circular	rod	�																																																																																																						��35°� 
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Á�¼] � 13x j�\k . x� j�\k .
	� . Z»�� ,		�for	rectangular	rod	�,																																																										�S35b� 

We simply consider the thermomechanical noise as the lower limit of the maximally-attainable 

DR. The spectral density of the angular displacement noise on resonance �ÂW/� � Ã4���. ´ ?-|⁄  

is 

�ÂW/� � �64�����´��3{5�5 . 	8	;5�85ªWW �W/
 , �for	circular	rod	�																																																													��36°� 
�ÂW/� � ������´��x5�5 . 	8	;5�85\��;Ä �W/
 ,		�for	rectangular	rod	�																																																									�S36b� 
where 	8, 	; , �8, �; are the length and width of the torsional rod and paddle, respectively. 

The DR of the torsional mode is defined as DR	�dB� � 20	log y ÂÈÉÊÃ�ËÌ�Íz , BW=1Hz is the 

measurement bandwidth. It can be formulated as: 

ÎÏ � 20	log Ð 12√2 . Z»�. � 3{54�����´��� . %Ñ$%$#"#Ò�
W/
Ó , �for	circular	rod	�																																	��37°� 

ÎÏ � 20	log Ð 13√2x� . Z»�. � 3{5�����´�x�� . ÔÕ$%"%Ö$#"#Ò �W/
Ó ,		�for	rectangular	rod�																�S37b� 
 

7.  Allan deviation: its definition and measurement method 

The Allan deviation (AD) is a time variance of the measured frequency of a source, each 

measurement averaged over a time interval τA. It is defined as m×� � W�²Ø� WÙVW∑ �P�111 � P�VW111111��Ù�,� ,5 
where  P�111 is the average frequency measured over the mth time interval of length ∆t=τA, and fc is 

the nominal carrier frequency.  
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To measure AD, the device was driven at its resonant frequency f0 by a CW signal, and the 

real time phase fluctuations were recorded in an open-loop configuration by a network analyzer. 

The measured phase can be converted to frequency by dividing the predetermined slope 2Q/ f0 in 

the linear region of the phase-frequency resonance curve. The fastest sampling period in our 

measurements is limited to 100 ms by the data bus transfer speed. 
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